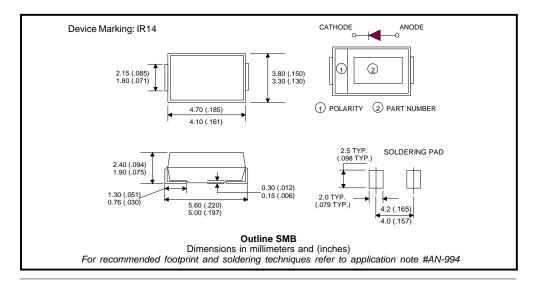

International **ISPR** Rectifier

SCHOTTKY RECTIFIER

MBRS140TR

1 Amp


Characteristics	MBRS140TR	Units			
I _{F(AV)} Rectangular waveform	1.0	A			
V _{RRM}	40	V			
I _{FSM} @tp=5µssine	380	A			
V _F @ 1.0 Apk, T _J =125°C	0.53	V			
T _J range	- 55 to 150	°C			

Major Ratings and Characteristics

Description/ Features

The MBRS140TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

www.irf.com

1

MBRS140TR

Bulletin PD-20591 rev. C 03/03

International **IOR** Rectifier

Voltage Ratings

Part number	MBRS140TR
V _R Max. DC Reverse Voltage (V)	10
V _{RWM} Max. Working Peak Reverse Voltage (V)	40

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	A	50% duty cycle @ $T_L = 119 ^{\circ}C$, rectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	380	A	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	Surge Current	40		10ms Sine or 6ms Rect. pulse	load condition and with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_{J} = 25 \text{ °C}, I_{AS} = 1A, L = 6\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	A	Current decaying linearly to zero in 1 μ sec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

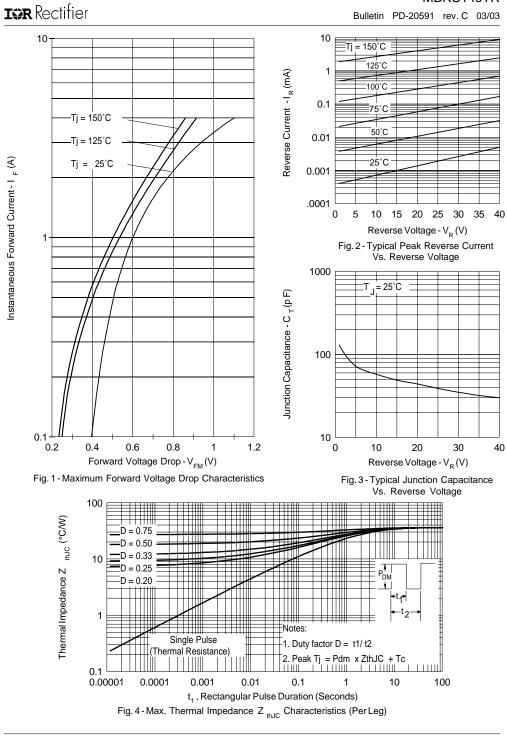
	Parameters	Тур.	Max	Units	Conditions		
V _{FM}	Max. Forward Voltage Drop (1)	0.52	0.6	V	@ 1A	T 0500	
		0.70	0.77	V	@ 2A	T _J = 25 °C	
		0.48	0.53	V	@ 1A	T 405.00	
		0.63	0.71	V	@ 2A	T _J = 125 °C	
I _{RM}	Max. Reverse Leakage Current (1)	-	0.1	mA	T _J = 25°C		
		-	4.0	mA	T _J = 125°C	$V_R = rated V_R$	
\mathbf{C}_{T}	Max. Junction Capacitance	-	80	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz)25°C		
L_{S}	Typical Series Inductance	-	2.0	nH	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change	-	10000	V/µs			
	(Rated V _R)						

(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

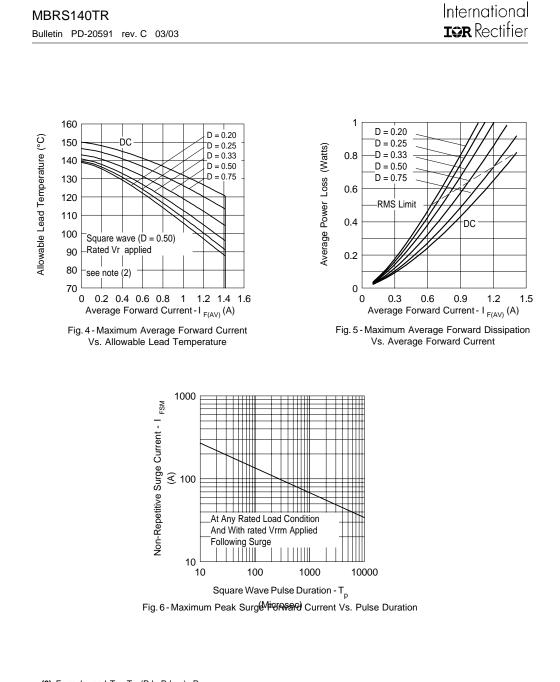
	Parameters	Value	Units	Conditions
Т	Max. Junction Temperature Range(*)	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	36	°C/W	DC operation (See Fig. 4)
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.10 (0.003)	g (oz.)	
	Case Style	SMB IR14		Similar to DO-214AA
	Device Marking			

 $\frac{(*)}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink


(**) Mounted 1 inch square PCB

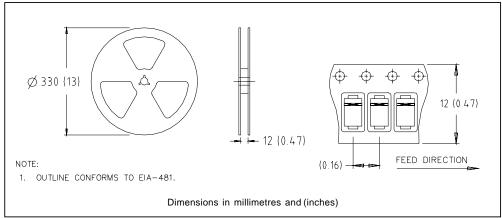
2

www.irf.com

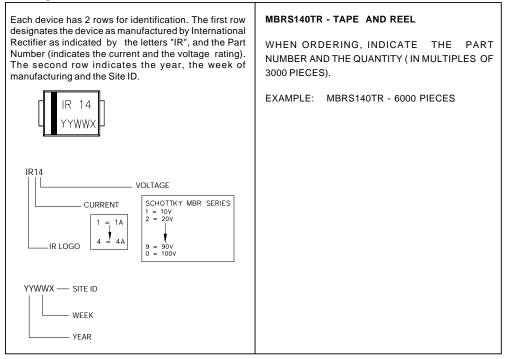

International

MBRS140TR

www.irf.com


3

(2) Formula used: $T_{C} = T_{J} - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_{R} (1 - D); I_{R} @ V_{R1} = 80\%$ rated V_{R}


www.irf.com

Tape & Reel Information

Marking & Identification

Ordering Information

www.irf.com

MBRS140TR	International
Bulletin PD-20591 rev. C 03/03	tor Rectifier

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 03/03

www.irf.com

6