FAIRCHILD

SEMICONDUCTOR®

FST16212 24-Bit Bus Exchange Switch

General Description

The Fairchild Switch FST16212 provides 24-bits of highspeed CMOS TTL-compatible bus switching or exchanging. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device operates as a 24-bit bus switch or a 12-bit bus exchanger, which allows data exchange between the four signal ports via the data-select terminals.

Features

• 4Ω switch connection between two ports.

July 1997

Revised April 2005

- Minimal propagation delay through the switch.
- Low I_{CC}.
- Zero bounce in flow-through mode.
- Control inputs compatible with TTL level.

Ordering Code:

Order Number	Package Number	Package Description
FST16212MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
FST16212MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available	in Tape and Reel. Specify b	by appending the suffix letter "X" to the ordering code.

Logic Diagram

Truth Table

S1

L

L

Н

Н

L

Т

н

н

S0

L

Н

L

Н

L

н

L

н

A₁

Ζ

B₁

 B_2

Ζ

Ζ

Ζ

 B_1

 B_2

A₂

Ζ

Ζ

Ζ

В₁

 B_2

Ζ

 B_2

B₁

Function

Disconnect

 $A_1 = B_1$

 $A_1 = B_2$

 $A_2 = B_1$

 $A_2 = B_2$

Disconnect

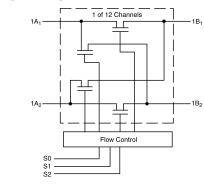
 $A_1 = B_1, A_2 = B_2$

 $A_1 = B_2, A_2 = B_1$

S2

L

L


L

L H

н

Н

н

Connection Diagram

G

	_			
so_	1	\cup	56	- S1
1A1 -	2		55	- S2
1A2-	3		54	- 1B1
2A1 -	4		53	- 1B ₂
2A2 -	5		52	- 2B1
за1 –	6		51	- 2B ₂
3A2 -	7		50	- 3B1
IND -	8		49	_ GND
4A1 -	9		48	- 3B ₂
4A2 -	10		47	- 4B1
5A1	11		46	- 4B ₂
5A2-	12		45	- 5B1
6A1 -	13		44	- 5B ₂
6A2-	14		43	- 6B1
7A1-	15		42	- 6B ₂
7A2-	16		41	- 7B1
Vcc-	17		40	- 7B2
8A1 -	18		39	- 8B1
SND-	19		38	- GND
8A2-	20		37	- 8B2
9A1 -	21		36	- 9B1
9A2-	22		35	- 9B ₂
0A1-	23		34	- 10B1
0A2-	24		33	- 10B ₂
1A1 -	25		32	- 11B1
1A2-	26		31	- 11B ₂
2A1 -	27		30	- 12B ₁
2A2-	28		29	- 12B ₂
				I

Pin Descriptions

Pin Name	Description
S2, S1, S0	Data-select inputs
A ₁ , A ₂	Bus A
B ₁ , B ₂	Bus B

© 2005 Fairchild Semiconductor Corporation DS500038

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	-0.5V to +7.0V
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) V _{IN} < 0V	–50mA
DC Output (I _{OUT}) Sink Current	128mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C

Recommended Operating Conditions (Note 3)

Power Supply Operating (V _{CC})	4.0V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0nS/V to 5nS/V
Switch I/O	0nS/V to DC
Free Air Operating Temperature (T _A)	–40 °C to +85 °C

