

This device is designed primarily for low level audio and general purpose applications with high impedance signal sources. Sourced from Process 89.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	- 40	V
V _{GS}	Gate-Source Voltage	40	V
I_{GF}	Forward Gate Current	10	mA
T _J ,T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

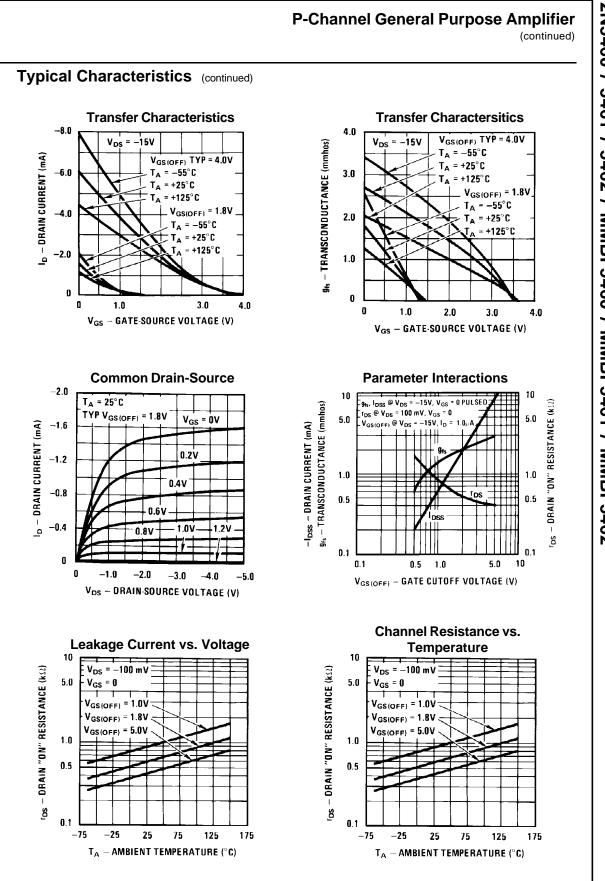
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

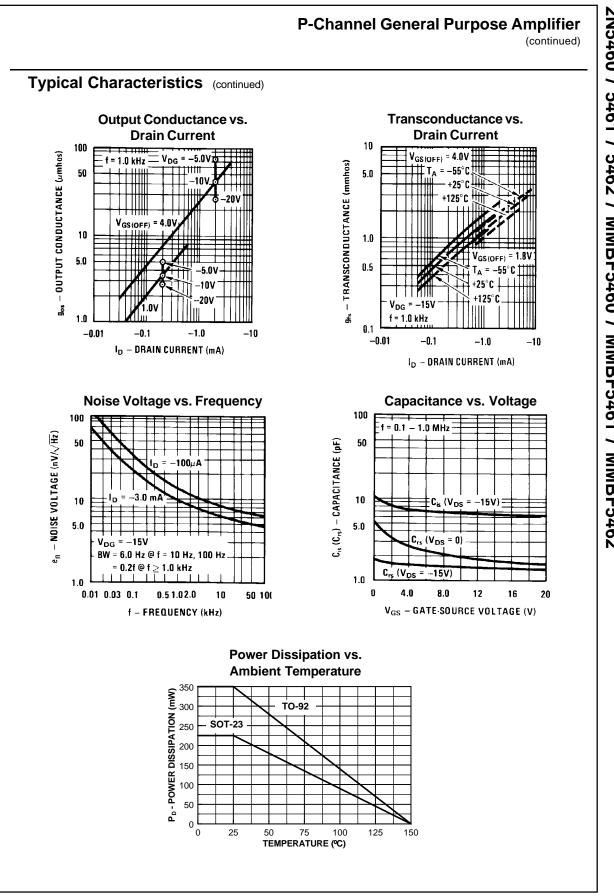
These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Ν	Units	
		2N5460-5462	*MMBF5460-5462	
PD	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W


