Small Signal MOSFET

20 V, 540 mA, Dual N-Channel

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage
- Small Footprint 1.6 x 1.6 mm
- ESD Protected Gate
- These are Pb–Free Devices

Applications

- Load/Power Switches
- Power Supply Converter Circuits
- Battery Management
- Cell Phones, Digital Cameras, PDAs, Pagers, etc.

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted.)

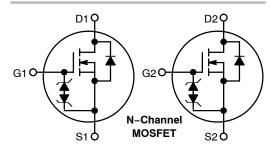
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	V		
Gate-to-Source Voltage			V _{GS}	±6.0	V
Continuous Drain Current	rrent Steady T _A = 25°C		1_	540	mA
(Note 1)	State	$T_A = 85^{\circ}C$	I _D	390	
Power Dissipation (Note 1)	Stea	dy State	P _D	250	mW
Continuous Drain Current (Note 1)	t≤5s	$T_A = 25^{\circ}C$	1	570	mA
(NOLE T)	1 2 3 3	$T_A = 85^{\circ}C$	I _D	410	
Power Dissipation (Note 1)	t:	≤ 5 s	P _D	280	mW
Pulsed Drain Current	t _p =	: 10 μs	I _{DM}	1.5	А
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			I _S	350	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

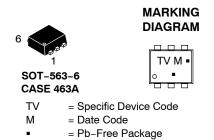
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 1)	$R_{\theta JA}$	500	°C/W
Junction-to-Ambient – t \leq 5 s (Note 1)		447	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

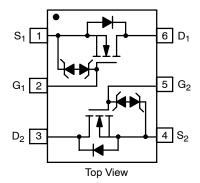
1. Surface mounted on FR4 board using 1 in sq pad size


(Cu. area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

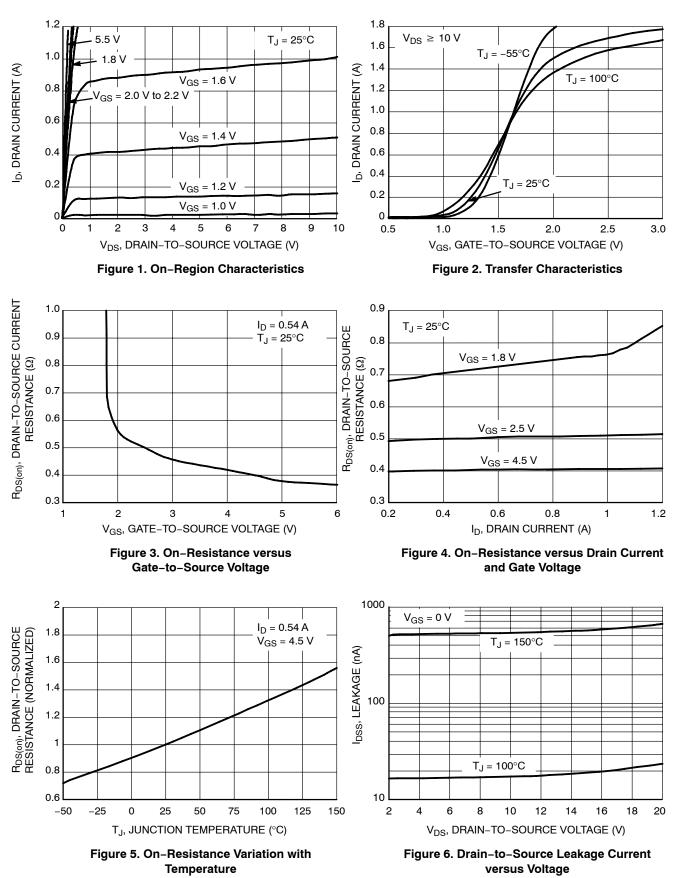
http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max (Note 1)		
	400 mΩ @ 4.5 V			
20	500 mΩ @ 2.5 V	540 mA		
	700 mΩ @ 1.8 V			

(Note: Microdot may be in either location)

