

3.3V CMOS 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS

IDT74ALVC162831

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsκ(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.40mm pitch TVSOP package
- Extended commercial range of 40°C to +85°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V ±0.2V
- CMOS power levels (0.4µ W typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVC162831:

- Balanced Output Drivers: ±12mA
- Low switching noise

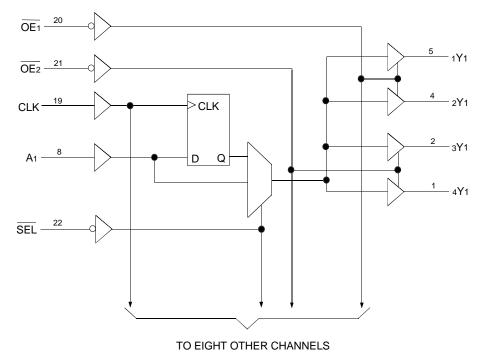
APPLICATIONS:

- Memory subsystems
- · PC motherboards and servers
- Workstations
- Telecommunication applications

DESCRIPTION:

This 1-bit to 4-bit address register/driver is built using advanced dual metal CMOS technology. This device is ideal for use in applications in

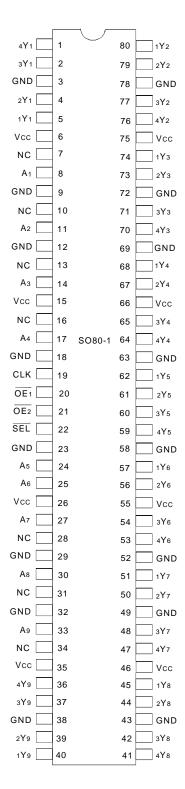
FUNCTIONAL BLOCK DIAGRAM


which a single address bus is driving four separate memory locations. The ALVC162831 can be used as a buffer or a register, depending on the logic level of the select (SEL) input.

When SEL is logic high, the device is in the buffer mode. The outputs follow the inputs and are controlled by the two output-enable $\overline{(OE)}$ controls. Each OE controls two groups of nine outputs. When SEL is logic low, the device is in the register mode. The register is an edge-triggered D-type flip-flop. On the positive transition of the clock (CLK) input, data set up at the A inputs is stored in the internal registers. OE controls operate the same as in buffer mode.

When $\overline{\text{OE}}$ is logic low, the outputs are in a normal logic state (high or low logic level). When $\overline{\text{OE}}$ is logic high, the outputs are in a high-impedance state.

 $\overline{\text{SEL}}$ and $\overline{\text{OE}}$ do not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.


The ALVC162831 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage	– 0.5 to + 4.6	V
	with Respect to GND		
VTERM ⁽³⁾	Terminal Voltage	– 0.5 to	V
	with Respect to GND	Vcc + 0.5	
Tstg	Storage Temperature	– 65 to + 150	°C
Ιουτ	DC Output Current	– 50 to + 50	mA
Ік	Continuous Clamp Current,	± 50	mA
	VI < 0 or $VI > VCC$		
Іок	Continuous Clamp Current, Vo < 0	- 50	mA
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
NOTEO			NEW16link

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

	,				
Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 0V$	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
Ci/o	I/O Port Capacitance	Vin = 0V	7	9	pF
					NFW16link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
OEx	3-State Output Enable Inputs (Active LOW)
CLK	Register Input Clock
SEL	Select Input
Ax	Data Inputs
хҮх	3-State Outputs
NC	No Internal Connection

FUNCTION TABLE⁽¹⁾

	Inputs					
OEx	SEL	CLK	Ах	хҮх		
Н	Х	Х	Х	Z		
L	Н	Х	L	L		
L	Н	Х	Н	Н		
L	L	1	L	L		
L	L	\uparrow	Н	Н		

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

 \uparrow = LOW-to-HIGH Transition

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	Test (Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Ін	Input HIGH Current	Vcc = 3.6V	VI = VCC	—	_	± 5	μA
lı∟	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	± 5	
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	—	_	± 10	μA
Iozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = - 18mA	·	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100		mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V Vin = GND or Vcc			0.1	40	μA
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc – 0.6V, other inputs at Vcc or GND		_	—	750	μA NEW1

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = – 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	Iон = – 4mA	1.9	_	
			Iон = – 6mA	1.7	_	
		Vcc = 2.7V	Iон = – 4mA	2.2		
			Iон = – 8mA	2		
		Vcc = 3.0V	Iон = – 6mA	2.4	_	
			Iон = – 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	Iol = 0.1mA	_	0.2	V
		Vcc = 2.3V	Iol = 4mA	_	0.4	
			IOL = 6mA	-	0.55	
		Vcc = 2.7V	Iol = 4mA	_	0.4	
			Iol = 8mA	_	0.6	
		Vcc = 3.0V	Iol = 6mA	-	0.55	
			Iol = 12mA	_	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$

