This device is designed for low level analog switching, sample and hold circuits and chopper stabalized amplifiers. Sourced from Process 51. See J111 for characteristics.
Absolute Maximum Ratings*
$\mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter		Value	Units
$V_{\text {DG }}$	Drain-Gate Voltage		30	V
$\mathrm{V}_{\text {GS }}$	Gate-Source Voltage		-30	V
I_{GF}	Forward Gate Current		50	mA
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations				
Symbol	Characteristic	Max		Units
		PN4391-4393	*MMBF4391-4393	
P_{D}	Total Device Dissipation Derate above $25^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 625 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 350 \\ 2.8 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance, Junction to Case	125		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient	357	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]Electrical Characteristics $\mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

$\mathrm{V}_{\text {(BR)GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1.0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	-30		V
$\mathrm{I}_{\text {gss }}$	Gate Reverse Current			$\begin{array}{r} -1.0 \\ -0.2 \end{array}$	$\begin{aligned} & \hline \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\mathrm{GS}}(\mathrm{off}$)	Gate-Source Cutoff Voltage	$\begin{array}{ll}V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{nA} & 4391 \\ & 4392 \\ & \mathbf{4 3 9 3}\end{array}$	$\begin{aligned} & -4.0 \\ & -2.0 \\ & -0.5 \end{aligned}$	$\begin{array}{r} \hline-10 \\ -5.0 \\ -3.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage	$\mathrm{I}_{\mathrm{G}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$		1.0	V
$\mathrm{I}_{\text {(off) }}$	Drain Cutoff Leakage Current	 $V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$ $\mathbf{4 3 9 1}$ $\mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}$ GS $=-7.0 \mathrm{~V}$ $\mathbf{4 3 9 2}$ $\mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5.0 \mathrm{~V}$ $\mathbf{4 3 9 3}$ $\mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-7.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ $\mathbf{4 3 9 3}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	nA nA nA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

ON CHARACTERISTICS

IDSs	Zero-Gate Voltage Drain Current*	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\begin{aligned} & \hline 4391 \\ & 4392 \\ & 4393 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 75 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {DS(on) }}$	Drain-Source On Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$\begin{aligned} & \hline 4391 \\ & 4392 \\ & 4393 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$r_{\text {PS(on) }}$	Drain-Source On Resistance	$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	$\begin{aligned} & \hline 4391 \\ & 4392 \\ & 4393 \\ & \hline \end{aligned}$		$\begin{gathered} 30 \\ 60 \\ 100 \end{gathered}$	Ω Ω Ω

SMALL-SIGNAL CHARACTERISTICS

rds(on)	Drain-Source On Resistance	$V_{D S}=$ $V_{G S}=0, f=1.0 \mathrm{kHz}$ 4391 4392 4393	$\begin{gathered} \hline 30 \\ 60 \\ 100 \end{gathered}$	$\begin{gathered} \hline \Omega \\ \Omega \\ \Omega \end{gathered}$
Ciss	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=20, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	14	pF
$\mathrm{Crss}^{\text {r }}$	Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$ 4391 $\mathrm{~V}_{\mathrm{GS}}=-7.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$ 4392 $\mathrm{~V}_{\mathrm{GS}}=-5.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$ 4393	$\begin{aligned} & \hline 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

SWITCHING CHARACTERISTICS

tr_{r}	Rise Time	$\begin{aligned} & \mathrm{I}_{\mathrm{D}(\text { (n) }}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{D}(\text { (n) }}=6.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{D}(\text { (on) }}=3.0 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4391 \\ & 4392 \\ & 4393 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	ns ns ns
t_{f}	Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}(\text { (ff) }}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}(\text { off })}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}(\text { off })}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4391 \\ & 4392 \\ & 4393 \\ & \hline \end{aligned}$	15 20 30	ns ns ns
ton	Turn-On Time	$\begin{aligned} & I_{\mathrm{D}(\text { (on })}=12 \mathrm{~mA} \\ & I_{\mathrm{D}(\text { (on })}=6.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{D}(\text { (n) })}=3.0 \mathrm{~mA} \\ & \mathrm{I}^{2} \end{aligned}$	$\begin{aligned} & 4391 \\ & 4392 \\ & 4393 \\ & \hline \end{aligned}$	15 15 15	ns ns ns
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}(\text { (ff })}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}(\text { off })}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}(\text { off })}=3.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 4391 \\ & 4392 \\ & 4393 \\ & \hline \end{aligned}$	20 35 50	ns ns ns