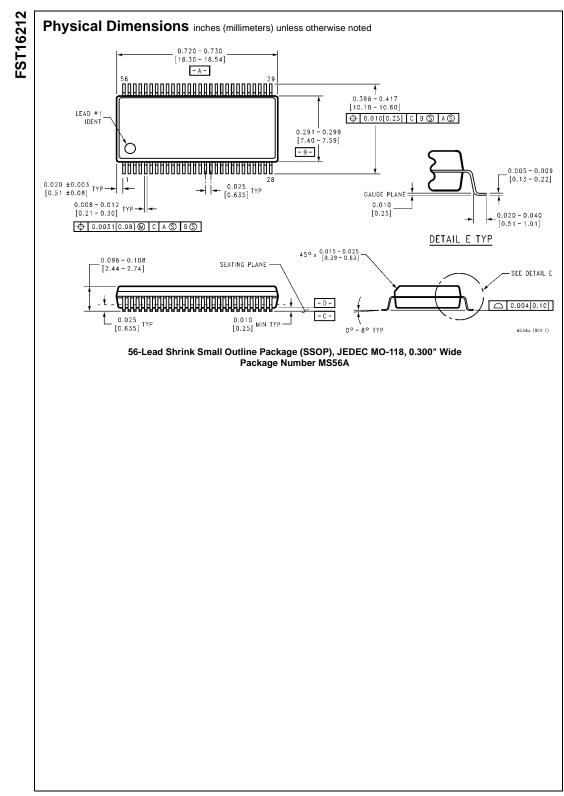
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held high or low. They may not float.

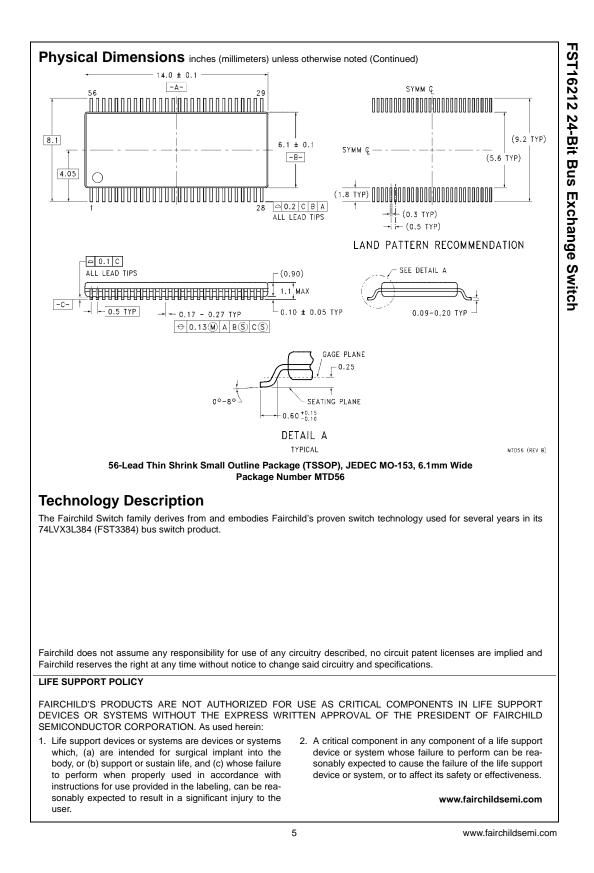
DC Electrical Characteristics

	Parameter	V _{CC} (V)	T _A =	-40 °C to +8	35 °C	Units	Conditions
Symbol			Min	Typ (Note 4)	Max		
√ _{IK}	Clamp Diode Voltage	4.5			-1.2	V	I _{IN} = -18mA
/н	HIGH Level Input Voltage	4.0-5.5	2.0			V	
/ _{IL}	LOW Level Input Voltage	4.0-5.5			0.8	V	
I _I	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
		0			10	μΑ	$V_{IN} = 5.5V$
l _{oz}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 64mA$
	(Note 5)	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 30mA$
		4.5		8	12	Ω	$V_{IN} = 2.4V$, $I_{IN} = 15mA$
		4.0		14	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15mA$
I _{CC}	Quiescent Supply Current	5.5			3	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
Δ I _{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One input at 3.4V
							Other inputs at V _{CC} or GND


