

sub-picoamp instrumentation or any high impedance signal sources. Sourced from Process 53.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	40	V
V _{GS}	Gate-Source Voltage	- 40	V
I_{GF}	Forward Gate Current	50	mA
T _J ,T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

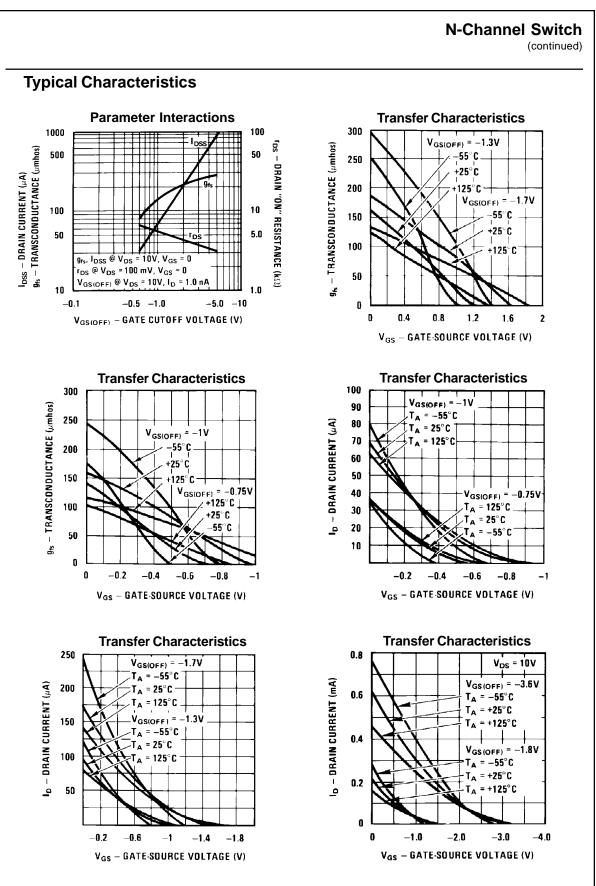
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

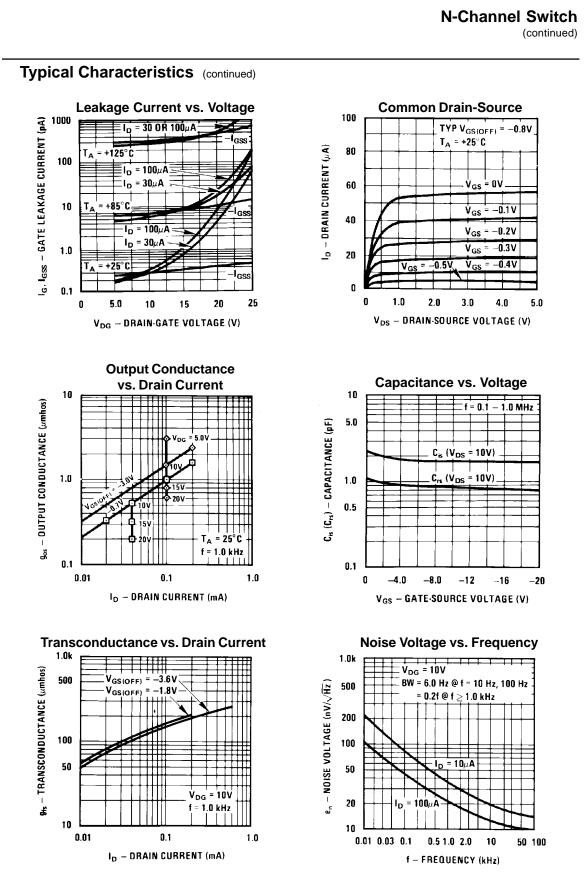
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	N	Units	
		PN4117-4119	*MMBF4117-4119	
PD	Total Device Dissipation	350	225	mW
	Derate above 25°C	2.8	1.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W


*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

©1997 Fairchild Semiconductor Corporation


N-Channel Switch (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHAI	RACTERISTICS				
V _{(BR)GSS}	Gate-Source Breakdown Voltage	I _G = - 1.0 μA, V _{DS} = 0	- 40		V
I _{GSS}	Gate Reverse Current			- 10 - 25	pA nA
V _{GS(off)}	Gate-Source Cutoff Voltage	V _{DS} = - 10 V, I _D = 1.0 nA 4117 4118 4119	- 0.6 - 1.0 - 2.0	- 1.8 - 3.0 - 6.0	V V V
		4118	80	240	μΑ
		4119	200	600	μA
SMALL-S		4119	200	600	μA
SMALL-S g _{fs}	IGNAL CHARACTERISTICS Common-Source Forward Transconductance	4119 V _{DS} = 10 V V _{GS} = 0, f= 1.0 kHz 4117 4118 4119	200 70 80 100	210 250 330	μmhos μmhos μmhos
	Common-Source Forward	$V_{DS} = 10 \text{ V } V_{GS} = 0, \text{ f} = 1.0 \text{ kHz} \\ 4117 \\ 4118 \\ 4119 \\ V_{DS} = 10 \text{ V } V_{GS} = 0, \text{ f} = 1.0 \text{ kHz} \\ 4117 \\ 4118 \\ 4119 \\ 4119 \\ 4119 \\ 4119 \\ 4119 \\ 4119 \\ 4119 \\ 4119 \\ 4110 \\ 410 \\ $	70 80	210 250	μmhos μmhos
gfs Goss	Common-Source Forward Transconductance Common-Source Output	$V_{DS} = 10 \ V \ V_{GS} = 0, \ f= 1.0 \ \text{kHz} \\ 4117 \\ 4118 \\ 4119 \\ V_{DS} = 10 \ V \ V_{GS} = 0, \ f= 1.0 \ \text{kHz} \\ 4117 \\ 4118 \\ 4117 \\ 4118 $	70 80	210 250 330 3.0 5.0	μmhos μmhos μmhos μmhos μmhos
9fs	Common-Source Forward Transconductance Common-Source Output Conductance Common-Source Forwad	$V_{DS} = 10 \text{ V } V_{GS} = 0, \text{ f} = 1.0 \text{ kHz} \\ 4117 \\ 4118 \\ 4119 \\ V_{DS} = 10 \text{ V } V_{GS} = 0, \text{ f} = 1.0 \text{ kHz} \\ 4117 \\ 4118 \\ 4119 \\ V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 30 \text{ MHz} \\ 4117 \\ 4118 \\ 4117 \\ 4118 \\$	70 80 100 60 70	210 250 330 3.0 5.0	μmhos μmhos μmhos μmhos μmhos μmhos μmhos μmhos

PN4117 / 4118 / 4119 / MMBF4117 / 4118 / 4119

PN4117 / 4118 / 4119 / MMBF4117 / 4118 / 4119

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DOMETM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST ® FASTr[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER® SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production