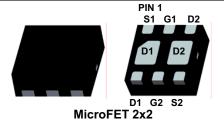
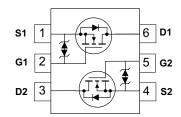


FDMA2002NZ


Dual N-Channel PowerTrench® MOSFET


General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Features

- 2.9 A, 30 V $R_{DS(ON)} = 123 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 140 \text{ m}\Omega$ @ $V_{GS} = 3.0 \text{ V}$ $R_{DS(ON)} = 163 \text{ m}\Omega$ @ $V_{GS} = 2.5 \text{ V}$
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level = 1.8kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain-Source Voltage	30	V	
V _{GS}	Gate-Source Voltage	±12	V	
I _D	Drain Current – Continuous (T _C = 25°C, V _{GS} = 4.5V)		2.9	
	- Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 2.5V$)		2.7	Α
	– Pulsed		10	
P _D	Power Dissipation for Single Operation	(Note 1a)	1.5	10/
	Power Dissipation for Single Operation	(Note 1b)	0.65	W
T _J , T _{STG}	Operating and Storage Temperature		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	83 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	193 (Single Operation)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	68 (Dual Operation)	C/VV
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1d)	145 (Dual Operation)	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
002	FDMA2002NZ	7"	8mm	3000 units

©20F€ Fairchild Semiconductor Corporation FDMA2002NZ Rev BI (W)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	1				
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	İ	25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μА
I _{GSS}	Gate-Body Leakage Current	V _{GS} = ± 12 V, V _{DS} = 0 V			±10	μА
On Char	acteristics	•	•	•	•	•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	0.4	1.0	1.5	V
ΔV _{GS(th)} ΔT _J	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-3		mV/°C
	Static Drain–Source On–Resistance	$V_{GS} = 4.5V, I_D = 2.9A$		75	123	
Real I		$V_{GS} = 3.0V, I_{D} = 2.7A$		84	140	
		$V_{GS} = 2.5V, I_D = 2.5A$		92	163	mΩ
		$V_{GS} = 4.5V$, $I_D = 2.9A$, $T_C = 85^{\circ}C$		95	166	
		$V_{GS} = 3.0V, I_D = 2.7A, T_C = 150^{\circ}C$ $V_{GS} = 2.5V, I_D = 2.5A, T_C = 150^{\circ}C$		138 150	203	1
Dynamia						
	Characteristics	V -15V V -0V	T	190	220	nF
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$		190	220	pF pF
C _{iss}		V _{DS} = 15 V, V _{GS} = 0 V, f = 1.0 MHz			-	pF pF
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance			30	40	pF
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance			30	40	pF
C _{iss} C _{oss} C _{rss} Switching	Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics (Note 2)	f = 1.0 MHz		30 20	40 30	pF pF
C_{iss} C_{oss} C_{rss} Switching $t_{d(on)}$ t_r	Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time	f = 1.0 MHz $V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		30 20 6	40 30	pF pF
$\begin{aligned} &C_{iss} \\ &C_{oss} \\ &C_{rss} \\ &\textbf{Switchin} \\ &t_{d(on)} \\ &t_r \\ &t_{d(off)} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz $V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		30 20 6 8	40 30 12 16	pF pF
$\begin{aligned} &C_{iss} \\ &C_{oss} \\ &C_{rss} \\ &\textbf{Switchin} \\ &t_{d(on)} \\ &t_r \\ &t_{d(off)} \\ &t_f \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz $V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		30 20 6 8 12	40 30 12 16 21	pF pF pF
$\begin{aligned} &C_{iss} \\ &C_{oss} \\ &C_{rss} \\ &\textbf{Switchin} \\ &t_{d(on)} \\ &t_r \\ &t_{d(off)} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz V_{DD} = 15 V, I_{D} = 1 A, V_{GS} = 4.5 V, R_{GEN} = 6 Ω		30 20 6 8 12 2	40 30 12 16 21 10	pF pF ns ns ns
$\begin{aligned} &C_{iss} \\ &C_{oss} \\ &C_{rss} \\ &\textbf{Switchin} \\ &t_{d(on)} \\ &t_{r} \\ &t_{d(off)} \\ &t_{f} \\ &Q_{g} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Input Capacitance Reverse Transfer Capacitance Input Capacitance Reverse Transfer Capacitance Input Capacitance (Note 2) Input Capacitance (Note 2) Input Capacitance Input Capacitance (Note 2) Input Capacitance (Note 2) Input Capacitance (Note 2)			30 20 6 8 12 2 2.4	40 30 12 16 21 10	pF pF ns ns ns ns nc
$\begin{aligned} &C_{iss} \\ &C_{oss} \\ &C_{rss} \\ &\textbf{Switchin} \\ &t_{d(on)} \\ &t_r \\ &t_{d(off)} \\ &t_f \\ &Q_g \\ &Q_{gs} \\ &Q_{gd} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge			30 20 6 8 12 2 2.4 0.35	40 30 12 16 21 10	pF pF ns ns ns ns nc nC
$\begin{aligned} &C_{iss} \\ &C_{oss} \\ &C_{rss} \\ &\textbf{Switchin} \\ &t_{d(on)} \\ &t_r \\ &t_{d(off)} \\ &t_f \\ &Q_g \\ &Q_{gs} \\ &Q_{gd} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Input Capacitance Reverse Transfer Capacitance Input Capacitance Reverse Transfer Capacitance Input Capacitance (Note 2) Input C	$f=1.0 \text{ MHz}$ $V_{DD}=15 \text{ V}, I_D=1 \text{ A},$ $V_{GS}=4.5 \text{ V}, R_{GEN}=6 \Omega$ $V_{DS}=15 \text{ V}, I_D=2.9 \text{ A},$ $V_{GS}=4.5 \text{ V}$ and Maximum Ratings		30 20 6 8 12 2 2.4 0.35	40 30 12 16 21 10	pF pF ns ns ns ns nc nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ \hline \textbf{Switchin} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline \textbf{Drain-So} \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance In Characteristics (Note 2) Turn—On Delay Time Turn—On Rise Time Turn—Off Delay Time Turn—Off Fall Time Total Gate Charge Gate—Source Charge Gate—Drain Charge Cource Diode Characteristics	$f = 1.0 \text{ MHz}$ $V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$ $V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 15 \text{ V}, I_D = 2.9 \text{ A},$ $V_{GS} = 4.5 \text{ V}$ $and Maximum Ratings$ in Diode Forward Current $I_S = 2.0 \text{ A}$		30 20 6 8 12 2 2.4 0.35	12 16 21 10 3.0	pF pF ns ns ns ns nc nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ \hline \textbf{Switchin} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline \textbf{Drain-Sol}_{I_S} \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Ing Characteristics (Note 2) Turn—On Delay Time Turn—Off Delay Time Turn—Off Fall Time Total Gate Charge Gate—Source Charge Gate—Drain Charge Durce Diode Characteristics Maximum Continuous Source—Drain Source—Drain Diode Forward	$f = 1.0 \text{ MHz}$ $V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$ $V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 15 \text{ V}, I_D = 2.9 \text{ A},$ $V_{GS} = 4.5 \text{ V}$ and Maximum Ratings in Diode Forward Current		30 20 6 8 12 2 2.4 0.35 0.75	40 30 12 16 21 10 3.0 2.9	pF pF pF