${ }^{*}$ Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 1.0 \%$

©2001 Fairchild Semiconductor Corporation

TO-92 Tape and Reel Data, continued

TO-92 Reeling Style

Configuration: Figure 2.0

Style "A", D26Z, D70Z (s/h)

TO-92 Radial Ammo Packaging

Configuration: Figure 3.0

Style "E", D27Z, D71Z (s/h)

TO-92 Tape and Reel Data, continued

TO-92 Tape and Reel Taping
Dimension Configuration: Figure 4.0

TO－92 Package Dimensions
 FAIRCHILD

SEMICロNロレСTロR

TO－92（FS PKG Code 92，94，96）

Scale 1：1 on letter size paper Dimensions shown below are in： inches［millimeters］
Part Weight per unit（gram）： 0.1977

SOT-23 Tape and Reel Data

SOT-23 Packaging Configuration: Figure 10

SOT-23 PackagingInformation		
Packaging Option	Standard (noflow code)	D87Z
Packagingtype	TNR	TNR
Qty per Reel/Tube/Bag	3,000	10,000
Reel Size	$7{ }^{\prime \prime}$ Dia	$13^{\prime \prime}$
Box Dimension (mm)	$187 \times 107 \times 183$	$343 \times 343 \times 64$
Max qty per Box	24,000	30,000
Weight per unit (gm)	0.0082	0.0082
Weight per Reel (kg)	0.1175	0.4006
Note/Comments		

Human Readable Label sample

SOT-23 Tape Leader and Trailer Configuration: Figure 20

Human readable Label

SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape

Configuration: Figure 3.0

Dimensions are in millimeter														
Pkg type	A0	во	w	Do	D1	E1	E2	F	P1	P0	ко	T	Wc	Tc
$\begin{gathered} \text { SOT-23 } \\ (8 \mathrm{~mm}) \\ \hline \end{gathered}$	${ }_{\substack{3.15 \\+0.10}}$	${ }_{\text {cher }}^{\substack{2.77 \\+0.10}}$	${ }_{+0.0}^{8.0}$	${ }_{\substack{1.55 \\++0.05}}$	$\begin{aligned} & 1.125 \\ & +1-0.125 \end{aligned}$	${ }_{\substack{1.75 \\+-0.10}}$	$\substack{6.25 \\ \text { min }}_{\substack{\text { che }}}$	${ }_{\substack{3.50 \\+-0.05}}$	$\underset{\substack{4.0 \\+0.1}}{\text { ¢ }}$	$\underset{\substack{4.0 \\+-0.1}}{\text { ¢ }}$	${ }_{\substack{1.30 \\++0.10}}$	$\underbrace{}_{\substack{0.228 \\+1-0.13}}$	$\underset{+}{5.2}$	${ }_{\substack{0.06 . \\+-0.02}}^{\substack{\text { a }}}$

Notes: AO, BO, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

SOT-23 Reel Configuration: Figure 4.0

Sketch C (Top View)
Component lateral movement

Sketch B (Top View)
Component Rotation

13" Diameter Option
W2 max Measured at Hub

7"Diameter Option

DETAIL AA

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8 mm	7" Dia	$\begin{aligned} & 7.00 \\ & 177.8 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 2.165 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.331+0.059 /-0.000 \\ & 8.4+1.5 / 0 \end{aligned}$	$\begin{aligned} & 0.567 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0.311-0.429 \\ & 7.9-10.9 \end{aligned}$
8 mm	13 " Dia	$\begin{aligned} & 13.00 \\ & 330 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.331+0.059 /-0.000 \\ & 8.4+1.5 / 0 \end{aligned}$	$\begin{aligned} & 0.567 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0.311-0.429 \\ & 7.9-10.9 \end{aligned}$

SOT-23 (FS PKG Code 49)

Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters]
Part Weight per unit (gram): 0.0082

LAND PATTERN RECOMMENDATION

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	SyncFET ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	QFET ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
Coolfet ${ }^{\text {TM }}$	GTO $^{\text {™ }}$	QS ${ }^{\text {TM }}$	UHC'M
CROSSVOLT ${ }^{\text {TM }}$	HiSeCm	QT Optoelectronics ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
DOME ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	SILENT SWITCHER ${ }^{\circledR}$	
EnSigna ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	
FACT ${ }^{\text {m }}$	OPTOPLANAR ${ }^{\text {TM }}$	SuperSOTTM-3	
FACT Quiet Series ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	SuperSOT™-6	
FAST ${ }^{\text {® }}$	POP ${ }^{\text {TM }}$	SuperSOT™-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

[^0]: * Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