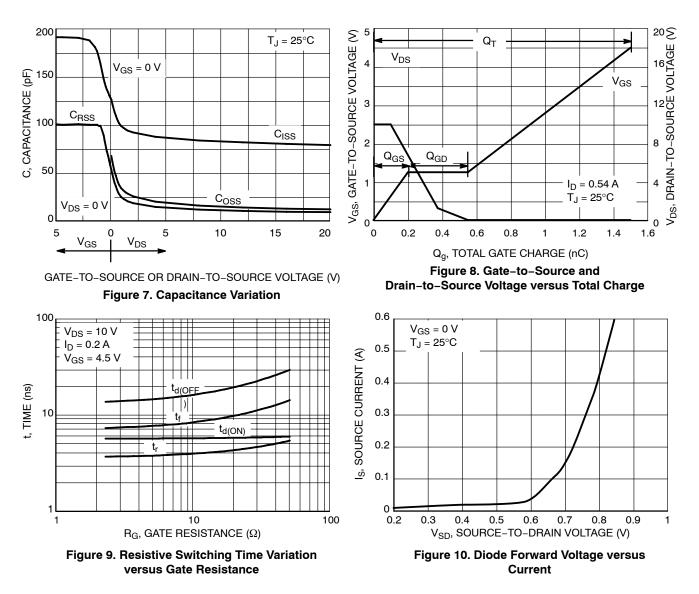
PINOUT: SOT-563

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Downloaded from Elcodis.com electronic components distributor

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted.)

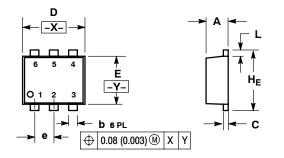

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 µA		20	-	-	V
Drain-to-Source Breakdown Voltage Tem- perature Coefficient	V _{(BR)DSS} /T _J	_	-			-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V	$T_J = 25^{\circ}C$	-	-	1.0	μA
		V _{DS} = 16 V	T _J = 125°C	-	-	5.0	1
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±	4.5 V	-	-	± 5.0	μA
ON CHARACTERISTICS (Note 3)				-			
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 25$	60 μA	0.45	-	1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	-		-	2.0	-	mV/°C
Drain-to-Source On Resistance		V _{GS} = 4.5 V, I _D = 540 mA		-	0.4	0.55	Ω
	R _{DS(on)}	V _{GS} = 2.5 V, I _D = 50	00 mA	-	0.5	0.7	
		V _{GS} = 1.8 V, I _D = 350 mA			0.7	0.9	
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 54	0 mA	-	1.0	-	S
CHARGES AND CAPACITANCES	_				1	1	
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 16 V			80	150	pF
Output Capacitance	C _{OSS}				13	25	
Reverse Transfer Capacitance	C _{RSS}				10	20	
Total Gate Charge	Q _{G(TOT)}			-	1.5	2.5	nC
Threshold Gate Charge	Q _{G(TH)}				0.1	-	
Gate-to-Source Charge	Q _{GS}	V_{GS} = 4.5 V, V_{DS} = 10 V; I_{D} = 540 mA		-	0.2	-	
Gate-to-Drain Charge	Q _{GD}			-	0.35	-	
SWITCHING CHARACTERISTICS, V _{GS} = V (Note 4)				1	1	
Turn-On Delay Time	t _{d(ON)}			-	6.0	-	ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DD} = 10 V, I_D = 540 mA, R_G = 10 Ω			4.0	-	1
Turn-Off Delay Time	t _{d(OFF)}				16	-	
Fall Time	t _f				8.0	-	
DRAIN-SOURCE DIODE CHARACTERISTIC	s	1		•	8		
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	-	0.7	1.2	V
		$I_{\rm S} = 350 \rm{mA}$	T _J = 125°C	-	0.6	-	
Reverse Recovery Time	t _{BB}	$V_{GS} = 0 \text{ V}, \text{ d}_{ISD}/\text{d}_t = 100 \text{ A}/\mu\text{s}, \text{ I}_S = 350 \text{ mA}$		-	6.5	_	ns

3. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

ORDERING INFORMATION


Device	Package	Shipping
NTZD3154NT1G	SOT-563 (Pb-Free)	4000 / Tape & Reel
NTZD3154NT5G	SOT–563 (Pb–Free)	8000 / Tape & Reel

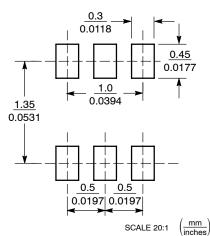
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A-01

ISSUE F

NOTES:


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS

2.

MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
E	1.10	1.20	1.30	0.043	0.047	0.051
е	0.5 BSC			0	.02 BSC	2
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.