C3D02060A-Silicon Carbide Schottky Diode Z-REC ${ }^{\text {tm }}$ Rectifier

$$
\begin{aligned}
\mathbf{V}_{\mathbf{R R M}} & =600 \mathrm{~V} \\
\mathbf{I}_{\mathrm{F}(\mathrm{AVG})} & =2 \mathrm{~A} \\
\mathbf{Q}_{\mathbf{c}} & =4.8 \mathrm{nC}
\end{aligned}
$$

Features

- 600-Volt Schottky Rectifier
- Optimized for PFC Boost Diode Application
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_{F}

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Typical PFC $P_{\text {out }}$: 300W-450W

Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
$V_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V		
$V_{\text {RSM }}$	Surge Peak Reverse Voltage	600	V		
$V_{\text {DC }}$	DC Blocking Voltage	600	V		
$\mathrm{I}_{\text {(AVG) }}$	Average Forward Current	2.0	A	$\mathrm{T}_{\mathrm{c}}<160^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{mS}$, Half Sine Wave $\mathrm{D}=0.3$ $\mathrm{T}_{\mathrm{c}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{mS}$, Half Sine Wave $\mathrm{D}=0.3$	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	$\begin{aligned} & 21 \\ & 19 \end{aligned}$	A	$T_{c}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{mS}$, Half Sine Wave $\mathrm{D}=0.3$ $T_{c}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{mS}$, Half Sine Wave $\mathrm{D}=0.3$	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	65	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~S}$, Pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{gathered} 39.5 \\ 17 \end{gathered}$	W	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
	TO-220 Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\begin{gathered} \mathrm{Nm} \\ \mathrm{lbf}-\mathrm{in} \end{gathered}$	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Tур.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=2 \mathrm{AA}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
I_{R}	Reverse Current	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	$\mu \mathrm{A}$	$\begin{array}{ll} V_{R}=600 \vee & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{array}$	
Q_{C}	Total Capacitive Charge	4.8		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} \\ & \mathrm{~d} i / \mathrm{d} t=500 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	
C	Total Capacitance	$\begin{gathered} 120 \\ 12 \\ 11 \\ \hline \end{gathered}$		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit
$R_{\text {өлС }}$	TO-220 Package Thermal Resistance from Junction to Case	3.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Typical Performance

Figure 3. Current Derating

Figure 4. Capacitance vs. Reverse Voltage

Figure 5. Transient Thermal Impedance

Figure 6. Power Derating

Package Dimensions

Package TO-220-2

	POS	Inches		Millimeters	
		Min	Max	Min	Max
	A	. 381	. 410	9.677	10.414
	B	. 235	. 255	5.969	6.477
	C	. 100	. 120	2.540	3.048
	D	. 223	. 337	5.664	8.560
	E	. 590	. 615	14.986	15.621
	F	. 143	. 153	3.632	3.886
	G	1.105	1.147	28.067	29.134
$Y \quad \longrightarrow$	H	. 500	. 550	12.700	13.970
	J	R 0.197		R 0.197	
	L	. 025	. 036	. 635	. 914
	M	. 045	. 055	1.143	1.397
	N	. 195	. 205	4.953	5.207
	P	. 165	. 185	4.191	4.699
	Q	. 048	. 054	1.219	1.372
	S	3°	6°	3°	6°
	T	3°	6°	3°	6°
	U	3°	6°	3°	6°
	V	. 094	. 110	2.388	2.794
	W	. 014	. 025	. 356	. 635
	X	3°	5.5°	3°	$5.5{ }^{\circ}$
	Y	. 385	.410	9.779	10.414
	Z	. 130	.150	3.302	3.810

NOTE:

1. Dimension L, M, W apply for Solder Dip Finish

Recommended Solder Pad Layout

TO-220-2

Part Number	Package	Marking
C3D02060A	TO-220-2	C3D02060

Diode Model

$$
\begin{gathered}
\mathrm{Vf}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}}+\mathrm{If} * \mathrm{R}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}}=0.98+\left(\mathrm{T}_{J} *-1.7 * 10^{-3}\right) \\
\mathrm{R}_{\mathrm{T}}=0.21+\left(\mathrm{T}_{\mathrm{J}} * 1.71 * 10^{-3}\right)
\end{gathered}
$$

Note: $\mathrm{T}_{\mathrm{j}}=$ Diode Junction Temperature In Degrees Celcius

