

Discrete POWER & Signal Technologies

1N4150 / FDLL4150

LL-34 THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL

COLOR BAND MARKING DEVICE 1ST BAND 2ND BAND FDLL4150 BLACK ORANGE

High Conductance Ultra Fast Diode

Sourced from Process 1R. See MMBD1201-1205 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
W _{IV}	Working Inverse Voltage	50	V
Io	Average Rectified Current	200	mA
I _F	DC Forward Current	400	mA
İf	Recurrent Peak Forward Current	600	mA
İf(surge)	Peak Forward Surge Current Pulse width = 1.0 second Pulse width = 1.0 microsecond	1.0 4.0	A A
T _{stg}	Storage Temperature Range	-65 to +200	°C
T _J	Operating Junction Temperature	175	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

<u>NOTES</u>:

1) These ratings are based on a maximum junction temperature of 200 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		1N / FDLL 4150	
P _D	Total Device Dissipation	500	mW
	Derate above 25°C	3.33	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	300	°C/W

ã 1997 Fairchild Semiconductor Corporation

High Conductance Ultra Fast Diode (continued)

Electrical Characteristics

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
B _V	Breakdown Voltage	$I_R = 5.0 \mu\text{A}$	75		V
I _R	Reverse Current	$V_R = 50 \text{ V}$ $V_R = 50 \text{ V}, T_A = 150^{\circ}\text{C}$		100 100	nA μA
V _F	Forward Voltage	$I_{F} = 1.0 \text{ mA}$ $I_{F} = 10 \text{ mA}$ $I_{F} = 50 \text{ mA}$ $I_{F} = 100 \text{ mA}$ $I_{F} = 200 \text{ mA}$	540 660 760 820 0.87	620 740 860 920 1.0	mV mV mV mV
Co	Diode Capacitance	V _R = 0, f = 1.0 MHz		2.5	pF
T _{RR}	Reverse Recovery Time	$I_F = I_R = 10 \text{ mA-200 mA}, R_L = 100\Omega$ $I_F = I_R = 200 \text{ mA-400 mA}, R_L = 100\Omega$		4.0 6.0	nS nS
T _{FR}	Forward Recovery Time	I _F = 200 mA, V _{FR} = 1.0 V		10	nS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM CoolFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.