

STGB10NC60K

10 A, 600 V short-circuit rugged IGBT

Features

- Low on voltage drop (V_{CESAT})
- Short-circuit withstand time 10 µs

Applications

- High frequency motor controls
- SMPS and PFC in both hard switch and resonant topologies
- Motor drives

Description

This device utilizes the advanced Power MESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior.

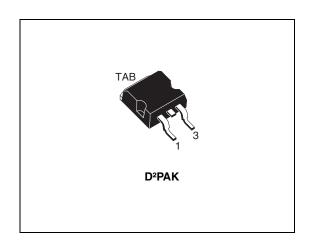


Figure 1. Internal schematic diagram

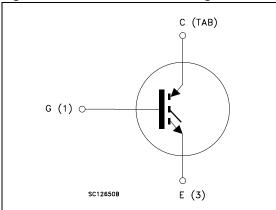


Table 1. Device summary

Part number	Marking	Package	Packaging
STGB10NC60KT4	GB10NC60K	D ² PAK	Tape and reel

February 2011 Doc ID 11842 Rev 4 1/11

www.st.com

Electrical ratings STGB10NC60K

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Continuous collector current at T _C = 25°C	20	Α
I _C ⁽¹⁾	Continuous collector current at T _C = 100°C	10	Α
I _{CL} (2)	Turn-off latching current	30	Α
I _{CP} (3)	Pulsed collector current	30	Α
V _{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total dissipation at T _C = 25°C	65	W
T _{STG}	Storage temperature - 55 to 150		°C
T _J	Operating junction temperature	- 55 to 150	O
t _{SCW}	Short-circuit withstand time (V_{CE} = 0.5 V_{CES} , T_J = 125 °C, R_G = 10 Ω , V_{GE} = 12 V)	10	μs

^{1.} Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. V_{clamp} = 80 % V_{CES} , V_{GE} = 15 V, R_{G} = 10 Ω , T_{J} = 150 °C
- 3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case	1.9	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

2 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1mA	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15V, I _C = 5A V _{GE} = 15V, I _C = 5A, T _J =125°C		2.2 1.8	2.5	V V
V _{GE(th)}	Gate threshold voltage	V _{CF} = V _{GF} , I _C = 250 μA	4.5	1.0	6.5	V
I _{CES}	Collector cut-off current	V _{CE} = 600 V			150	μA
CES	$(V_{GE} = 0)$	$V_{CE} = 600 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$			1	mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			±100	nA
g _{fs} ⁽¹⁾	Forward transconductance	V _{CE} = 15 V _, I _C = 5A		15		S

^{1.} Pulse test: pulse duration < 300 μ s, duty cycle < 2 %.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{CE} = 25V$, $f = 1MHz$, $V_{GE} = 0$		380 46 8.5		pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V_{CE} = 390V, I_{C} = 5A, V_{GE} = 15V, (see Figure 17)		19 5 9		nC nC nC

Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390$ V, $I_C = 5$ A $R_G = 10\Omega$, $V_{GE} = 15$ V, (see Figure 18)		17 6 655		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390$ V, $I_C = 5$ A $R_G = 10\Omega$, $V_{GE} = 15$ V, $Tj = 125$ °C (see Figure 18)		16.5 6.5 575		ns ns A/µs
$\begin{array}{c} t_{\rm r}({\rm V}_{\rm off}) \\ t_{\rm d}(_{\rm off}) \\ t_{\rm f} \end{array}$	Off voltage rise time Turn-off delay time Current fall time	V_{cc} = 390V, I_{C} = 5A, R_{GE} = 10 Ω , V_{GE} = 15V, (see Figure 18)		33 72 82		ns ns ns
$\begin{array}{c} t_{\rm r}({\rm V}_{\rm off}) \\ t_{\rm d}(_{\rm off}) \\ t_{\rm f} \end{array}$	Off voltage rise time Turn-off delay time Current fall time	V_{cc} = 390V, I_{C} = 5A, R_{GE} =10 Ω , V_{GE} =15V, Tj=125°C (see Figure 18)		60 106 136		ns ns ns

577

Doc ID 11842 Rev 4

3/11

Electrical characteristics STGB10NC60K

Table 7. Switching end	ergy (inductive load)
------------------------	-----------------------

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390$ V, $I_{C} = 5$ A $R_{G} = 10\Omega$, $V_{GE} = 15$ V, (see Figure 18)		55 85 140		년 년 년
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V_{CC} = 390V, I_{C} = 5A R_{G} = 10 Ω , V_{GE} = 15V, T_{J} = 125°C (see Figure 18)		87 162 249		크 크 크

Eon is the tun-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a
package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same
temperature (25°C and 125°C)

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

HV26800 lc(A) Vce=15V 25 20 13V 15 12V 10 117 107 9٧ 8٧ 10 15 30 V_{CE}(V)

Figure 3. Transfer characteristics

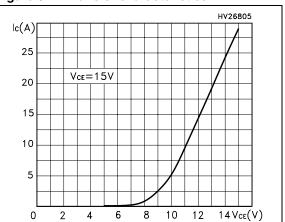
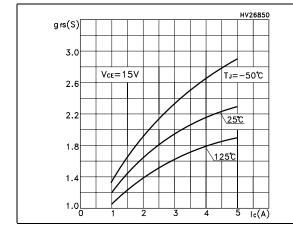
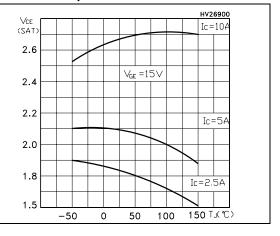
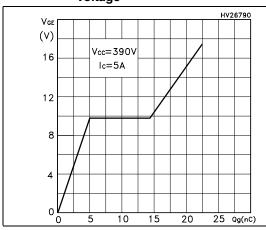




