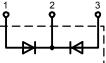
$I_{FAV} = 2x 10 A$

600 V

35 ns

advanced

Sonic-FRD


High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number (Marking on product)

DHG 20 C 600QB

Features / Advantages:

- Planar passivated chips
- · Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

 $V_{RRM} =$

TO-3P

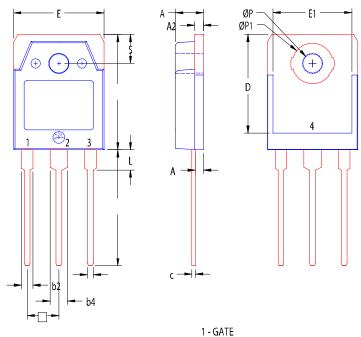
- Industry standard outline
- compatible with TO-247
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25 ^{\circ}\text{C}$			600	V
I _R	reverse current	V _R = 600 V	T _{VJ} = 25 °C			15	μA
		$V_{R} = 600 V$	T_{VJ} = 125 °C			1.5	mA
V _F	forward voltage	I _F = 10 A	$T_{VJ} = 25 ^{\circ}C$			2.35	V
		$I_F = 20 A$					V
		I _F = 10 A	T _{VJ} = 125 °C			2.20	V
		I _F = 20 A					V
I _{FAV}	average forward current	rectangular, d = 0.5	$T_{c} = 100 ^{\circ}C$			10	Α
V_{F0}	threshold voltage $T_{VJ} = 150 ^{\circ}\text{C}$					1.20	V
r _F	slope resistance	allouidation only				93	mΩ
R _{thJC}	thermal resistance junction to case					1.80	K/W
T _{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_c = 25 ^{\circ}C$			70	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	$T_{VJ} = 45 ^{\circ}C$			100	Α
I _{RM}	max. reverse recovery current	I _F = 10 A;	$T_{VJ} = 25 ^{\circ}C$		4		Α
t _{rr}	reverse recovery time	-di ₋ /dt = 200 A/µs	T_{VJ} = 125 °C				Α
		$V_{R} = 400 \text{ V}$	$T_{VJ} = 25 ^{\circ}C$		35		ns
		V _R - 400 V	T_{VJ} = 125 °C				ns
C,	junction capacitance	$V_R = 300 V; f = 1 MHz$	$T_{VJ} = 25 ^{\circ}C$				pF
E _{AS}	non-repetitive avalanche energy	$I_{AS} = A; L = 100 \mu H$	$T_{VJ} = 25 ^{\circ}C$			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$				tbd	Α

IXYS reserves the right to change limits, conditions and dimensions.

* Data according to IEC 60747and per diode unless otherwise specified


advanced

Ratings

Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per pin*				Α
R _{thCH}	thermal resistance case to h	eatsink		0.25		K/W
M_{D}	mounting torque		0.8		1.2	Nm
F _c	mounting force with clip		20		120	N
T _{stg}	storage temperature		-55		150	°C
Weight				5		g

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip. In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-3P

CVM	INCHES		MILLIMETERS		
SYM	MIN	MAX	MIN	MAX	
Α	.185	.193	4.70	4.90	
A1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
b	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
С	.022	.031	0.55	0.80	
D	.780	.791	19.80	20.10	
D1	.665	.677	16.90	17.20	
E	.610	.622	15.50	15.80	
E1	.531	.539	13.50	13.70	
е	.215 BSC		5.45 BSC		
L	.779	.795	19.80	20.20	
L1	.134	.142	3.40	3.60	
ØΡ	.126	.134	3.20	3.40	
ØP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5.10	

2 - DRAIN (COLLECTOR)

3 - SOURCE (EMITTER)

4 - DRAIN (COLLECTOR)

All metal area are tin plated.