## C3D20060D-Silicon Carbide Schottky Diode Z-REC ${ }^{\text {tm }}$ Rectifier

## Features

- 600-Volt Schottky Rectifier
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on $\mathrm{V}_{\mathrm{F}}$


## Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway


## Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Typical PFC P $_{\text {out }}$ : 2000W-4000W
- Motor Drives
- Typical Power : 5HP-10HP

Package


TO-247-3

## Maximum Ratings

| Symbol | Parameter | Value | Unit | Test Conditions | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {RRM }}$ | Repetitive Peak Reverse Voltage | 600 | V |  |  |
| $\mathrm{V}_{\text {RSM }}$ | Surge Peak Reverse Voltage | 600 | V |  |  |
| $\mathrm{V}_{\text {DC }}$ | DC Blocking Voltage | 600 | v |  |  |
| $\mathrm{I}_{\text {(AVG) }}$ | Average Forward Current (Per Leg/Device) | 10/20 | A | $\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$ |  |
| $\mathrm{I}_{\text {FRM }}$ | Repetitive Peak Forward Surge Current (Per Leg/Device) | $\begin{gathered} \hline 67 / 134 \\ 44 / 88 \end{gathered}$ | A | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$ $T_{C}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$ |  |
| $\mathrm{I}_{\text {FSM }}$ | Non-Repetitive Peak Forward Surge Current (Per Leg) | $\begin{aligned} & 90 / 157 \\ & 71 / 115 \end{aligned}$ | A | $T_{c}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$ <br> $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$ |  |
| $\mathrm{I}_{\text {FSM }}$ | Non-Repetitive Peak Forward Surge Current (Per Leg/Device) | 250/500 | A | $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$, Pulse |  |
| $\mathrm{P}_{\text {tot }}$ | Power Dissipation (Per Leg) | $\begin{gathered} 136.3 \\ 59 \end{gathered}$ | W | $\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$ | Operating Junction and Storage Temperature | $\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ |  |  |
|  | TO-247 Mounting Torque | $\begin{gathered} 1 \\ 8.8 \end{gathered}$ | $\underset{\text { lbf-in }}{\mathrm{Nm}}$ | M3 Screw 6-32 Screw |  |

## Electrical Characteristics (Per Leg)

| Symbol | Parameter | Typ. | Max. | Unit | Test Conditions | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{F}$ | Forward Voltage | $\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & \hline 1.8 \\ & 2.4 \end{aligned}$ | V | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{I}_{\mathrm{R}}$ | Reverse Current | $\begin{aligned} & 10 \\ & 20 \end{aligned}$ | $\begin{gathered} 50 \\ 200 \end{gathered}$ | $\mu \mathrm{A}$ | $\begin{array}{ll} \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{array}$ |  |
| $\mathrm{Q}_{\mathrm{C}}$ | Total Capacitive Charge | 25 |  | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{~d} i / \mathrm{d} t=500 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |
| C | Total Capacitance | $\begin{gathered} 480 \\ 50 \\ 42 \end{gathered}$ |  | pF | $\begin{aligned} & V_{R}=0 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |  |

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

## Thermal Characteristics

| Symbol | Parameter | Typ. | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{R}_{\text {өुС }}$ | Thermal Resistance from Junction to Case | $1.1^{* *}$ <br> $0.55^{*}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

** Per Leg, * Both Legs

## Typical Performance (Per Leg)



Figure 1. Forward Characteristics


Figure 2. Reverse Characteristics

## Typical Performance (Per Leg)



Figure 3. Current Derating


Figure 4. Capacitance vs. Reverse Voltage


Figure 5. Transient Thermal Impedance

## Typical Performance (Per Leg)



Figure 6. Power Derating

Package Dimensions
Package TO-247-3


| POS | Inches |  | Millimeters |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |
| A | . 605 | . 631 | 15.367 | 16.027 |
| B | . 800 | . 830 | 20.320 | 21.082 |
| C | . 789 | . 800 | 20.05 | 20.31 |
| D | . 095 | . 126 | 2.413 | 3.200 |
| E | . 046 | . 052 | 1.168 | 1.321 |
| F | . 060 | . 084 | 1.524 | 2.134 |
| G | . 215 TYP |  | . 215 TYP |  |
| H | . 180 | . 203 | 4.572 | 5.156 |
| J | . 078 | . 081 | 1.982 | 2.057 |
| K | $6^{\circ}$ | $21^{\circ}$ | $6^{\circ}$ | $21^{\circ}$ |
| L | $4^{\circ}$ | $6^{\circ}$ | $4^{\circ}$ | $6^{\circ}$ |
| M | $2^{\circ}$ | $4^{\circ}$ | $2^{\circ}$ | $4^{\circ}$ |
| N | $2^{\circ}$ | $4^{\circ}$ | $2^{\circ}$ | $4^{\circ}$ |
| P | . 090 | . 097 | 2.286 | 2.464 |
| Q | . 020 | . 030 | . 508 | . 762 |
| R | $9^{\circ}$ | $11^{\circ}$ | $9^{\circ}$ | $11^{\circ}$ |
| S | $9^{\circ}$ | $11^{\circ}$ | $9^{\circ}$ | $11^{\circ}$ |
| T | $2^{\circ}$ | $8^{\circ}$ | $2^{\circ}$ | $8^{\circ}$ |
| U | $2^{\circ}$ | $8^{\circ}$ | $2^{\circ}$ | $8^{\circ}$ |
| V | . 138 | . 144 | 3.505 | 3.658 |
| W | . 210 | . 220 | 5.334 | 5.588 |
| X | . 502 | . 557 | 12.751 | 14.148 |
| Y | . 637 | . 695 | 16.180 | 17.653 |
| Z | . 040 | . 052 | 1.016 | 1.321 |
| AA | . 032 | . 046 | . 813 | 1.168 |
| BB | . 110 | . 140 | 2.794 | 3.556 |
| CC | . 164 | . 176 | 4.168 | 4.472 |

Recommended Solder Pad Layout


TO-247-3

| Part Number | Package | Marking |
| :---: | :---: | :---: |
| C3D20060D | TO-247-3 | C3D20060 |

## Diode Model (Per Leg)



$$
\begin{gathered}
V f_{T}=V_{T}+I f * R_{T} \\
V_{T}=0.98+\left(T_{J} *-1.6 * 10^{-3}\right) \\
R_{T}=0.04+\left(T_{J} * 0.522 * 10^{-3}\right)
\end{gathered}
$$

Note: $\mathbf{T}_{\mathbf{j}}=$ Diode Junction Temperature In Degrees Celsius

[^0] $2002 / 95 / E C$ on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoCS), as amended through April 21,2006


[^0]:    
    

