

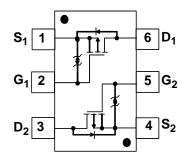
SEMICONDUCTOR®

FAIRCHILD

Dual P-Channel (–1.5 V) Specified PowerTrench[®] MOSFET –20 V, –0.83 A, 0.5 Ω

Features

- Max $r_{DS(on)} = 0.5 \Omega$ at $V_{GS} = -4.5 V$, $I_D = -0.83 A$
- Max $r_{DS(on)} = 0.7 \Omega$ at $V_{GS} = -2.5 V$, $I_D = -0.70 A$
- Max $r_{DS(on)} = 1.2 \Omega$ at $V_{GS} = -1.8 V$, $I_D = -0.43 A$
- Max $r_{DS(on)}$ = 1.8 Ω at V_{GS} = -1.5 V, I_D = -0.36 A
- HBM ESD protection level = 1400 V (Note 3)
- RoHS Compliant


General Description

This Dual P-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench process to optimize the $r_{DS(on)} @ \, V_{GS} = -1.5 \ V.$

Application

Li-Ion Battery Pack

MOSFET Maximum Ratings $T_A = 25 \text{ °C}$ unless otherwise noted

Symbol	Parameter		Ratings	
V _{DS}	Drain to Source Voltage		-20	V
V _{GS}	Gate to Source Voltage		±8	V
1	Drain Current -Continuous	(Note 1a)	-0.83	•
D	-Pulsed		-1.0	— A
D	Power Dissipation (1		0.625	w
P _D	Power Dissipation	(Note 1b)	0.446	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

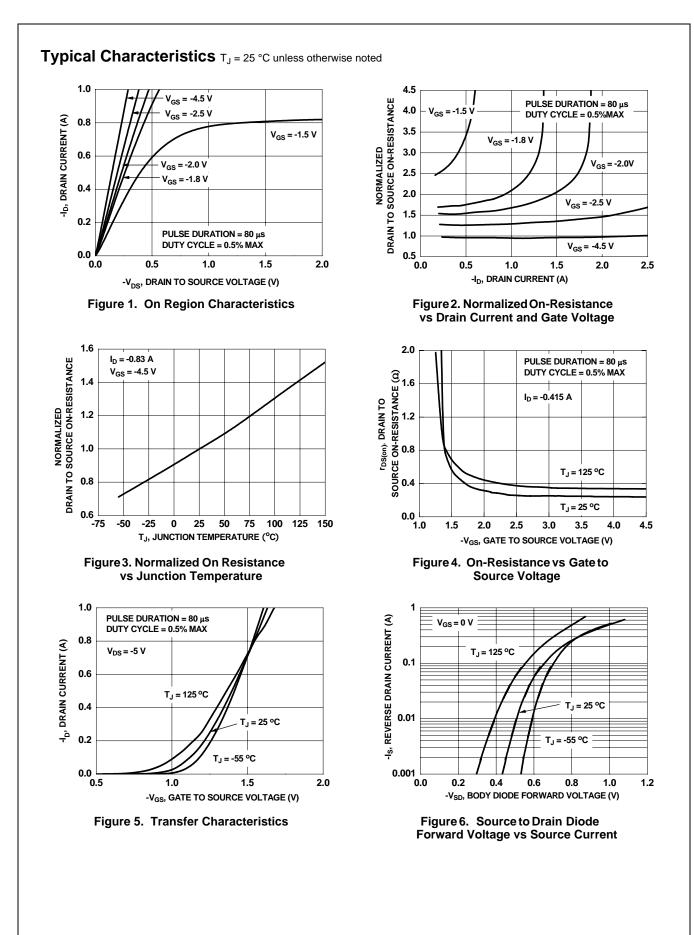
Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	200	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	280	C/vv

