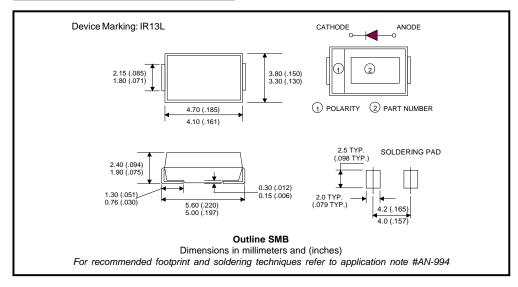

International Rectifier

STPS1L30U

SCHOTTKY RECTIFIER

1 Amp


Major Ratings and Characteristics

Characteristics	STPS1L30U	Units
I _{F(AV)} Rectangular waveform	1.0	Α
V _{RRM}	30	V
I _{FSM} @t _p =5ms sine	360	А
V _F @ 1.0Apk, T _J =125°C	0.30	V
T _J range	- 55 to 150	°C

Description/ Features

The STPS1L30U surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Bulletin PD-20583 rev. C 03/03

Voltage Ratings

Part number	STPS1L30U
V _R Max. DC Reverse Voltage (V)	20
V _{RWM} Max. Working Peak Reverse Voltage (V)	30

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 106 °C,	rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	360	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	75		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1A, L = 6\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Value	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.420	V	@ 1A	T, = 25 °C
		0.470	V	@ 2A	1, = 23 0
		0.300	V	@ 1A	T ₁ = 125 °C
		0.375	V	@ 2A	1,1 128 8
I _{RM}	Max. Reverse Leakage Current (1)	0.2	mA	T _J = 25 °C	
		5.0	mA	T _J = 100 °C	$V_R = \text{rated } V_R$
		15	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	200	pF	V _R = 5V _{DC} , (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T	Max. Junction Temperature Range (*)	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.10 (0.003)	g (oz.)	
	Case Style	SMB		Similar to DO-214AA
	Device Marking	IR13L		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \qquad \text{thermal } \text{runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

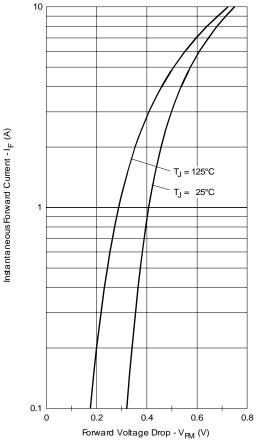


Fig. 1 - Maximum Forward Voltage Drop Characteristics

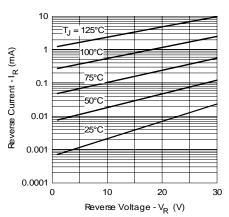


Fig. 2-Typical Peak Reverse Current Vs. Reverse Voltage

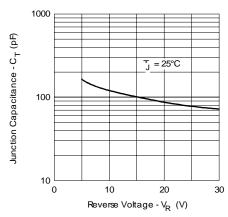


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

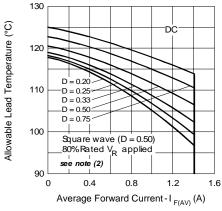


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

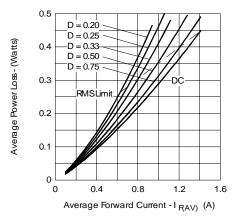


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

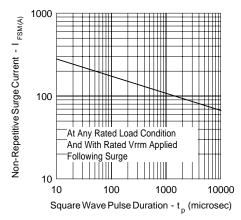
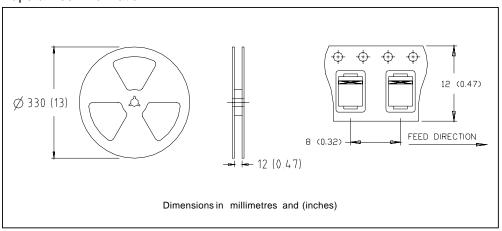
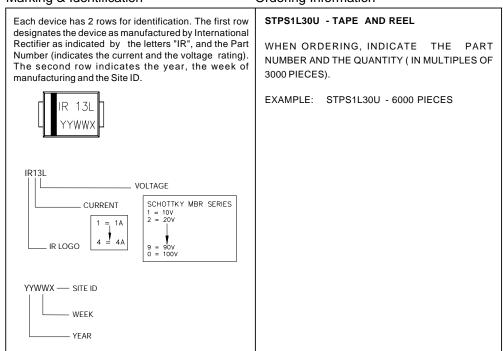



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


 $\begin{aligned} \textbf{(2)} \ \ & \text{Formula used:} \ & \text{$T_C = T_J$-$($Pd + Pd$_{REV}$)$} \times \text{$R_{\text{thJC}}$;} \\ & \text{$Pd = \text{Forward Power Loss} = I$_{F(AV)}$} \times \text{V_{FM} @ $(I_{F(AV)}$/D) (see Fig. 6);} \\ & \text{Pd_{REV} = Inverse Power Loss} = V$_{R1}$ \times I$_{R} (1 - D); I_{R} @ V$_{R1} = 80\%$ rated V_{R1}$.} \end{aligned}$

Tape & Reel Information

Marking & Identification

Ordering Information

STPS1L30U Bulletin PD-20583 rev. C 03/03

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 03/03