Figure 4. Transconductance

Figure 5. Collector-emitter on voltage vs temperature



4/11 Doc ID 11842 Rev 4

^{2.} Turn-off losses include also the tail of the collector current

Figure 6. Gate charge vs. gate-source voltage

Figure 7. Capacitance variations

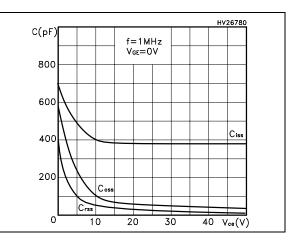
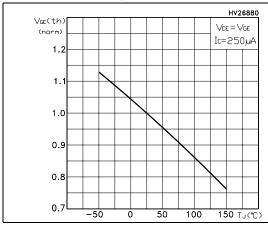



Figure 8. Normalized gate threshold voltage Figure 9. vs. temperature

Figure 9. Collector-emitter on voltage vs collector current

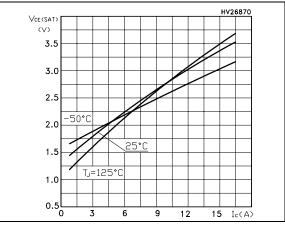
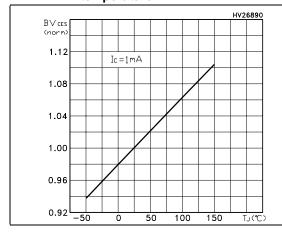
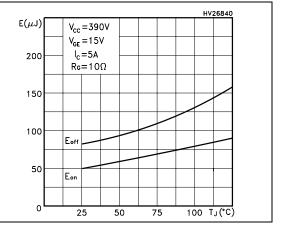
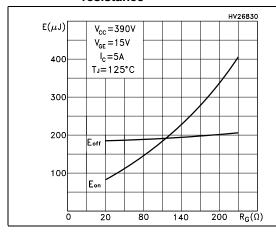




Figure 10. Normalized breakdown voltage vs temperature

Figure 11. Switching losses vs temperature

577


Doc ID 11842 Rev 4

5/11

Electrical characteristics STGB10NC60K

Figure 12. Switching losses vs. gate resistance

Figure 13. Switching losses vs collector current

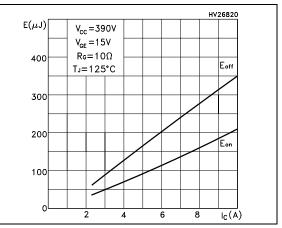
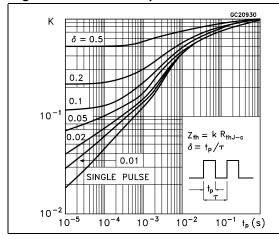
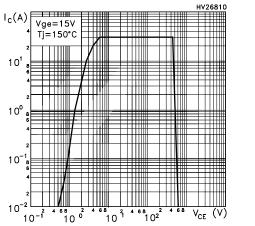




Figure 14. Thermal impedance

Figure 15. Turn-off SOA

6/11 Doc ID 11842 Rev 4

STGB10NC60K Test circuits

3 Test circuits

Figure 16. Test circuit for inductive load switching

Figure 17. Gate charge test circuit

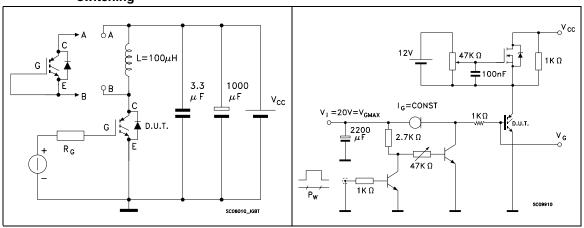
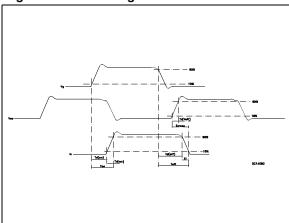



Figure 18. Switching waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of $\mathsf{ECOPACK}^{\mathbb{B}}$ packages, depending on their level of environmental compliance. $\mathsf{ECOPACK}^{\mathbb{B}}$ specifications, grade definitions and product status are available at: $\mathit{www.st.com}$. $\mathsf{ECOPACK}^{\mathbb{B}}$ is an ST trademark.

Table 8. D²PAK (TO-263) mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
Α	4.40		4.60	
A1	0.03		0.23	
b	0.70		0.93	
b2	1.14		1.70	
С	0.45		0.60	
c2	1.23		1.36	
D	8.95		9.35	
D1	7.50			
Е	10		10.40	
E1	8.50			
е		2.54		
e1	4.88		5.28	
Н	15		15.85	
J1	2.49		2.69	
L	2.29		2.79	
L1	1.27		1.40	
L2	1.30		1.75	
R		0.4		
V2	0°		8°	

THERMAL PAD

SEATING PLANE
COPLANARITY A1

Q25

GAUGE PLANE
Y2

0079457_R

Figure 19. D²PAK (TO-263) drawing

Revision history STGB10NC60K

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
21-Nov-2005	1	New release
06-Dic-2005	2	Inserted row on Table 2: Absolute maximum ratings
08-Feb-2007	3	Description has been updated
24-Feb-2011	4	Updated package mechanical data <i>Table 8. on page 8</i> and <i>Figure 19. on page 9</i>

10/11 Doc ID 11842 Rev 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 11842 Rev 4

11/11