Notes:

- 1. R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.

 (a) $R_{0JA} = 86 \, ^{\circ}\text{C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.

 - (b) $R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{\theta JA}$ = 69 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) $R_{\theta JA}\,$ = 151 $^{o}\text{C/W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.

- 2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics

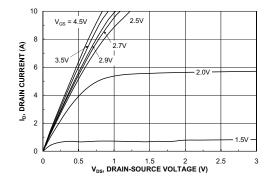


Figure 1. On-Region Characteristics.

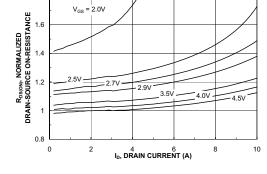


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

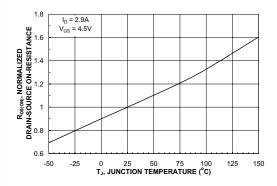


Figure 3. On-Resistance Variation with Temperature.

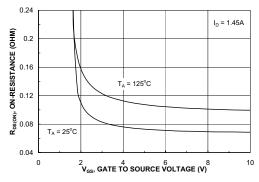


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

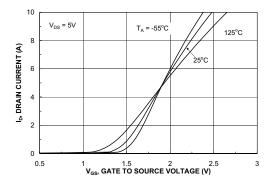
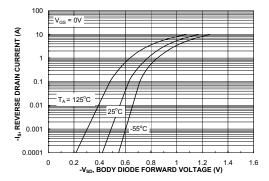
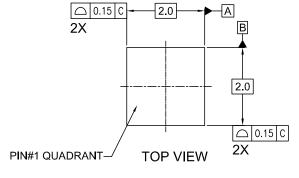
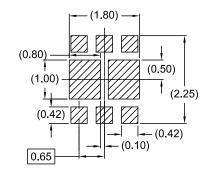
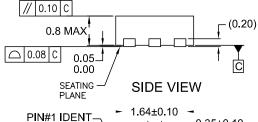
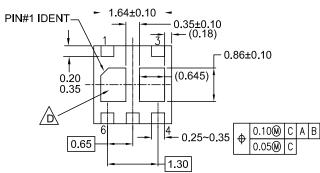


Figure 5. Transfer Characteristics.


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.


Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION VCCC EXCEPT AS NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994

NON-JEDEC DUAL DAP

MLP06JrevC

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™

Current Transfer Logic™ DEUXPEED® Dual Cool™ $\mathsf{EcoSPARK}^{\circledR}$ EfficentMax™ ESBC™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ **FACT**

FAST® FastvCore™ FETBench™ FlashWriter® * F-PFS™ FRFET®

Global Power ResourceSM Green FPS™

Green FPS™ e-Series™ GmaxTM GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptiHiT™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET® OSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™

SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™

SYSTEM GENERAL The Power Franchise®

wer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCXTM VisualMaxTM XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.