

September 2008

FDMS9600S Dual N-Channel PowerTrench[®] MOSFET

Q1: 30V, 32A, 8.5m Ω Q2: 30V, 30A, 5.5m Ω

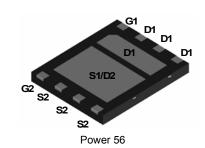
Features

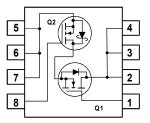
Q1: N-Channel

- Max $r_{DS(on)}$ = 8.5m Ω at V_{GS} = 10V, I_D = 12A
- Max $r_{DS(on)}$ = 12.4m Ω at V_{GS} = 4.5V, I_D = 10A

Q2: N-Channel

- Max $r_{DS(on)}$ = 5.5m Ω at V_{GS} = 10V, I_D = 16A
- Max r_{DS(on)} = 7.0mΩ at V_{GS} = 4.5V, I_D = 14A
- Low Qg high side MOSFET
- Low r_{DS(on)} low side MOSFET
- Thermally efficient dual Power 56 package
- Pinout optimized for simple PCB design
- RoHS Compliant


General Description


This device includes two specialized MOSFETs in a unique dual Power 56 package. It is designed to provide an optimal Synchronous Buck power stage in terms of efficiency and PCB utilization. The low switching loss "High Side" MOSFET is complemented by a Low Conduction Loss "Low Side" SyncFET.

Applications

Synchronous Buck Converter for:

- Notebook System Power
- General Purpose Point of Load

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units	
V _{DS}	Drain to Source Voltage		30	30	V	
V _{GS}	Gate to Source Voltage	±20	±20	V		
	Drain Current -Continuous (Package limited) T _C = 25°C		32	30		
I _D	-Continuous (Silicon limited) T _C = 25°C		55	108	^	
	-Continuous $T_A = 25^{\circ}C$	(Note 1a)	12	16	A	
	-Pulsed		60	60		
D	Power Dissipation for Single Operation	(Note 1a)) 2.5		14/	
P _D		(Note 1b)	1.	.0	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150		°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50		
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1b)) 120		°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	3 1.2		

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS9600S	FDMS9600S	Power 56	13"	12mm	3000 units

©2008 Fairchild Semiconductor Corporation FDMS9600S Rev.D1

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Мах	Units
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0V$ $I_D = 1 m A, V_{GS} = 0V$	Q1 Q2	30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C $I_D = 1$ mA, referenced to 25°C	Q1 Q2		35 29		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24V, V _{GS} = 0V	Q1 Q2			1 500	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20V, V_{DS} = 0V	Q1 Q2			±100 ±100	nA nA
On Chara	octeristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250\mu A$ $V_{GS} = V_{DS}$, $I_D = 1mA$	Q1 Q2	1 1	1.5 1.8	3 3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C $I_D = 1$ mA, referenced to 25°C	Q1 Q2		-4.5 -6.0		mV/°C
-	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 12A V_{GS} = 4.5V, I_D = 10A V_{GS} = 10V, I_D = 12A , T_J = 125^{\circ}C$	Q1		7.0 9.2 8.6	8.5 12.4 13.0	
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 16A$ $V_{GS} = 4.5V, I_D = 14A$ $V_{GS} = 10V, I_D = 16A, T_J = 125^{\circ}C$	Q2		4.5 5.3 5.4	.5 5.5 .3 7.0	- mΩ
9 _{FS}	Forward Transconductance	$V_{DD} = 10V, I_D = 12A$ $V_{DD} = 10V, I_D = 16A$	Q1 Q2		54 68		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance		Q1 Q2		1280 2300	1705 3060	pF
Coss	Output Capacitance		Q1		525	700	pF

C _{iss}	Input Capacitance		Q2	2300	3060	р⊢
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f= 1MHz	Q1 Q2	525 1545	700 2055	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2	80 250	120 375	pF
R _g	Gate Resistance	f = 1MHz	Q1 Q2	1.0 1.7		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		Q1 Q2	13 17	23 31	ns
t _r	Rise Time	V _{DD} = 10V, I _D = 1A,	Q1 Q2	6 11	12 20	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$	Q1 Q2	42 54	67 86	ns
t _f	Fall Time		Q1 Q2	12 32	22 51	ns
Q _{g(TOT)}	Total Gate Charge	Q1 V _{DD} = 15V, V _{GS} = 4.5V, I _D = 12A	Q1 Q2	9 21	13 29	nC
Q _{gs}	Gate to Source Gate Charge	Q2	Q1 Q2	3 8		nC
Q _{gd}	Gate to Drain "Miller" Charge	V _{DD} = 15V, V _{GS} = 4.5V, I _D = 16A	Q1 Q2	2.7 6.5		nC