*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

©2001 Fairchild Semiconductor Corporation


P-Channel General Purpose Amplifier

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
				•	•	
OFF CHA	RACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = 10 \ \mu A, V_{DS} = 0$	40			V
Igss	Gate Reverse Current	$V_{GS} = 20 V, V_{DS} = 0$ $V_{GS} = 20 V, V_{DS} = 0, T_A = 100^{\circ}C$			5.0 1.0	nA μA
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 1.0 \mu\text{A}$ 546 546 546) 0.75 I 1.0		6.0 7.5 9.0	V V V
V _{GS}	Gate-Source Voltage	$ \begin{array}{lll} & \textbf{V}_{\text{DS}} = 15 \ \text{V}, \ \text{I}_{\text{D}} = 0.1 \ \text{mA} & \textbf{546} \\ & \textbf{V}_{\text{DS}} = 15 \ \text{V}, \ \text{I}_{\text{D}} = 0.2 \ \text{mA} & \textbf{546} \\ & \textbf{V}_{\text{DS}} = 15 \ \text{V}, \ \text{I}_{\text{D}} = 0.4 \ \text{mA} & \textbf{546} \\ \end{array} $	0.5 0.8		4.0 4.5 6.0	V V V
ON CHAR	ACTERISTICS					
IDSS	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0 546 546 546	1 - 2.0		- 5.0 - 9.0 - 16	mA mA mA
SMALL SI	GNAL CHARACTERISTICS					
	GNAL CHARACTERISTICS Forward Transfer Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz 546 546 546 546	1 1500		4000 5000 6000	µmhos
<u></u> Jts		546 546	1 1500		5000	μmhos μmhos
gfs Gos	Forward Transfer Conductance	546 546 546	1 1500	5.0	5000 6000	μmhos μmhos
gis Gos Ciss	Forward Transfer Conductance Output Conductance	546 546 546 VDS = 15 V, VGS = 0, f = 1.0 kHz	1 1500	5.0 1.0	5000 6000 75	μmhos μmhos μmhos
gfs gos Ciss Crss	Forward Transfer Conductance Output Conductance Input Capacitance	$\label{eq:VDS} \begin{array}{c} 546\\ 546\\ 546\\ \hline \\ V_{DS} = 15 \ V, \ V_{GS} = 0, \ f = 1.0 \ \text{kHz}\\ \hline \\ V_{DS} = 15 \ V, \ V_{GS} = 0, \ f = 1.0 \ \text{mHz}\\ \hline \\ V_{DS} = 15 \ V, \ V_{GS} = 0, \ f = 1.0 \ \text{mHz}\\ \hline \\ V_{DS} = 15 \ V, \ V_{GS} = 0, \ R_G = 1.0 \ \text{megohm}, \ f = 100 \ \text{Hz}, \end{array}$	1 1500		5000 6000 75 7.0	μmhos μmhos μmhos pF
grs gos Ciss Crss NF en	Forward Transfer Conductance Output Conductance Input Capacitance Reverse Transfer Capacitance	546 546 546 V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz V _{DS} = 15 V, V _{GS} = 0,	1 1500	1.0	5000 6000 75 7.0 2.0	pF

Downloaded from Elcodis.com electronic components distributor

2N5460 / 5461 / 5462 / MMBF5460 / MMBF5461 / MMBF5462

2N5460 / 5461 / 5462 / MMBF5460 / MMBF5461 / MMBF5462

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST[®] ACEx™ **OPTOPLANAR™** SuperSOT[™]-3 FASTr™ PACMAN™ SuperSOT[™]-6 Bottomless™ POP™ CoolFET™ FRFET™ SuperSOT[™]-8 CROSSVOLT™ GlobalOptoisolator[™] SyncFET™ PowerTrench[®] GTO™ TinyLogic™ DenseTrench™ QFET™ UHC™ HiSeC™ QS™ DOME™ **EcoSPARK™ ISOPLANAR™** QT Optoelectronics[™] UltraFET[®] VCX™ E²CMOS[™] LittleFET™ Quiet Series[™] SILENT SWITCHER® EnSigna™ MicroFET™ FACT™ MICROWIRE™ SMART START™ Stealth™ OPTOLOGIC™ FACT Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

ormative or Design rst Production	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make
st Production	supplementary data will be published at a later date.
	changes at any time without notice in order to improve design.
II Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
ot In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.