Vertical Cavity Surface Emitting Laser in Pill Package

OPV322

- 850nm VCSEL technology
- High thermal stability
- Low drive current
- Low drive current
- Narrow Beam Angle

The OPV322 is a Vertical Cavity Surface Emitting Laser (VCSEL) packaged in a dome lens pill package. VCSEL offer many advantages in sensing applications when compared to infrared LEDs. These devices require substantially lower drive currents to obtain the same amount of output power as LEDs. This feature allows VCSELs to be used in low power consumption applications such as battery operated equipment.

The dome lens packaging creates a narrow beam angle from the device. Long distance applications may benefit from this feature as secondary optics may be eliminated, reducing total system cost. The OPV 322 is optically and spectrally compatible with Optek's standard detector products such as the OP600 series phototransistors, OP300 series photodarlingtons and the OP900 series photodiodes.

Applications

- Non-contact position sensing
- Photoelectric sensors
- Optical encoders
- Light curtains

(DJMENSIONS ARE JN JNCHES (MILLJMETERS)

Additional laser safety information can be found on the Optek website. See application bulletin \#221.
Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may result in hazardous radiation exposure.

RoHS

Absolute Maximum Ratings

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Storage Temperature Range	-40° to $+100^{\circ} \mathrm{C}$
Operating Temperature Range	0° to $+85^{\circ} \mathrm{C}$
Soldering Temperature [1/16 inch $(1.6 \mathrm{~mm})$ from case for 5 sec with soldering iron]	$260^{\circ} \mathrm{C}^{(1)}$
Maximum Forward Peak Current, Continuous	12 mA
Maximum Reverse Voltage	5 V
Maximum Forward Current, pulsed (1μ S P.W., 10% D.C.)	48 mA

Electrical Characteristics ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
Рот	Total Power Out	1.5			mW	$\mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA}$
$\mathrm{I}_{\text {TH }}$	Threshold Current			3.0	mA	Note 2
V_{F}	Forward Voltage			2.2	V	$\mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA}$
I_{R}	Reverse Current			100	nA	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
R_{S}	Series Resistance	20		55	ohms	Note 3
η	Slope Efficiency	0.28			$\mathrm{mW} / \mathrm{mA}$	Note 4
λ	Wavelength	840		860	nm	
$\Delta \lambda$	Optical Bandwidth			0.85	nm	
θ	Beam Divergence		6		Degrees	FWHM
$\Delta \eta / \Delta T$	Temp Coefficient of Slope Efficiency		-0.50		\%/ ${ }^{\circ} \mathrm{C}$	$\left(0^{\circ}-70^{\circ} \mathrm{C}\right)$, Note 4
$\Delta \lambda / \Delta T$	Temp Coefficient of Wavelength		0.06		$\mathrm{nm} /{ }^{\circ} \mathrm{C}$	$\left(0^{\circ}-70^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{I}_{\text {TH }}$	Temp Variance of Threshold Current		± 1.0		mA	$\left(0^{\circ}-70^{\circ} \mathrm{C}\right)$, Note 2
$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$	Temp Coefficient for Forward Voltage		-2.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\left(0^{\circ}-70^{\circ} \mathrm{C}\right)$

NOTES:
(1) RMA flux is recommended. Solder dwell time can be increased to 10 seconds when flow soldering.
(2) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6 mA . Line 2 from 0 mA to 0.5 mA .
(3) Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA .
(4) Slope efficiency, is the slope of the best fit LI line from 5 mA to 8 mA with 0.25 mA test intervals.