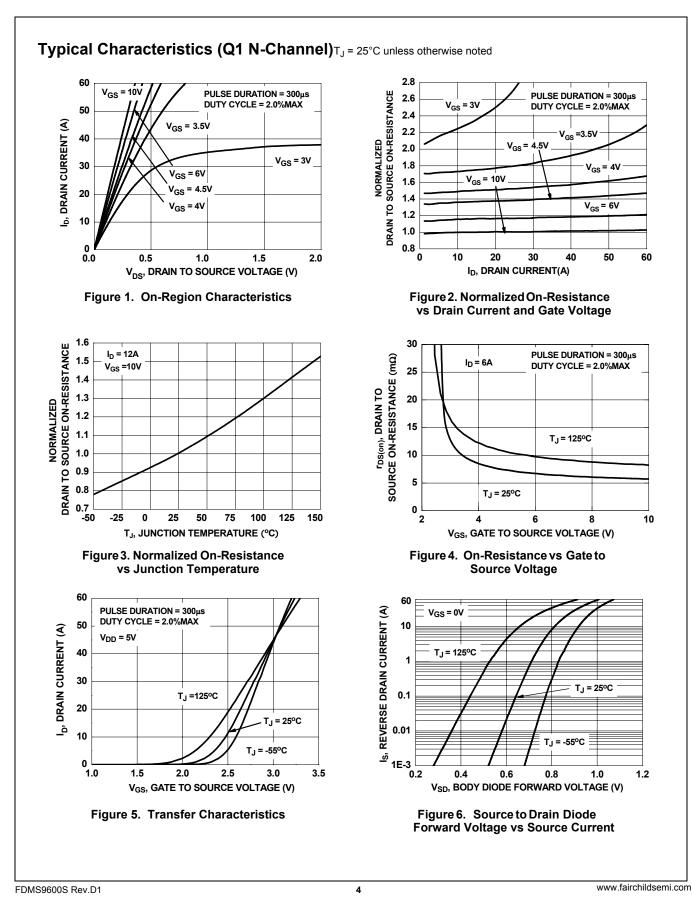
FDMS9600S Rev.D1

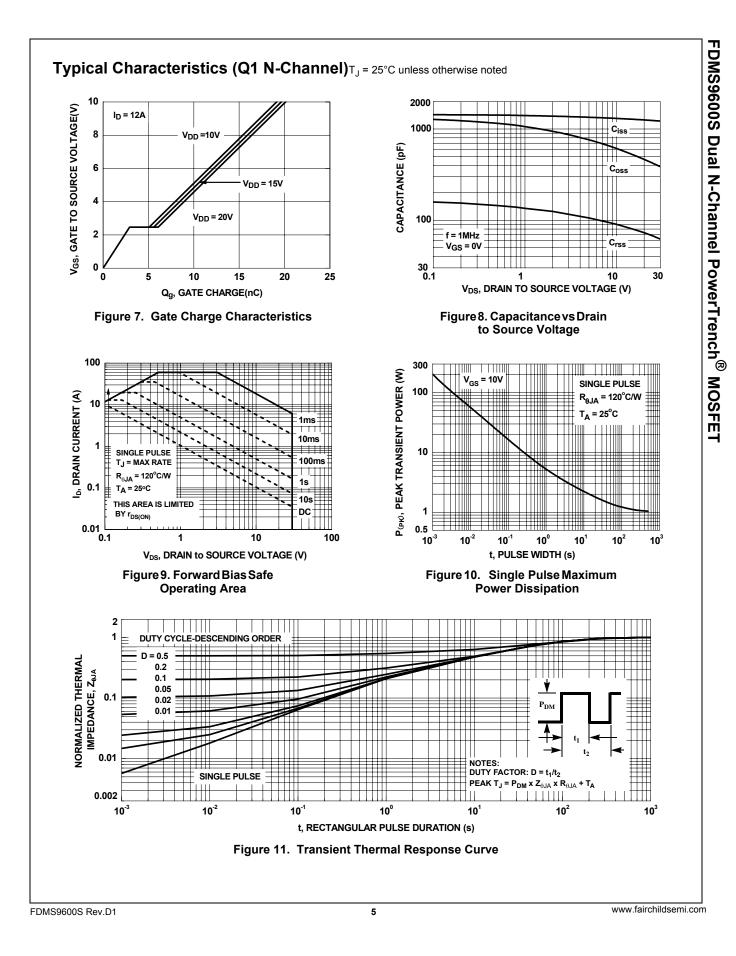
FDMS9600S Dual N-Channel PowerTrench[®] MOSFET