			$V_{CC} = 2.5V \pm 0.2V$	$V_{CC} = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
Cpd	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	119	132	pF
Cpd	Power Dissipation Capacitance Outputs disabled		22	25	pF

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc = 2.	5V ± 0.2V	Vcc =	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fmax		150	—	150	_	150	_	MHz
t PLH	Propagation Delay	1.1	4.7		4.8	1.5	4.3	ns
t PHL	Ax to xYx							
t PLH	Propagation Delay	1.1	6		6.2	1.5	4.8	ns
t PHL	SEL to xYx							
t PLH	Propagation Delay	1	5.3		5.3	1.4	4.7	ns
t PHL	CLK to xYx							
tpzh	Output Enable Time	1	5.9		5.9	1.1	5.1	ns
tPZL	OEx to xYx							
tphz	Output Disable Time	1	5.4		5.4	1.6	5.1	ns
tPLZ	OEx to xYx							
tw	Pulse Duration, CLK HIGH or LOW	3.3	—	3.3	_	3.3	_	ns
tsu	Setup Time, Ax data before CLK↑	2	_	2	—	1.6	—	ns
tн	Hold Time, Ax data after CLK↑	0.7	_	0.5	_	1.1	_	ns
tsк(o)	Output Skew ⁽²⁾	-	—	—	—	—	500	ps

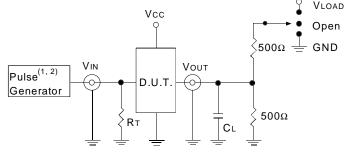
NOTES:

1. See test circuits and waveforms. TA = – 40° C to + 85° C.

2. Skew between any two outputs of the same package and switching in the same direction.

SWITCHING CHARACTERISTICS FROM, 0°C TO 65°C, CL = 5pF

		Vcc = 3.3V ±	± 0.15V	
Symbol	Parameter	Min.	Min.	Unit
t PLH	Propagation Delay	1.9	4.5	ns
t PHL	CLK to xYx			


IDT74ALVC162831 3.3V CMOS 1-BIT TO 4-BIT ADDRESS/REGISTER DRIVER

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

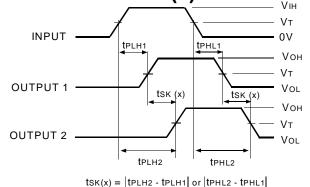
Vcc ⁽¹⁾ = 3.3V±0.3V	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ = 2.5V±0.2V	Unit
6	6	2 x Vcc	۷
2.7	2.7	Vcc	۷
1.5	1.5	Vcc/2	۷
300	300	150	mV
300	300	150	mV
50	50	30	pF NEW16link
	6 2.7 1.5 300 300	6 6 2.7 2.7 1.5 1.5 300 300 300 300	6 6 2 x Vcc 2.7 2.7 Vcc 1.5 1.5 Vcc / 2 300 300 150 300 300 150 50 50 30

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse

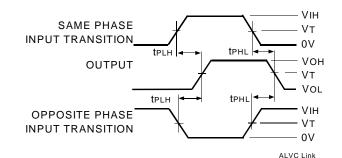

Generator.

- NOTES:
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

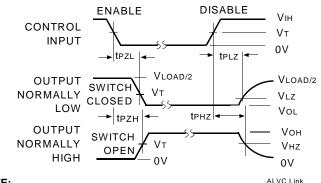
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	NEW16link

OUTPUT SKEW - TSK (X)



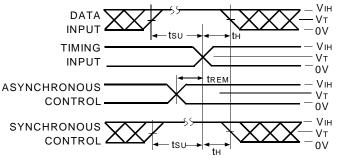
NOTES:


1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

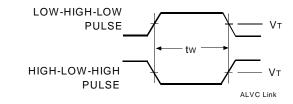
| PROPAGATION DELAY

ENABLE AND DISABLE TIMES



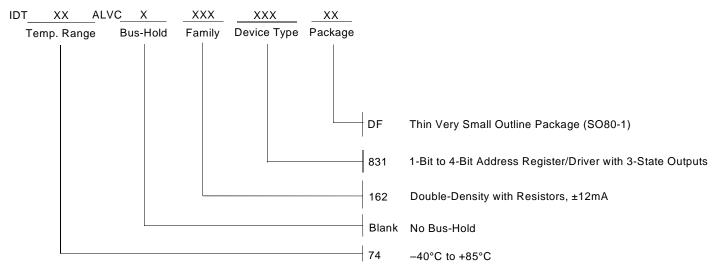
NOTE:

ALVC Link


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES

ALVC Link


PULSE WIDTH

6

ALVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.