Single Phase Rectifier Bridge

in ECO-PAC 2

Preliminary data

$V_{\text {RSM }}$ V	$V_{\text {RRM }}$ V	Type
900	800	VBO 88-08NO7
1300	1200	VBO 88-12NO7
1700	1600	VBO 88-16NO7

Symbol	Conditions			Maximum Ratings	
$\mathrm{I}_{\mathrm{dAV}}(1)$	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$, module			92	A
$\mathrm{I}_{\text {FSM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & (50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 900 \\ & 990 \end{aligned}$	A
	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=\mathrm{T}_{\mathrm{VJJM}} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & t=10 \mathrm{~ms} \\ & t=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline(50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	770 850	A
$\mathbf{1 2}^{2} \mathrm{t}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \\ & \mathrm{~T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM} ;} \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline(50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 4050 \\ & 4050 \end{aligned}$	$A^{2} S$ $A^{2} S$
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & (50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 2950 \\ & 2950 \end{aligned}$	$A^{2} S$ $A^{2} S$
$\begin{aligned} & \mathbf{T}_{\mathrm{vJ}} \\ & \mathbf{T}_{\mathrm{vJM}} \\ & \mathbf{T}_{\mathrm{stg}} \\ & \hline \end{aligned}$				$\begin{array}{r} -40 \ldots+150 \\ 150 \\ -40 \ldots+125 \end{array}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	$\begin{aligned} & 50 / 60 \mathrm{~Hz}, \mathrm{RMS} \\ & \mathrm{I}_{\mathrm{ISOL}} \leq 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & t=1 \text { min } \\ & t=1 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 2500 \\ & 3000 \\ & \hline \end{aligned}$	V $\mathrm{V} \sim$ \sim
M_{d}	Mounting torque (M4)			1.5-2	Nm
Weight	Typ.			22	g

Symbol	Conditions	Characteristic Values		
\mathbf{I}_{R}	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$	$\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	≤ 0.5	mA
		$\mathrm{~T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}}$	\leq	5
		mA		
\mathbf{V}_{F}	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~A}$	$\mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	≤ 1.75	V
$\mathbf{V}_{\mathrm{T} 0}$	For power-loss calculations only	0.8	V	
\mathbf{r}_{T}		4	$\mathrm{~m} \Omega$	
$\mathbf{R}_{\mathrm{thJc}}$	per diode; DC current	0.85	$\mathrm{~K} / \mathrm{W}$	
	per module	0.212	$\mathrm{~K} / \mathrm{W}$	
$\mathbf{R}_{\mathrm{thCH}}$	per diode; DC current (typ.)	1.15	$\mathrm{~K} / \mathrm{W}$	
	per module (typ.)	0.288	$\mathrm{~K} / \mathrm{W}$	
$\mathbf{d}_{\mathbf{S}}$	Creeping distance on surface	11.2	mm	
\mathbf{d}_{A}	Creepage distance in air	9.7	mm	
\mathbf{a}	Max. allowable acceleration	50	$\mathrm{~m} / \mathrm{s}^{2}$	

[^0]IXYS reserves the right to change limits, test conditions and dimensions.
$\begin{array}{lr}\mathrm{I}_{\mathrm{dAV}}= & 92 \mathrm{~A} \\ \mathrm{~V}_{\text {RRM }}= & 800-1600 \mathrm{~V}\end{array}$

Features

- Package with DCB ceramic base plate
- Isolation voltage 3000 V~
- Planar passivated chips
- Blocking voltage up to 1600 V
- Low forward voltage drop
- Leads suitable for PC board soldering
- UL registered E 72873

Applications

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Advantages

- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling capability
- Small and light weigt

Dimensions in mm ($1 \mathrm{~mm}=0.0394$ ")

[^0]: Data according to IEC 60747 and refer to a single diode unless otherwise stated.