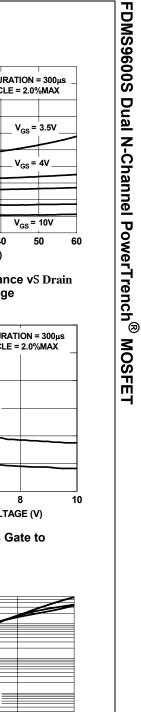
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-Sou	urce Diode Characteristics						
I _S	Maximum Continuous Drain-Source Diode Forward Current		Q1 Q2			2.1 3.5	А
V _{SD}	Source to Drain Diode Forward Voltage	$\label{eq:VGS} \begin{array}{ll} V_{GS} = 0V, I_S = 2.1A & (Not \\ V_{GS} = 0V, I_S = 3.5A & (Not \\ V_{GS} = 0V, I_S = 8.2A & (Not \\ \end{array}$	e 2) Q2		0.7 0.4 0.5	1.2 1.0 1.0	v
t _{rr}	Reverse Recovery Time	Q1 Ι _F = 12A, di/dt = 100A/μs			33 27		ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 16A, di/dt = 300A/μs	Q1 Q2		20 33		nC

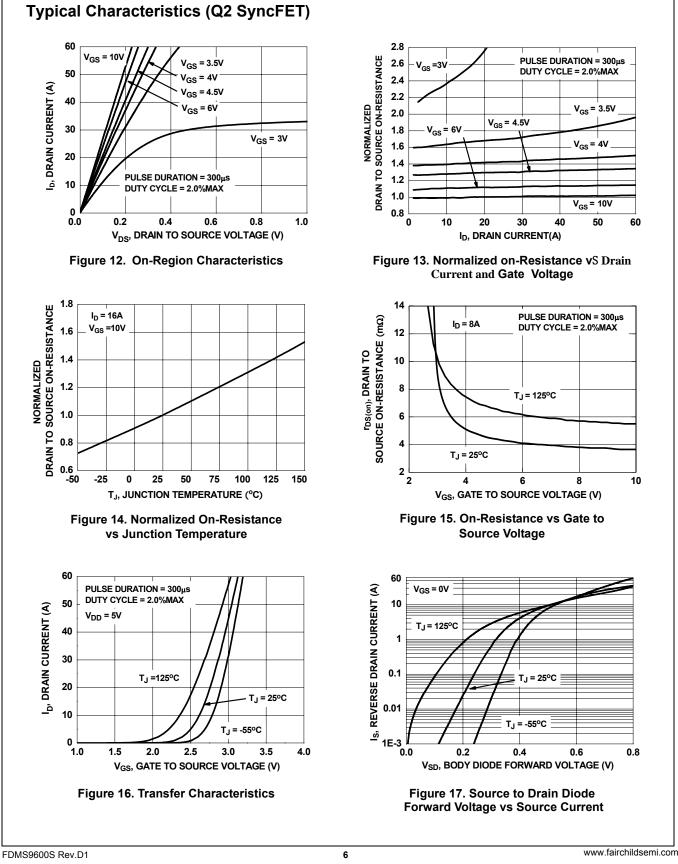
Notes:
I: R_{0JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

