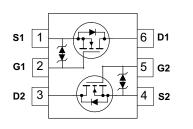


FDMA1028NZ

Dual N-Channel PowerTrench[®] MOSFET

General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.



Features

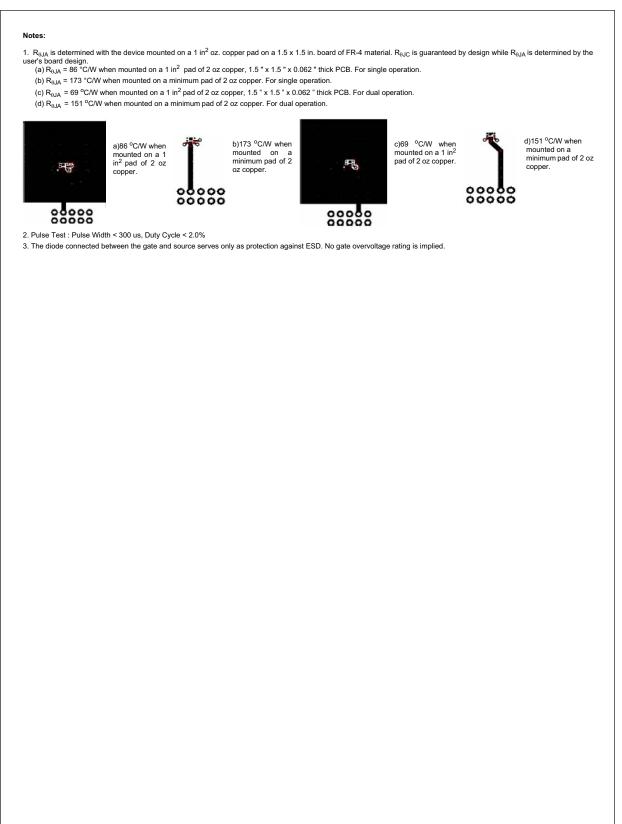
- 3.7 A, 20V. $R_{DS(ON)} = 68 \text{ m}\Omega @ V_{GS} = 4.5V$ $R_{DS(ON)} = 86 \text{ m}\Omega @ V_{GS} = 2.5V$
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm

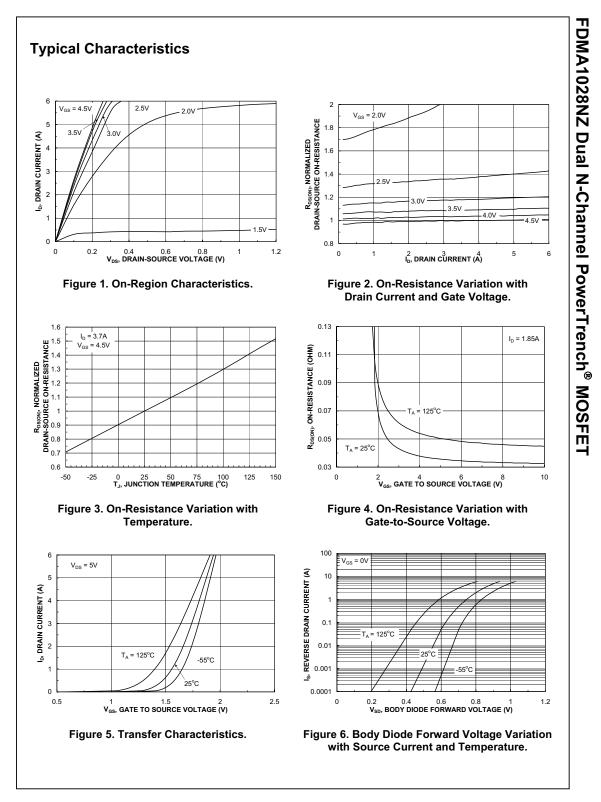
October 2010

- HBM ESD protection level > 2kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