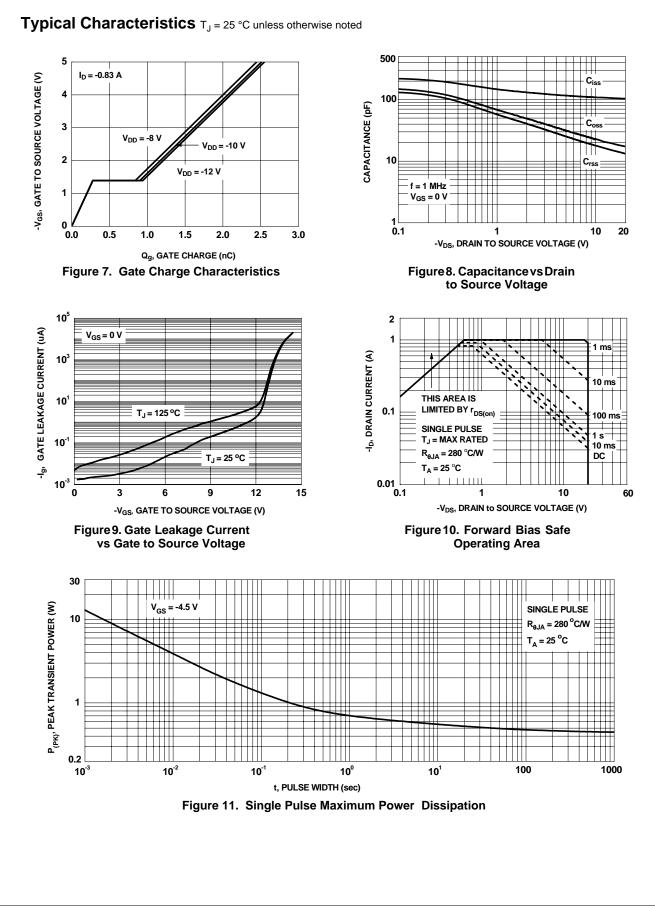
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
G	FDY1002PZ	SC89-6	7 "	8 mm	3000 units

