Surface Mount Schottky Power Rectifier

Plastic SOD-123 Package

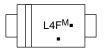
This device uses the Schottky Barrier principle with a large area metal—to—silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC–DC and DC–DC converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

- Guardring for Stress Protection
- Low Forward Voltage
- 125°C Operating Junction Temperature
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Package Designed for Optimal Automated Board Assembly
- ESD Ratings: Machine Model, C Human Body Model, 3B
- Pb-Free Packages are Available

Mechanical Characteristics

- Reel Options: MBR140SFT1 = 3,000 per 7 in reel/8 mm tape MBR140SFT3 = 10,000 per 13 in reel/8 mm tape
- Device Marking: L4F
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy, Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

ON Semiconductor®


http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 40 VOLTS

SOD-123FL CASE 498 PLASTIC

MARKING DIAGRAM

L4F = Specific Device Code

M = Date CodePb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]		
MBR140SFT1	SOD-123FL	3000/Tape & Reel		
MBR140SFT1G	SOD-123FL (Pb-Free)	3000/Tape & Reel		
MBR140SFT3	SOD-123FL	10,000/Tape & Reel		
MBR140SFT3G	SOD-123FL (Pb-Free)	10,000/Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

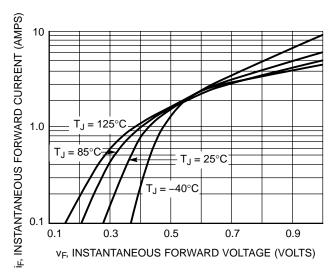
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V _R , T _L = 112°C)	Io	1.0	А
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, T _L = 95°C)	I _{FRM}	2.0	А
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	30	A
Storage Temperature	T _{stg}	-55 to 150	°C
Operating Junction Temperature	TJ	-55 to 125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs

THERMAL CHARACTERISTICS

Thermal Resistance, Junction-to-Lead (Note 1)	R _{til}	26	°C/W	ı
Thermal Resistance, Junction-to-Lead (Note 2)	R _{til}	21		ı
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{tia}	325		l
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{tja}	82		l

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Mounted with minimum recommended pad size, PC Board FR4.

- 2. Mounted with 1 in. copper pad (Cu area 700 mm²).

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3), See Figure 2	V _F	T _J = 25°C	T _J = 85°C	V
(I _F = 0.1 A) (I _F = 1.0 A) (I _F = 3.0 A)		0.36 0.55 0.85	0.30 0.515 0.88	
Maximum Instantaneous Reverse Current (Note 3), See Figure 4	I _R	T _J = 25°C	T _J = 85°C	mA
$(V_R = 40 \text{ V})$ $(V_R = 20 \text{ V})$		0.5 0.15	25 18	

^{3.} Pulse Test: Pulse Width \leq 250 μ s, Duty Cycle \leq 2%.

1.0 T_J = 125°C T_J = 25°C T_J = 25°C V_F, MAXIMUM INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

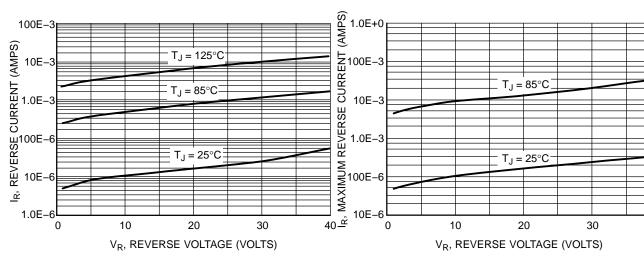
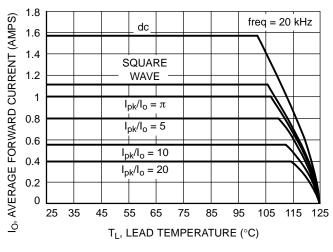



Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

40

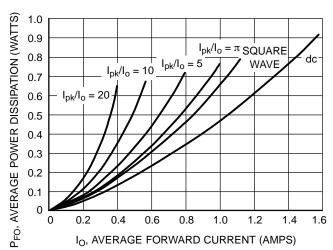


Figure 5. Current Derating

Figure 6. Forward Power Dissipation

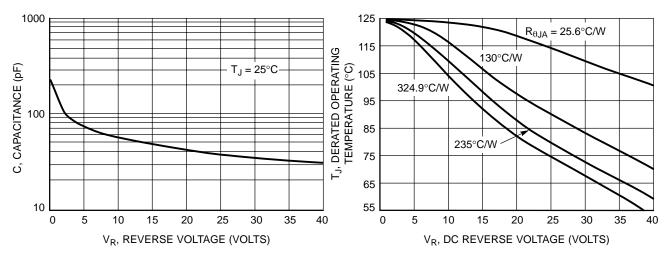


Figure 7. Capacitance

Figure 8. Typical Operating Temperature Derating*

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

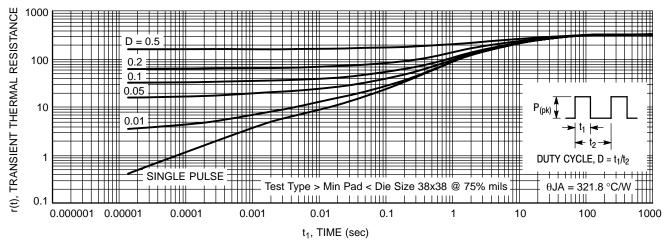
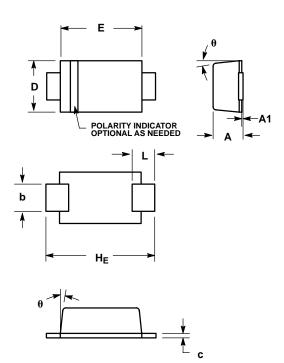
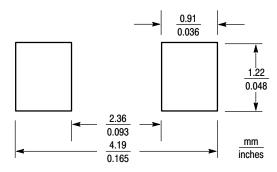



Figure 9. Thermal Response

PACKAGE DIMENSIONS


SOD-123LF CASE 498-01 ISSUE A

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH.
 4. DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	0.95	1.00	0.035	0.037	0.039
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.70	0.90	1.10	0.028	0.035	0.043
С	0.10	0.15	0.20	0.004	0.006	0.008
D	1.50	1.65	1.80	0.059	0.065	0.071
Е	2.50	2.70	2.90	0.098	0.106	0.114
L	0.55	0.75	0.95	0.022	0.030	0.037
HE	3.40	3.60	3.80	0.134	0.142	0.150
θ	0°	_	8°	0°	_	8°

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

MBR140SFT1/D