May 2009

FAIRCHILD

SEMICONDUCTOR

FGA30N120FTD 1200V, 30A Trench IGBT

Features

- Field stop trench technology
- High speed switching
- Low saturation voltage: V_{CE(sat)} = 1.6V @ I_C = 30A
- High input impedance

Applications

- Induction heating and Microwave oven
- Soft switching applications

General Description

Using advanced field stop trench technology, Fairchild's 1200V trench IGBTs offer superior conduction and switching performances, and easy parallel operation with exceptional avalanche ruggedness. This device is designed for soft switching applications.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units	
V _{CES}	Collector to Emitter Voltage		1200	V	
V _{GES}	Gate to Emitter Voltage		± 25	V	
la.	Collector Current	@ T _C = 25°C	60	А	
I _C	Collector Current	@ T _C = 100°C	30	А	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	90	А	
I _F	Diode Continuous Forward Current	@ T _C = 100 ^o C	30	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	339	W	
• 0	Maximum Power Dissipation	@ T _C = 100°C	132	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes: 1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Thermal Resistance, Junction to Case	-	0.38	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.2	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	-	40	°C/W

©2009 Fairchild Semiconductor Corporation FGH30N120FTD Rev. A

Device Marking Device Pa		Package	ackage 🕢 Eco Status		Packaging Type		er Tube	
FGA30N1	20FTD	FGA30N120FTDTU	TO-3PN	RoHS	Tu	ıbe	30ea	
— – –								
e				it: <u>http://www.fairchildsen</u> $C_{c} = 25^{\circ}C$ unless otherwise noted	ni.com/comp	<u>any/green/</u>	<u>rohs gree</u>	<u>n.html</u> .
Symbol		Parameter	Т	est Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics							
BV _{CES}		to Emitter Breakdown Vo	tage V _{CE} = 0	V, I _C = 250μA	1200	-	-	V
I _{CES}		Cut-Off Current		$V_{CES}, V_{GE} = 0V$	-	-	1	mA
I _{GES}		age Current		$V_{\text{GES}}, V_{\text{CE}} = 0V$	-	-	±250	nA
010		~	GL			1		I
On Charac	teristics				-1	1	1	
V _{GE(th)}	G-E Three	shold Voltage	-	nA, V _{CE} = V _{GE}	3.5	6	7.5	V
	Collector to Emitter Saturation Voltage			I _C = 30A, V _{GE} = 15V		1.6	2	V
V _{CE(sat)}			l _C = 30A T _C = 12	A, V _{GE} = 15V, 5°C	-	2.0	-	V
Dynamic C	haracteris	tics						
C _{ies}	Input Cap	acitance			-	5140	-	pF
C _{oes}	Output Ca	apacitance		V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		150	-	pF
C _{res}	Reverse 7	Fransfer Capacitance	I = 1101			95	-	pF
Switching	Characteri	stics	L					
t _{d(on)}		Delay Time			-	31	-	ns
t _r	Rise Time				-	101	-	ns
t _{d(off)}	Turn-Off	Delay Time	Vaa = 6	00\/ La = 30A	-	198	-	ns
t _f	Fall Time	,		$V_{CC} = 600V, I_C = 30A,$ $R_G = 10\Omega, V_{GE} = 15V,$		259	-	ns
Eon	Turn-On S	Switching Loss	Resistiv	e Load, T _C = 25°C	-	0.54	-	mJ
E _{off}	Turn-Off S	Switching Loss			-	1.16	1.51	mJ
E _{ts}		ching Loss			-	1.70	-	mJ
t _{d(on)}	Turn-On [Delay Time			-	40	-	ns
t _r	Rise Time				-	127	-	ns
t _{d(off)}	Turn-Off	Delay Time	V _{CC} = 6	00V, I _C = 30A,	-	211	-	ns
t _f	Fall Time		R _G = 10	Ω, V _{GE} = 15V,	-	364	-	ns
E _{on}	Turn-On S	Switching Loss	Resistiv	e Load, T _C = 125 ^o C	-	0.74	-	mJ
E _{off}	Turn-Off S	Switching Loss			-	1.63	-	mJ
E _{ts}	Total Swit	ching Loss			-	2.37	-	mJ
Qg	Total Gate	e Charge			-	208	-	nC
Q _{ge}	Gate to E	mitter Charge	$V_{CE} = 6$	00V, I _C = 30A,	-	41	-	nC
Q _{gc}	Gate to C		V _{GE} = 1	υc		1		nC