October 2008

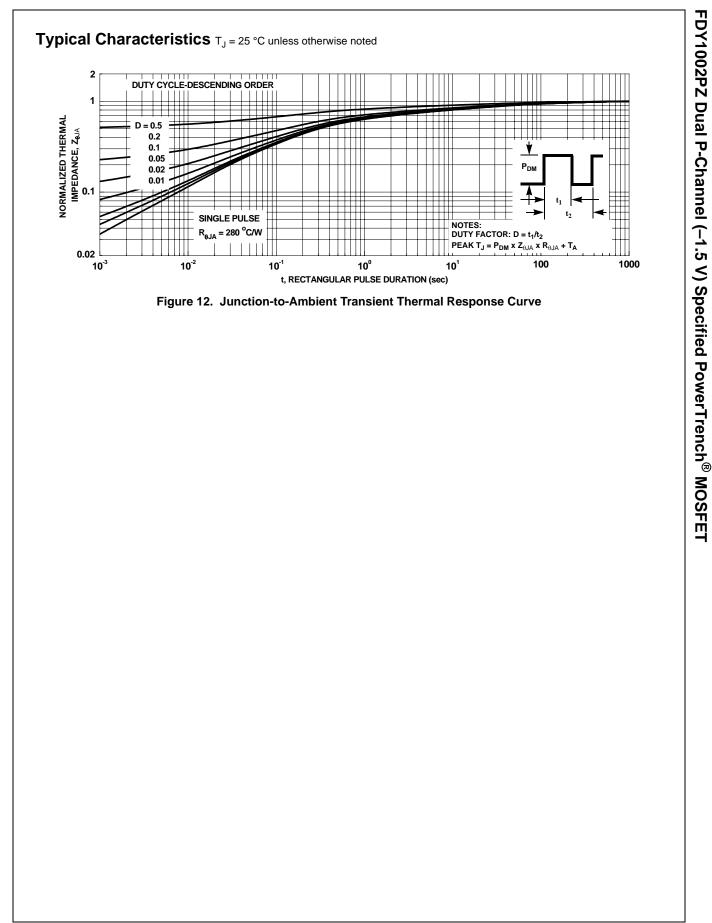

cteristics Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current cteristics (Note 2)	$I_{D} = -250 \ \mu\text{A}, \ V_{GS} = 0 \ V$ $I_{D} = -250 \ \mu\text{A}, \ \text{referenced to } 25 \ ^{\circ}\text{C}$ $V_{DS} = -16 \ V, \ V_{GS} = 0 \ V$ $V_{GS} = \pm 8 \ V, \ V_{DS} = 0 \ V$	-20	-11			
Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current Cteristics (Note 2)	$I_D = -250 \mu A$, referenced to 25 °C $V_{DS} = -16 V$, $V_{GS} = 0 V$	-20	-11			
Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current Cteristics (Note 2)	V _{DS} = -16 V, V _{GS} = 0 V		-11		V	
Gate to Source Leakage Current cteristics (Note 2)					mV/°C	
cteristics (Note 2)	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			-1	μA	
. ,				±10	μΑ	
. ,						
Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4	-0.7	-1.0	V	
Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		3		mV/°C	
	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$		0.28	0.5		
	$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -0.70 \text{ A}$		0.36	0.7	Ω	
Static Drain to Source On-Resistance	$V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -0.43 \text{ A}$		0.47	1.2		
Static Drain to Source On-Resistance	$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -0.36 \text{ A}$		0.62	1.8		
	V _{GS} = -4.5 V, I _D = -0.83 A, T _J =125 °C		0.39	0.85		
Forward Transconductance	$V_{DD} = -5 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$		2		S	
Characteristics						
Input Capacitance	V 40.V.V 0.V		100	135	pF	
Output Capacitance			23	35	pF	
Reverse Transfer Capacitance			18	30	pF	
Characteristics (Note 2)						
Turn-On Delay Time			3.5	10	ns	
	V _{DD} = -10 V, I _D = -0.83 A		3.5 2.9	10 10	ns ns	
Turn-On Delay Time	$V_{DD} = -10$ V, $I_D = -0.83$ A V _{GS} = -4.5 V, R _{GEN} = 6 Ω					
Turn-On Delay Time Rise Time			2.9	10	ns	
Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		2.9 23	10 37	ns ns	
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$		2.9 23 13	10 37 23	ns ns ns	
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		2.9 23 13 2.2	10 37 23	ns ns ns nC	
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$ $V_{GS} = -4.5 \text{ V}$		2.9 23 13 2.2 0.3	10 37 23	ns ns nC nC	
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$ $V_{GS} = -4.5 \text{ V}$		2.9 23 13 2.2 0.3	10 37 23	ns ns nC nC	
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$ $V_{GS} = -4.5 \text{ V}$ Maximum Rating e Forward Current		2.9 23 13 2.2 0.3	10 37 23 3.1	ns ns nC nC nC	
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Irce Diode Characteristics and M Maximum Continuous Drain-Source Diode	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$ $V_{GS} = -4.5 \text{ V}$ Maximum Rating e Forward Current		2.9 23 13 2.2 0.3 0.6	10 37 23 3.1 -0.52	ns ns nC nC nC	
	Static Drain to Source On-Resistance Forward Transconductance Characteristics Input Capacitance Output Capacitance	$ \begin{array}{ c c c c c c c } \mbox{Static Drain to Source On-Resistance} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{ c c c c c c c c } \label{eq:static} Static Drain to Source On-Resistance & $V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A$ & $V_{GS} = -2.5 \ V, \ I_D = -0.70 \ A$ & $V_{GS} = -1.5 \ V, \ I_D = -0.43 \ A$ & $V_{GS} = -1.5 \ V, \ I_D = -0.43 \ A$ & $V_{GS} = -1.5 \ V, \ I_D = -0.83 \ A$ & $V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A$ & $V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A$ & $V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A$ & $V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A$ & $V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A$ & $V_{GS} = -5 \ V, \ I_D = -0.83 \ A$ & $V_{DD} = -5 \ V, \ I_D = -0.83 \ A$ & $V_{DD} = -5 \ V, \ I_D = -0.83 \ A$ & $V_{DD} = -5 \ V, \ I_D = -0.83 \ A$ & $V_{DD} = -5 \ V, \ I_D = -0.83 \ A$ & $V_{DD} = -10 \ V, \ V_{GS} = 0 \ V, $$V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, $$V_{GS} = 0 \ V, $$V_{SS} = -10 \ V, \ V_{SS} = 0 \ V, $$V_{SS} = -10 \ V, \ V_{SS} = 0 \ V, $$V_{SS} = 0 \ V, $V_{SS} = 0 \ V,$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
 The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