Note 4: Typical values are at V_{CC} = 5.0V and $T_A{=}{+}25\,^{\circ}\text{C}$

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

www.fairchildsemi.com


Symbol			T _A = -40 °C	C to +85 °C,				
	Parameter	$\textbf{C}_{\textbf{L}}=\textbf{50pF},\textbf{RU}=\textbf{RD}=\textbf{500}\Omega$			Units	Conditions	Figure	
	Parameter	$V_{CC}=4.5-5.5V$		$V_{CC} = 4.0V$		Units	Conditions	No.
u tour		Min	Max	Min	Max			
TLIYPLH	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	V _I = OPEN	Figures 1, 2
PHL, tPLH	Prop Delay S to Bus	1.5	7.0		7.5	ns	V _I = OPEN	Figures 1, 2
_{PZH} , t _{PZL}	Output Enable Time, S to A or B	1.5	7.5		8.0	ns	$V_I = 7V$ for t_{PZL}	Figures
PHZ, ^t PLZ	Output Disable Time S to A or B	1.0	8.5		9.0	ns	$V_I = OPEN \text{ for } t_{PZH}$ $V_I = 7V \text{ for } t_{PLZ}$	1, 2 Figures
112/1122		-					$V_I = OPEN \text{ for } t_{PHZ}$	1, 2
W	-3dB Bandwidth	250				MHz	$R_L = 50\Omega$	
IN I/O	Control pin Input Capacitance Input/Output Capacitance 25°C, f = 1 MHz, Capacitance is charac		3 10	Max U		pF pF	$V_{CC} = 5.0V$ $V_{CC} = 5.0V$, S0, S1, or S2 = GND	
lote: Input dri	ven by 50 Ω source terminated in 50 Ω		JTPUT NDER TEST		RD			
Note: CL inclue	ven by 50 Ω source terminated in 50 Ω les load and stray capacitance R = 1.0 MHz, t_W = 500 ns		NDER	<u>귀년</u> 	RD			
Note: CL inclue	les load and stray capacitance	U	NDER TEST	Test Circu				
Note: CL inclue	les load and stray capacitance R = 1.0 MHz, t _W = 500 ns	FIGI	NDER TEST	<u>⊢</u> ₹		-=2.5nS →		
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ switch $r_F = \frac{1}{90\%} \frac{1}{90\%} \frac{1}{90\%} \frac{1}{90\%} \frac{1}{90\%}$	U	NDER TEST	CL ₹ Test Circu		-=2.5 nS →	1.5V	
Note: CL inclue	es load and stray capacitance R = 1.0 MHz, t _W = 500 ns	FIGI	NDER TEST JRE 1. AC	<u> </u>		-=2.5 nS → 10% -	J ^{90%}	
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ SWITCH INPUT 1.5V 1.5V 1.5V	FIG	NDER TEST JRE 1. AC	CL CL Crest Circu t==2.5 nS → 00% ENABLE INPUT 1.5V tpzL →		-=2.5nS _ → 10% - 1.5V	1.5V 1.5V GND - tpLZ	
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ SWITCH INPUT 10% 1.5V 1.5V 1.5V	FIG	NDER TEST JRE 1. AC nS - 3.0V — GND HL - VOH	CL CL Crest Circu t==2.5 nS → 00% ENABLE INPUT 1.5V tpzL →				
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ SWITCH INPUT 10% t_PLH t_W	FIGI	NDER TEST JRE 1. AC nS - 3.0V — GND HL - VOH	CL CL C		 1.5V 	VOL+0.3V	
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ SWITCH INPUT 10% t_PLH t_W	FIGI	NDER TEST JRE 1. AC nS - 3.0V - GND HL VOH	CL CL C		 1.5V	= GND = GND =	
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ SWITCH INPUT 10% t_PLH t_W	FIGI	NDER TEST JRE 1. AC - 3.0V - GND HL VOH VOL	CL CL C		 1.5V 	= GND = GND =	
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ SWITCH INPUT 10% t_PLH t_W	FIGI	NDER TEST JRE 1. AC - 3.0V - GND HL VOH VOL	CL ₹ Test Circu trest Circu trest Circu trest Circu trest Circu trest Circu trest Circu trest Circu trest Circu		 1.5V 	= GND = GND =	
Note: CL inclue	tes load and stray capacitance $R = 1.0 \text{ MHz}, t_W = 500 \text{ ns}$ SWITCH INPUT 10% t_PLH t_W	FIGI	NDER TEST JRE 1. AC - 3.0V - GND HL VOH VOL	CL ₹ CL ₹		 1.5V 	= GND = GND =	
Note: CL inclue	les load and stray capacitance		NDER	<u> 귀 ~</u>	RD			

www.fairchildsemi.com

www.fairchildsemi.com

4