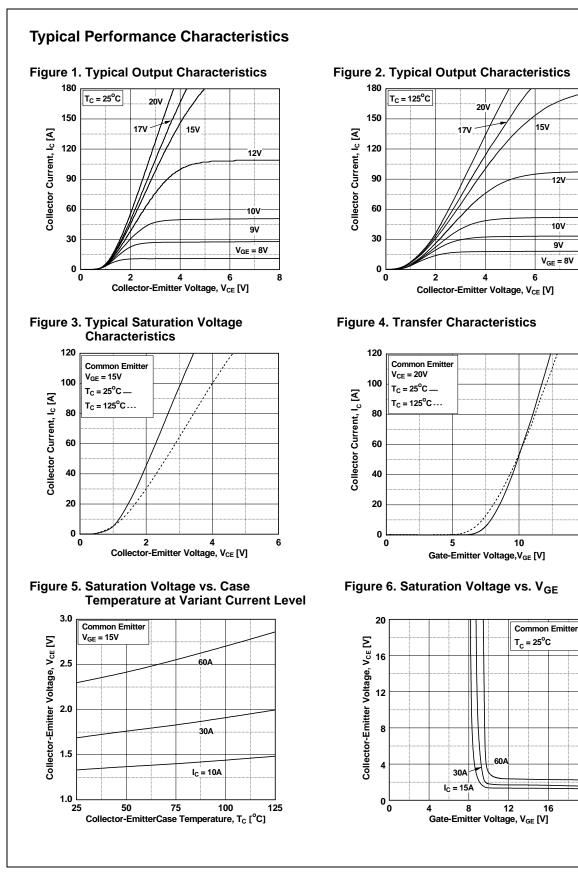
FGH30N120FTD Rev. A

FGA30N120F1	
TD 1200V, 30,	
A Trench IGB	

Symbol Parameter Test Conditions Min. Typ. Max Units V_FM Diode Forward Voltage $I_c = 30A$ $T_c = 25^{\circ}C$ 1.3 1.7 V

Oymbol	i arameter	Test conditi	10113		iyp.	Max	Onits
V _{FM}	Diode Forward Voltage	I _F = 30A	$T_C = 25^{\circ}C$	-	1.3	1.7	V
1 101			$T_C = 125^{\circ}C$	-	1.3	-	
t _{rr}	Diode Reverse Recovery Time		$T_C = 25^{\circ}C$	-	730	-	ns
11	,	I _F =30A,	$T_C = 125^{\circ}C$	-	775	-	_
I _{rr}	Diode Peak Reverse Recovery Current	di/dt = 200A/µs	$T_C = 25^{\circ}C$	-	43	-	А
11	···· · · · · · · · · · · · · · · · · ·		$T_{C} = 125^{o}C$	-	47	-	
Q _{rr}	Diode Reverse Recovery Charge		$T_C = 25^{\circ}C$	-	5.9	-	μC
			$T_{C} = 125^{\circ}C$	-	18.2	-	F. 0