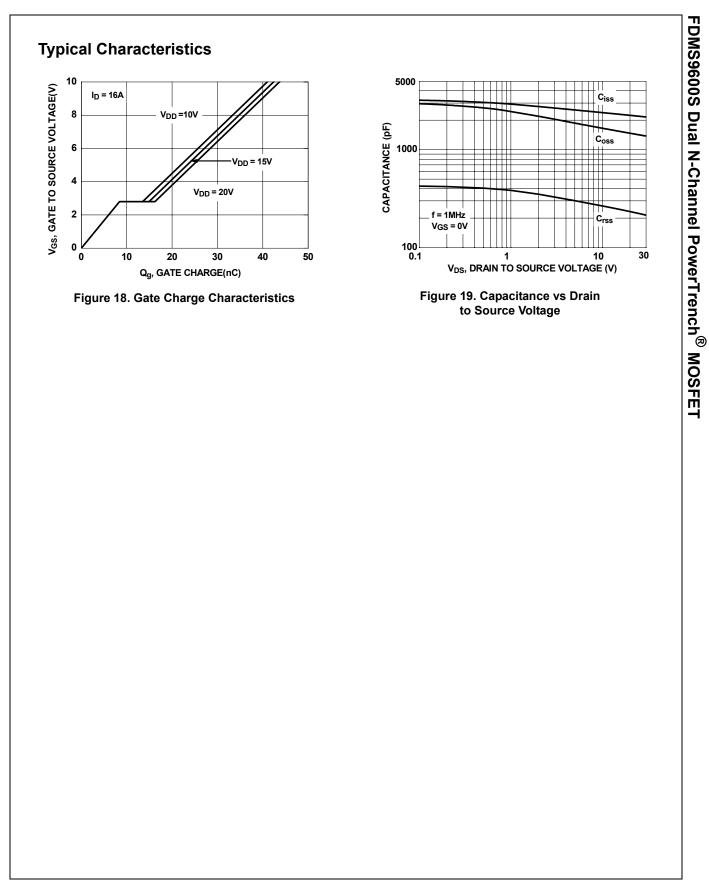
2: Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.

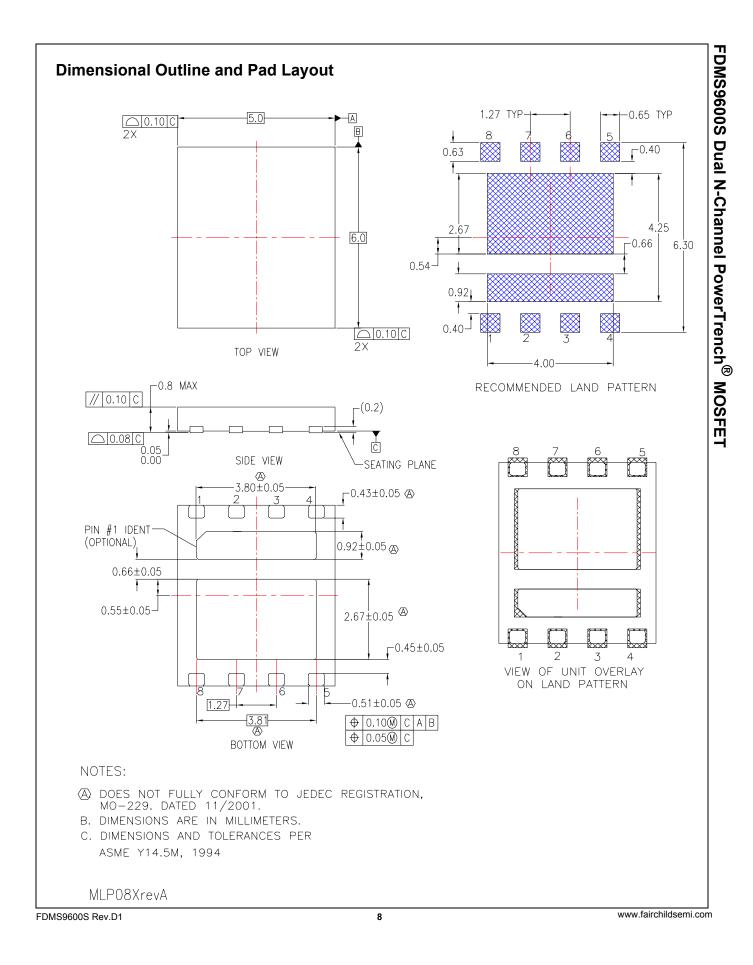

a.50°C/W when mounted on a 1 in² pad of 2 oz copper




b. 120°C/W when mounted on a minimum pad of 2 oz copper


FDMS9600S Dual N-Channel PowerTrench[®] MOSFET





FDMS9600S Rev.D1

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * FificentMax™ EZSWITCH™ * Fistechild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * FPS™	F-PFS [™] FRFET [®] Global Power Resource SM Green FPS [™] e-Series [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] MG20CUUPLER [™] MICROCOUPLER [™] MicroPak [™] MicroPak [™] MillerDrive [™] MotionAsx [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®] [®] DDP SPM [™] Power-SPM [™]	PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	The Power Franchise Tranchise TinyBoost TM TinyBoost TM TinyLogic® TINYOPTO TM TinyPWMT TM TinyPWMT TM TinyWire TM μ SerDes TM Ultra FRFET TM UniFET TM VCX TM VisualMax TM
---	---	--	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 13