CSD04060-Silicon Carbide Schottky Diode Zero Recovery® Rectifier

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{RRM}}=600 \mathrm{~V} \\
& \mathbf{I}_{\mathrm{F}(\mathrm{AVG})}=4 \mathrm{~A} \\
& \mathbf{Q}_{\mathbf{c}}=9 \mathrm{nC}
\end{aligned}
$$

Features

- 600-Volt Schottky Rectifier
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_{F}

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Typical PFC $\mathrm{P}_{\text {out }}$: 400W-800W
- Motor Drives
- Typical Power : 0.5HP-2HP

Package

Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
$V_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V		
$\mathrm{V}_{\text {RSM }}$	Surge Peak Reverse Voltage	600	V		
$V_{\text {DC }}$	DC Blocking Voltage	600	V		
$\mathrm{I}_{\text {(AVG) }}$	Average Forward Current	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	A	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=150^{\circ}{ }^{\mathrm{C}} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{I}_{\text {F(PEAK) }}$	Peak Forward Current	10	A	$\mathrm{T}_{\mathrm{C}}=125^{\circ}, \mathrm{T}_{\text {REP }}<1 \mathrm{mS}$, Duty $=0.5$	
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{aligned} & 17.5 \\ & 12.5 \end{aligned}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave $\mathrm{T}_{\mathrm{c}}=125^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	38	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=1.5 \mathrm{~ms}$, Half Sine Wave	
$\mathrm{I}_{\text {fSM }}$	Non-Repetitive Peak Forward Surge Current	110	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$, Pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{aligned} & 62.5 \\ & 20.8 \end{aligned}$	W	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
	TO-220 Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\underset{\text { lbf-in }}{\mathrm{Nm}}$	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	
I_{R}	Reverse Current	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{gathered} 200 \\ 1000 \end{gathered}$	$\mu \mathrm{A}$	$\begin{array}{ll} V_{R}=600 \vee & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{array}$	
Q_{C}	Total Capacitive Charge	9		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=4 \mathrm{~A} \\ & \mathrm{~d} i / \mathrm{d} t=500 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	
C	Total Capacitance	$\begin{gathered} 220 \\ 26 \\ 20 \end{gathered}$		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit
$\mathrm{R}_{\text {өנС }}$	Thermal Resistance from Junction to Case	2.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

CREE

Typical Performance

Figure 3. Current Derating

Figure 4. Capacitance vs. Reverse Voltage

Figure 5. Transient Thermal Impedance

Figure 6. Power Derating

Package Dimensions

Package TO-220-2

POS	Inches		Millimeters	
	Min	Max	Min	Max
A	. 381	. 410	9.677	10.414
B	. 235	. 255	5.969	6.477
C	. 100	. 120	2.540	3.048
D	. 223	. 337	5.664	8.560
E	. 590	. 615	14.986	15.621
F	. 143	. 153	3.632	3.886
G	1.105	1.147	28.067	29.134
H	. 500	. 550	12.700	13.970
J	R 0.197		R 0.197	
L	. 025	. 036	. 635	. 914
M	. 045	. 055	1.143	1.397
N	. 195	. 205	4.953	5.207
P	. 165	. 185	4.191	4.699
Q	. 048	. 054	1.219	1.372
S	3°	6°	3°	6°
T	3°	6°	3°	6°
U	3°	6°	3°	6°
V	. 094	. 110	2.388	2.794
W	. 014	. 025	. 356	. 635
X	3°	$5.5{ }^{\circ}$	3°	$5.5{ }^{\circ}$
Y	. 385	. 410	9.779	10.414
Z	. 130	. 150	3.302	3.810

NOTE:

1. Dimension L, M, W apply for Solder Dip Finish

Package Dimensions

Package TO-252-2

POS	Inches		Millimeters	
	Min	Max	Min	Max
A	.255	.265	6.477	6.731
B	.197	.205	5.004	5.207
C	.027	.033	.686	.838
D* *	.270	.322	6.858	8.179
E	.178	.182	4.521	4.623
F	.025	.035	.635	.889
G	44°	46°	44°	46°
H	.382	.397	9.703	10.084
J	.090 TYP		2.286 TYP	
K	6°	8°	6°	8°
L	.086	.094	2.184	2.388
M	.030	.034	.762	.864
N	.040	.044	1.016	1.118
P	.235	.245	5.969	6.223
Q	0.00	.004	0.00	.102
R	R0.01 TYP		R0.31 TYP	
S	.017	.023	.428	.588
T	.040	.044	1.016	1.118
U	.021	.027	.534	1.118

Note:

* Tab "D" may not be present

TO-252-2

TO-220-2

Part Number	Package	Marking
CSD04060A	TO-220-2	CSD04060
CSD04060E	TO-252-2	CSD04060

Diode Model

$\begin{array}{ll}\mathrm{V}_{\mathrm{T}} & \mathrm{R}_{\mathrm{T}}\end{array}$

$$
\begin{gathered}
\mathrm{Vf}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}}+\mathrm{If} * \mathrm{R}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}=}=0.965+\left(\mathrm{T}_{\mathrm{j}} *-1.3 * 10^{-3}\right) \\
\mathrm{R}_{\mathrm{T}=}=0.096+\left(\mathrm{T}_{\mathrm{j}} * 1.06 * 10^{-3}\right)
\end{gathered}
$$

Note: $\mathbf{T}_{\mathbf{j}}=$ Diode Junction Temperature In Degrees Celsius

 released previously with $\mathrm{Sn} / \mathrm{Pb}$ solder plating as a standard industry finish. For more information please contact power_sales@cree.com "

