MUR8100E, MUR880E

MUR8100E is a Preferred Device

SWITCHMODE ${ }^{\text {m }}$

Power Rectifiers
Ultrafast "E" Series with High Reverse Energy Capability

The MUR8100 and MUR880E diodes are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- 20 mJ Avalanche Energy Guaranteed
- Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
- Ultrafast 75 Nanosecond Recovery Time
- $175^{\circ} \mathrm{C}$ Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL 94 V-0 @ 0.125 in.
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 V
- $\mathrm{Pb}-$ Free Packages are Available*

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: $260^{\circ} \mathrm{C}$ Max. for 10 Seconds
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MARKING DIAGRAM

A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package
U8xxxE	$=$ Device Code
	$\quad \times x \times=100$ or 80
KA	$=$ Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping
MUR8100E	TO-220	50 Units / Rail
MUR8100EG	TO-220 (Pb-Free)	50 Units / Rail
MUR880E	TO-220	50 Units / Rail
MUR880EG	TO-220 (Pb-Free)	50 Units / Rail

Preferred devices are recommended choices for future use and best overall value.

MUR8100E, MUR880E

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$V_{\text {RRM }}$ $V_{\text {RWM }}$ V_{R}	$\begin{gathered} 800 \\ 1000 \end{gathered}$	V
Average Rectified Forward Current (Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$) Total Device	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	8.0	A
Peak Repetitive Forward Current (Rated V_{R}, Square Wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$)	IFM	16	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	$\mathrm{I}_{\text {FSM }}$	100	A
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction-to-Case	$R_{\text {өJC }}$	2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 1) $\begin{aligned} & \left(\mathrm{i}_{\mathrm{F}}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{i}_{\mathrm{F}}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	v_{F}	$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	V
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$) (Rated DC Voltage, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	i_{R}	$\begin{gathered} 500 \\ 25 \end{gathered}$	$\mu \mathrm{A}$
Maximum Reverse Recovery Time $\begin{aligned} & \left(I_{F}=1.0 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{us}\right) \\ & \left(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{i}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{REC}}=0.25 \mathrm{~A}\right) \end{aligned}$	t_{rr}	$\begin{aligned} & 100 \\ & 75 \end{aligned}$	ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)	$W_{\text {AVAL }}$	20	mJ

1. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

MUR8100E, MUR880E

Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current*

Figure 3. Current Derating, Case

Figure 4. Current Derating, Ambient

Figure 5. Power Dissipation

MUR8100E, MUR880E

Figure 6. Test Circuit
The unclamped inductive switching circuit shown in Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_{1} is closed at t_{0} the current in the inductor I_{L} ramps up linearly; and energy is stored in the coil. At t_{1} the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV ${ }_{\text {DUT }}$ and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_{2}.

By solving the loop equation at the point in time when S_{1} is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in

Figure 7. Current-Voltage Waveforms
breakdown (from t_{1} to t_{2}) minus any losses due to finite component resistances. Assuming the component resistive elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S_{1} was closed, Equation (2).

The oscilloscope picture in Figure 8, shows the MUR8100E in this test circuit conducting a peak current of one ampere at a breakdown voltage of 1300 V , and using Equation (2) the energy absorbed by the MUR8100E is approximately 20 mjoules.

Although it is not recommended to design for this condition, the new " E " series provides added protection against those unforeseen transient viruses that can produce unexplained random failures in unfriendly environments.

EQUATION (1):

$$
\mathrm{W}_{\mathrm{AVAL}} \approx \frac{1}{2} \mathrm{LI}_{\mathrm{LPK}}^{2}\left(\frac{\mathrm{BV}_{\mathrm{DUT}}}{\mathrm{BV}_{\mathrm{DUT}}^{\mathrm{DD}}}{ }^{\mathbb{Q}_{\mathrm{DD}}}\right)
$$

EQUATION (2):
$W_{A V A L} \approx \frac{1}{2} L_{\text {LPK }}^{2}$

CHANNEL2:
L 0.5 AMPS/DIV.

CHANNEL 1:
$V_{\text {DUT }}$
500 VOLTS/DIV.

TIME BASE:
$20 \mu \mathrm{~s} / \mathrm{DIV}$.

Figure 8. Current-Voltage Waveforms

MUR8100E, MUR880E

Figure 9. Thermal Response

Figure 10. Typical Capacitance

MUR8100E, MUR880E

PACKAGE DIMENSIONS

TO-220 TWO-LEAD
 CASE 221B-04
 ISSUE E

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.595	0.620	15.11	15.75
B	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.82
D	0.025	0.035	0.64	0.89
F	0.142	0.161	3.61	4.09
G	0.190	0.210	4.83	5.33
H	0.110	0.130	2.79	3.30
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.14	1.52
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.14	1.39
T	0.235	0.255	5.97	6.48
U	0.000	0.050	0.000	1.27

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and (O1N are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

ITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

For additional information, please contact your local Sales Representative

