Expertise Applied | Answers Delivered

Teccor ${ }^{\circledR}$ brand Thyristors
 Multipulse ${ }^{\text {TM }}$ SIDACs

RoHS Kxxx1G Series

Schematic Symbol

Applications
Typical application circuit presented in Figure 10 of this data sheet (Typical Metal Halide Ignitor Circuit).

Description

The Multipuls ${ }^{\text {tm }}$ SIDAC is a voltage switch used in MetalHalide lamp ignition circuits as well as High Pressure Sodium lamp ignition circuits for outdoor street and area lighting. This robust solid state switch is designed to handle lamp igniter applications requiring operation at ambient temperatures up to $90^{\circ} \mathrm{C}$ where igniter circuit components can raise SIDAC junction temperature up to $125^{\circ} \mathrm{C}$, especially when the lamp element is removed or ruptured. Its excellent commutation time ($\mathrm{t}_{\text {сомм }}$) makes this robust product best suited for producing multiple pulses in each half cycle of $50 / 60 \mathrm{~Hz}$ line voltage. The Multipulse ${ }^{T \mathrm{Tm}}$ SIDAC is offered in DO-15 axial leaded package.
Kxxx1G SIDAC has a repetitive off-state blocking voltage $\left(V_{\text {DRM }}\right)$ of 180 V to 270 V minimum depending actual device type. Blocking capability is ensured by glass passivated junctions for best reliability. Package is epoxy encapsulation with tin-plated copper alloy leads.

Features

- AC circuit oriented
- RoHS Compliant
- Triggering Voltage of 200 to 380 V

Electrical Specifications

Symbol	Parameters	Test Conditions	Min	Max	Unit
$V_{\text {Bo }}$	Breakover/Trigger Voltage	$\begin{aligned} & \text { K2201G } \\ & \text { K2401G } \\ & \text { K2501G } \\ & \text { K3601G } \end{aligned}$	$\begin{aligned} & 200 \\ & 220 \\ & 240 \\ & 340 \end{aligned}$	$\begin{aligned} & 230 \\ & 250 \\ & 280 \\ & 380 \\ & \hline \end{aligned}$	V
$V_{\text {DRM }}$	Repetitive Peak Off-State Voltage	K2201G K2401G K2501G K3601G	$\begin{aligned} & 180 \\ & 190 \\ & 200 \\ & 270 \end{aligned}$		V
$\mathrm{I}_{\text {TRMS) }}$	On-State RMS Current, $\mathrm{T}_{\mathrm{j}}<125^{\circ} \mathrm{C}$	50/60Hz Sine Wave		1	A
I_{H}	Dynamic Holding Current, $\mathrm{R}=100 \Omega$	50/60Hz Sine Wave		160 TYP	mA
$\mathrm{R}_{\text {s }}$	Switching Resistance, $R_{S}=\frac{\left(V_{B O}-V_{S}\right)}{\left(I_{S}-I_{B O}\right)}$	50/60Hz Sine Wave		100	Ω
$\mathrm{t}_{\text {comm }}$	Commutation Time $\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$	See test circuit and waveform in Figure 9		100	$\mu s e c$
$\mathrm{I}_{\text {в }}$	Breakover Current	50/60Hz Sine Wave		10	uA
$\mathrm{I}_{\text {TSM }}$	Non-repetitive 1 cycle On-State peak value	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 20.0 \\ & 16.7 \\ & \hline \end{aligned}$	A
di/dt	Critical Rate of Rise of On-State Current			150	A/ $/ \mathrm{sec}$
$\mathrm{dv} / \mathrm{dt}$	Critical Rate of Rise of Off-State Voltage			1500	V/usec
$\mathrm{T}_{\text {s }}$	Storage Temperature Range		-40	+125	${ }^{\circ} \mathrm{C}$
T	Max Operating Junction Temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {өJL }}$	Thermal Resistance	Junction to lead		18	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 1: Characteristics

Figure 3: Power Dissipation (Typical) vs. On-State Current

Figure 5: Pulse On-State Current Rating

Figure 2: Maximum Allowable Lead/Tab Temperature vs. On-State Current

Figure 4: V_{Bo} Change
vs. Junction Temperature

Figure 6: Maximum Allowable Ambient Temperature vs. On-State Current

Expertise Applied | Answers Delivered

Figure 7: Peak Surge Current vs Surge Current Duration

Figure 8: Typical On-State Voltage vs On-State Current

Figure 9: Multipulse ${ }^{\text {m" }}$ SIDAC $\mathrm{t}_{\text {comm }}$, Commutation Time

Figure 10: Typical Metal Halide Ignitor Circuit

Note: With proper component selection, this circuit will produce three pulses for ignition of metal halide lamp that requires a minimum of three pulses at 4 kV magnitude and $>1 \mathrm{uSec}$ duration each at a minimum repetition rate of 3.3 kHz .

Soldering Parameters

Reflow Condition		Pb - Free assembly
Pre Heat	-Temperature Min ($\mathrm{T}_{\text {s(min) }}$)	$150^{\circ} \mathrm{C}$
	-Temperature Max ($\mathrm{T}_{\text {s(max })}$)	$200^{\circ} \mathrm{C}$
	-Time (min to max) (t_{s})	60-180 secs
Average ramp up rate (Liquidus Temp) (T_{L}) to peak		$5^{\circ} \mathrm{C} /$ second max
$\mathrm{T}_{\text {S(max) }}$ to T_{L} - Ramp-up Rate		$5^{\circ} \mathrm{C} /$ second max
Reflow	-Temperature (T_{L}) (Liquidus)	$217^{\circ} \mathrm{C}$
	-Temperature (t_{L})	60-150 seconds
PeakTemperature (T_{p})		$260+0 / 5{ }^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak Temperature (t_{p})		20-40 seconds
Ramp-down Rate		$5^{\circ} \mathrm{C} /$ second max
Time $25^{\circ} \mathrm{C}$ to peakTemperature (T_{p})		8 minutes Max.
Do not exceed		$280^{\circ} \mathrm{C}$

Expertise Applied | Answers Delivered

Physical Specifications

Terminal Finish	100% Matte Tin Plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

Package	Weight / unit (mg)
DO-15	385

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Overheating and surge currents are the main killers of SIDACs. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

Test	Specifications and Conditions
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V DRM hours
TemP-peak), 125	

Dimensions - DO-15 (G Package)

Dimension	Inches		Millimeters	
	Max	Max	Min	Max
B	0.028	0.034	0.711	0.864
D	0.120	0.140	3.048	3.556
G	0.235	0.270	5.969	6.858
L	1.000		25.400	

Product Selector

Part Number	Switching Voltage Range		Blocking Voltage	Packages
	V_{BO} Minimum	V_{BO} Maximum	$\mathrm{V}_{\text {DRM }}$	
K2201G	200V	230 V	180 V	DO-15
K2401G	220 V	250 V	190 V	DO-15
K2501G	240 V	280 V	200 V	DO-15
K3601G	340 V	380 V	270 V	DO-15

Packing Options

Part Number	Package	Packing Mode	Base Quantity
Kxxx1G	DO-15	Bulk	1000
Kxxx1GRP		Tape \& Reel	5000

Note: $x x x=$ voltage

DO-15 Embossed Carrier RP Specifications
Meets all EIA RS-29-6 Standards

Part Numbering System

240: 220 to 250 V 250: 240 to 280V 360: 340 to 380 V

CIRCUIT FUNCTION
1: Multipulse ${ }^{\text {m" }}$
DEVICE PACKAGE
G: DO-15