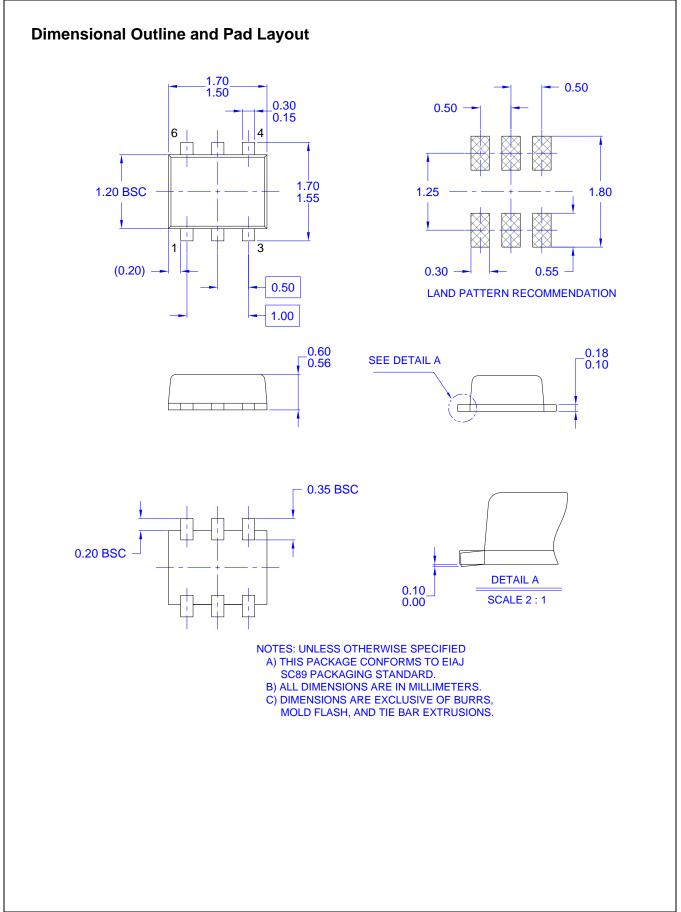

88888

FDY1002PZ Rev.B1

88888



FDY1002PZ Rev.B1



FDY1002PZ Rev.B1

FDY1002PZ Dual P-Channel (–1.5 V) Specified PowerTrench[®] MOSFET

FDY1002PZ Rev.B1

FDY1002PZ Dual P-Channel (–1.5 V) Specified PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™	FRFET [®]	Programmable Active Droop [™]	the
CorePLUS™	Global Power Resource SM	QFĔT®	p∪wer
CorePOWER™	Green FPS™	QS™	 Tranchise
CROSSVOLT™	Green FPS™ e-Series™	Quiet Series™	TinyBoost™
CTL™	GTO™	RapidConfigure™	TinyBuck [™]
Current Transfer Logic™	IntelliMAX™		TinyLogic [®] TINYOPTO™
EcoSPARK [®]	ISOPLANAR™	тм	
EfficentMax™	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPower™ Tiny/D\//M™
EZSWITCH™ *	MICROCOUPLER™	SmartMax™	TinyPWM™ TinyWire™
— — 2	MicroFET™	SMART START™	μSerDes™
E-7	MicroPak™	SPM®	μθειbes
R	MillerDrive™	STEALTH™	μ
	MotionMax™	SuperFET™	/ SerDes
airchild®	Motion-SPM™	SuperSOT™-3	UHC®
airchild Semiconductor®	OPTOLOGIC®	SuperSOT™-6	Ultra FRFET™
FACT Quiet Series™	OPTOPLANAR®	SuperSOT™-8	UniFET™
ACT®	®	SupreMOS™	VCX™
AST®	U	SyncFET™	VisualMax™
astvCore™	PDP SPM™	SYSTEM ®	XS™
lashWriter [®] *	Power-SPM™	GENERAL	
PS™	PowerTrench®	The Power Franchise [®]	
F-PFS™	PowerXS™		

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized distributors committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev

FDY1002PZ Rev. B1

7

FDY1002PZ Dual P-Channel (–1.5 V) Specified PowerTrench $^{\textcircled{m}}$ MOSFET