Absolute Maximum Ratings T_A=25°C unless otherwise noted

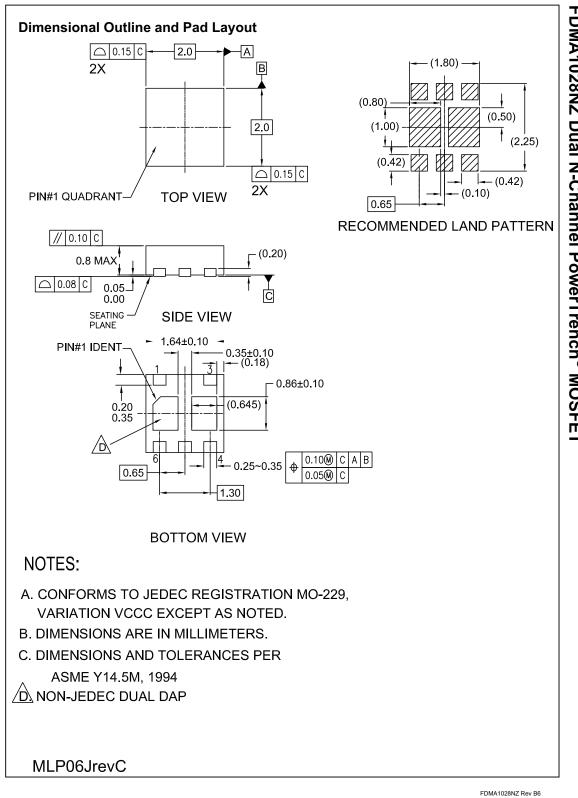
Symbol	Parameter			Ratings	Unit
V _{DS}	Drain-Sourc	e Voltage		20	V
V _{GS}	Gate-Sourc	e Voltage		±12	V
ID	Drain Current – Continuous		(Note 1a)	3.7	A
		– Pulsed		6	
PD	Power Dissipation for Single Operation (N		ON (Note 1a)	1.4	W
			(Note 1b)	0.7	
T _J , T _{STG}	Operating a	nd Storage Junction Tem	perature Range	-55 to +150	°C
			biopt (1) (1)	96 (Single Operation)	
R _{0JA}	Thermal Re	teristics sistance, Junction-to-Aml sistance, Junction-to-Aml		86 (Single Operation) 173 (Single Operation)	
	Thermal Re Thermal Re	sistance, Junction-to-Amb	bient (Note 1b)	173 (Single Operation) 69 (Dual Operation)	
R _{θJA} R _{θJA}	Thermal Re Thermal Re Thermal Re	sistance, Junction-to-Amb sistance, Junction-to-Amb	bient (Note 1b) bient (Note 1c)	173 (Single Operation)	•C/W
R _{0JA} R _{0JA} R _{0JA} R _{0JA}	Thermal Re Thermal Re Thermal Re Thermal Re	sistance, Junction-to-Aml sistance, Junction-to-Aml sistance, Junction-to-Aml	bient (Note 1b) bient (Note 1c) bient (Note 1d)	173 (Single Operation) 69 (Dual Operation)	°C/W
R _{0JA} R _{0JA} R _{0JA} R _{0JA}	Thermal Re Thermal Re Thermal Re Thermal Re e Markin	sistance, Junction-to-Aml sistance, Junction-to-Aml sistance, Junction-to-Aml sistance, Junction-to-Aml	bient (Note 1b) bient (Note 1c) bient (Note 1d)	173 (Single Operation) 69 (Dual Operation)	C/W


©20F€ Fairchild Semiconductor Corporation


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	20			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 V$, $V_{DS} = 0 V$			±10	μA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	0.6	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}$		37	68	mΩ
	On–Resistance	$V_{GS} = 2.5 V, I_D = 3.3 A$		50 53	86 90	
	E	V_{GS} = 4.5 V, I_D = 3.7 A, T_J =125°C	-		90	
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 3.7 \text{ A}$		16		S
Dynamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 10 V$, $V_{GS} = 0 V$,		340		pF
Coss	Output Capacitance	f = 1.0 MHz		80		pF
C _{rss}	Reverse Transfer Capacitance			60		pF
Rg	Gate Resistance		0.1	4	12	Ω
Switchin t _{d(on)}	g Characteristics (Note 2)	$V_{DD} = 10 V$, $I_D = 1 A$,		8	16	ns
t,	Turn–On Rise Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω		8	16	ns
t _{d(off)}	Turn–Off Delay Time	1		14	26	ns
t _f	Turn–Off Fall Time	1		3	6	ns
Q _g	Total Gate Charge	$V_{DS} = 10 \text{ V}, I_D = 3.7 \text{ A},$		4	6	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 4.5 V		0.7		nC
Q _{gd}	Gate-Drain Charge	1		1.1		nC


FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

FDMA1028NZ Rev B6


$Downloaded \ from \ \underline{Elcodis.com} \ electronic \ components \ distributor$

FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.