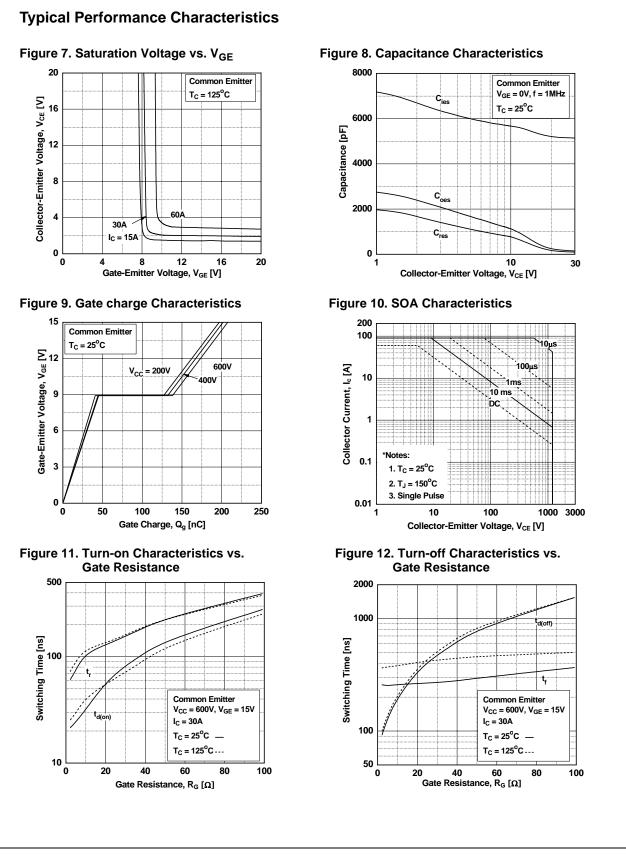
FGA30N120FTD Rev. A


12V

10V

9V

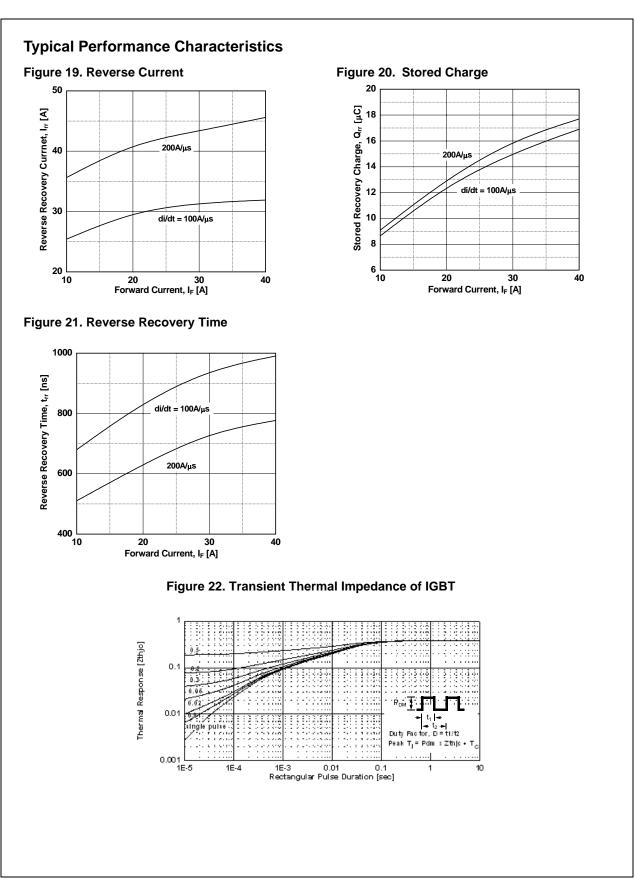
8


15

FGH30N120FTD Rev. A

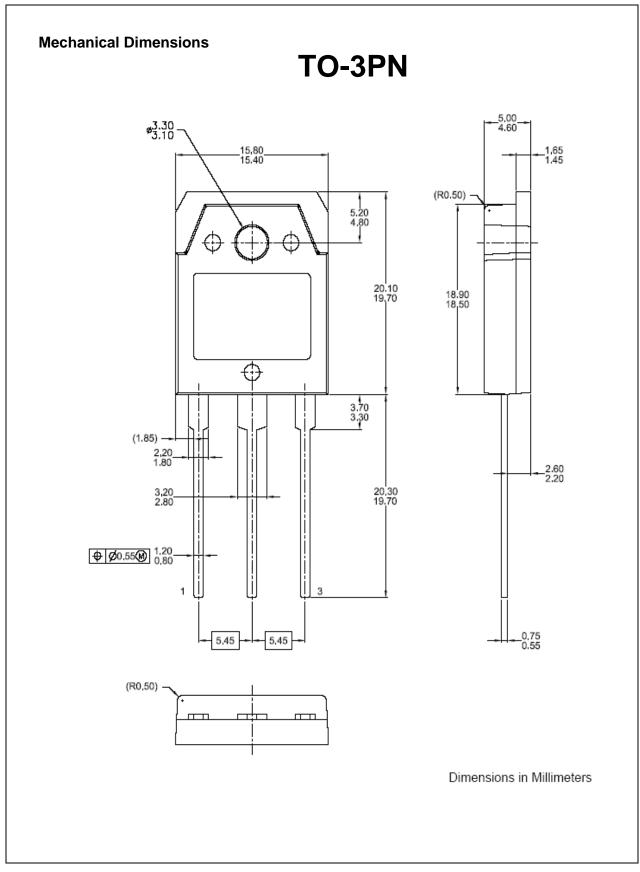
20

FGA30N120FTD 1200V, 30A Trench IGBT



FGH30N120FTD Rev. A

Typical Performance Characteristics Figure 13. Turn-on Characteristics vs. Figure 14. Turn-off Characteristics vs. **Collector Current Collector Current** 1000 1200 Common Emitter Common Emitter 1000 $V_{GE} = 15V, R_G = 10\Omega$ $V_{GE} = 15V, R_G = 10\Omega$ $T_{c} = 25^{\circ}C$ — $T_{c} = 25^{\circ}C$ — T_C = 125°C ... T_C = 125°C ... Switching Time [ns] Switching Time [ns] ŧ, •••• 100 t_{d(off)} 10 100 10 20 30 40 50 10 20 30 50 40 Collector Current, I_C [A] Collector Current, Ic [A] Figure 15. Switching Loss vs. Gate Resistance Figure 16. Switching Loss vs. Collector Current 10 10 Common Emitter V_{GE} = 15V, R_G = 10Ω T_c = 25°C ____ Eoff T_C = 125°C.... Switching Loss [mJ] Switching Loss [mJ] E 1 E, Common Emitter V_{CC} = 600V, V_{GE} = 15V I_C = 30A T_C = 25°C — T_C = 125°C ... 0.1 0.1 20 30 Collector Current, I_C [A] 10 50 40 0 20 40 60 80 100 Gate Resistance, R_G [Ω] Figure 17. Turn off Switching SOA Characteristics Figure 18. Forward Characteristics 100 100 Forward Current, IF [A] Collector Current, I_c [A] 10 T_J = 125°C 10 T_J = 25[°]C 1 T_C = 25^oC Safe Operating Area T_C = 125[°]C -V_{GE} = 15V, T_C = 125^oC 0.1 ∟ 0.0 1 1000 2000 0.5 1.0 1.5 1 10 100 Forward Voltage, V_F [V] Collector-Emitter Voltage, V_{CE} [V]


FGH30N120FTD Rev. A

FGA30N120FTD 1200V, 30A Trench IGBT

FGA30N120FTD Rev. A

FGA30N120FTD 1200V, 30A Trench IGBT

FGH30N120FTD Rev. A

FGA30N120FTD 1200V, 30A Trench IGBT

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

Build it Now™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
