C2D10120D-Silicon Carbide Schottky Diode Zero Recovery ${ }^{\otimes}$ Rectifier

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{R R M}}=1200 \mathrm{~V} \\
& \mathbf{I}_{\mathbf{F}}=10 \mathrm{~A} \\
& \mathbf{Q}_{\mathbf{c}}=56 \mathrm{nC}
\end{aligned}
$$

Features

- 1200-Volt Schottky Rectifier
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_{F}

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Motor Drives

Package

TO-247-3

Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	1200	V		
$V_{\text {RSM }}$	Surge Peak Reverse Voltage	1200	V		
$V_{\text {DC }}$	DC Blocking Voltage	1200	V		
$\mathrm{I}_{\text {(AVG) }}$	Average Forward Current (Per Leg/Device)	$\begin{gathered} 5 / 10 \\ 10 / 20 \end{gathered}$	A	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{I}_{\text {F(PEAK) }}$	Peak Forward Current (Per Leg/Device)	15/30	A	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \mathrm{T}_{\text {REP }}<1 \mathrm{mS}$, Duty $=0.5$	
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	30^{*}	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	100*	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$, Pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{gathered} 138^{*} \\ 46^{*} \end{gathered}$	W	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
	TO-247 Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\underset{\mathrm{lbf}-\mathrm{in}}{\mathrm{Nm}}$	M3 Screw 6-32 Screw	

** Per Device, * Per Leg

Electrical Characteristics (Per Leg)

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 3.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
I_{R}	Reverse Current	$\begin{gathered} \hline 50 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 1000 \end{gathered}$	$\mu \mathrm{A}$	$\begin{array}{\|ll} \hline V_{R}=1200 \vee & T_{J}=25^{\circ} \mathrm{C} \\ V_{\mathrm{R}}=1200 \vee & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ \hline \end{array}$	
Q_{C}	Total Capacitive Charge	28		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \\ & \mathrm{~d} i / \mathrm{d} t=500 \mathrm{~A} / \mathrm{\mu s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
C	Total Capacitance	$\begin{gathered} 455 \\ 45 \\ 33 \end{gathered}$		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit
$\mathrm{R}_{\text {ө丁 }}$	Thermal Resistance from Junction to Case	$1.08^{* *}$ 0.54^{*}	${ }^{\circ} \mathrm{C} / \mathrm{W}$

** Per Leg, * Both Legs

Typical Performance (Per Leg)

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Typical Performance (Per Leg)

Figure 3. Current Derating

Figure 4. Capacitance vs. Reverse Voltage

Figure 5. Transient Thermal Impedance

Package Dimensions

Package TO-247-3

POS	Inches		Millimeters	
	Min	Max	Min	Max
A	. 605	. 631	15.367	16.027
B	. 800	. 830	20.320	21.082
C	. 789	. 800	20.05	20.31
D	. 095	. 126	2.413	3.200
E	. 046	. 052	1.168	1.321
F	. 060	. 084	1.524	2.134
G	. 215 TYP		. 215 TYP	
H	. 180	. 203	4.572	5.156
J	. 078	. 081	1.982	2.057
K	6°	21°	6°	21°
L	4°	6°	4°	6°
M	2°	4°	2°	4°
N	2°	4°	2°	4°
P	. 090	. 097	2.286	2.464
Q	. 020	. 030	. 508	. 762
R	$9{ }^{\circ}$	11°	$9{ }^{\circ}$	11°
S	9°	11°	$9{ }^{\circ}$	11°
T	2°	8°	2°	8°
U	2°	8°	2°	8°
V	. 138	. 144	3.505	3.658
W	. 210	. 220	5.334	5.588
X	. 502	. 557	12.751	14.148
Y	. 637	. 695	16.180	17.653
Z	. 040	. 052	1.016	1.321
AA	. 032	. 046	. 813	1.168
BB	. 110	. 140	2.794	3.556
CC	. 164	. 176	4.168	4.472

Recommended Solder Pad Layout

TO-247-3

Part Number	Package	Marking
C2D10120D	TO-247-3	C2D10120

"The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006."