CorePLUS™	FRFET®	Programmable Active Droop™	the .
CorePOWER™	Global Power Resource SM	QFET®	puwer franchise
CROSSVOLT™	Green FPS™	QS™	TinyBoost™
CTL™	Green FPS™ e-Series™	Quiet Series™	TinyBuck™
Current Transfer Logic™	GTO™	RapidConfigure™	TinyLogic®
EcoSPARK [®]	IntelliMAX™	\bigcirc	TINYOPTO™
EfficentMax™	ISOPLANAR™	тм	TinyPower™
	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
E-7		SmartMax™	TinyWire™
	MicroFET™ MicroPak™	SMART START™ SPM [®]	µSerDes™
	MillerDrive™	SFM [®] STEALTH™	
Fairchild [®]	MotionMax™	SuperFET™	SerDes
Fairchild Semiconductor®	Motion-SPM™	SuperSOT™-3	UHC®
FACT Quiet Series™	OPTOLOGIC®	SuperSOT™-6	Ultra FRFET™
FACT [®]	OPTOPLANAR®	SuperSOT™-8	UniFET™
FAST®	®	SupreMOS™	VCXTM
FastvCore™	U	SyncFET™	VisualMax™
FlashWriter [®] *	PDP SPM™		
FPS™	Power-SPM [™]	GENERAL	
* EZSW/ITCHIM and ElashW/riter® are	a trademarks of System General Corporat	tion, used under license by Fairchild Semiconduct	or
	e trademarks of System General Colporat	ion, used under incense by Fairchind Serificonduct	.01.
DISCLAIMER			

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are ensuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

make changes at any time without notice to improve the design.	
Preliminary First Production date. Fairchild Semiconductor reserves the right to make changes at any time notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the make changes at any time without notice to improve the design.	cifications
make changes at any time without notice to improve the design.	
Datasheat sontains an astrona on a product that is discontinued by Existing	ne right to
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchi Semiconductor. The datasheet is for reference information only.	hild

EGA30N120ETD Rev A

www.fairchildsemi.com