
								-		ONS										
LTR					[DESCF	RIPTIO	N					DA	ATE (YI	R-MO-I	DA)		APPF	ROVED	
А				dized m		drawin	g forma	at. Tec	hnical o	change	s to tab	ole I.	89-11-16			M. A. Frye				
В		chnical changes in 1.4 and table I. Editorial changes throug					ughout			91-12-16			M. A. Frye							
С		Corrected title on sheet 1 to reflect actual device function. Update boilerplate to MIL-PRF-38535 requirements. – jak					late		01-1	2-20		Thomas M. Hess								
D		Update boilerplate to MIL-PRF-38535 requirements LTG								07-1	2-17		Thomas M. Hess							
C				F :-	~7(
	t CAC	GE C	OD	E is	672	268	1		1	1		1	1						1	
		GE C	OD	E is	672	268														
REV		GE (COD	Eis	672	268														
REV SHEET		GE C	OD	Eis	672	268														
REV SHEET REV		GE (OD	E is		268	D	D				D	D		D	D	D	D	D	
REV SHEET REV SHEET	S	GE (268	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D 10	D 11	D 12	D 13	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	S			REV	, ET PAREL	DBY		2			5	6 EFEN	7 SE SI	8 UPPL	9 Y CE	10 NTEF		12 .UMB	13	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	S			REV SHE PREI	, ET PAREL Mo	D BY D D BY D D D BY	1	2 ing			5	6 EFEN	7 SE SI	8 UPPL IBUS,	9 Y CE OHIO	10 NTEF	11 R COL 218-3	12 .UMB	13	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICR DR THIS DRAW FOR DEP	S S S S S S S S S S S S S S S S S S S	RD CUIT IG AVAILA ALL JTS	BLE	REV SHE PREI	ET PAREL Ma CKED Ma ROVE	D BY onica L BY onica L D BY Michae	1 . Poelk . Poelk	2 ing ing e		4 MIC DU	5 DI CROC	6 EFEN CC	7 SE SI DLUM http UIT, I GGE	8 UPPL IBUS, o://ww DIGIT RABI	9 Y CE OHIO W.ds	NTEF D 432 cc.dl	11 218-32 a.mil	12 -UMB 990 :ED (3LE	13 US	<u> </u>
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A ST/ MICR DR THIS DRAW FOR	S S S S S S S S S S S S S S S S S S S	RD CUIT IG AVAILA ALL JTS OF THE	BLE	REV SHE PREI	ET PAREL Ma CKED Ma ROVE	D BY onica L BY onica L D BY Michae	1 . Poelk . Poelk	2 ing ing e		4 MIC DU	5 DI CROC	6 EFEN CC	7 SE SI DLUM http	8 UPPL IBUS, o://ww DIGIT RABI	9 Y CE OHIO W.ds	NTEF D 432 cc.dl	11 218-32 a.mil	12 -UMB 990 :ED (3LE	13 US	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A MICR DR THIS DRAW FOR DEP AND AGE DEPARTM	S S S S S S S S S S S S S S S S S S S	RD CUIT IG AVAILA ALL JTS OF THE DEFEN	BLE	REV SHE PREI CHE	ET PAREL Ma CKED Ma ROVE N WING	D BY onica L BY onica L D BY Michae APPRO 87-0 LEVEL	1 . Poelk . Poelk I A. Fry DVAL D	2 ing ing e		4 MIC DU, MU	5 DI CROC	6 EFEN CC CIRCI ETRI IBRA	7 SE SI DLUM http UIT, I GGE	8 IBUS, DIGIT RABI , MOI	9 Y CE OHIO W.ds	10 NTEF D 432 cc.dl	11 218-33 a.mil -SPE STAE	12 -UMB 990 :ED (3LE	13 US	<u> </u>

1	SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.4 <u>Recommended operating conditions</u> – Continued.

Minimum triggering pulse width, An Bn or CLRn (t _{w1}):	
$T_{\rm C} = +25^{\circ}{\rm C}$:	
V _{CC} = 2.0 V	. 123 ns
$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$. 30 ns
V _{CC} = 6.0 V	. 21 ns
$T_{\rm C} = -55^{\circ}{\rm C}/+125^{\circ}{\rm C}$:	
V _{CC} = 2.0 V	. 157 ns
V _{CC} = 4.5 V	. 42 ns
$V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$. 30 ns
Minimum output pulse width (t_{w2}) :	
Device type 01, $T_c = +25^{\circ}C$, $C_{EXT} = 10 \text{ nF}$:	
$V_{\rm CC} = 5.0 \text{ V dc}, R_{\rm EXT} = 10 \text{k}\Omega$. 40 μs to 50 μs
Device type 02, $T_{C} = +25^{\circ}C$, $C_{FXT} = 28 \text{ pF}$:	
$V_{oo} = 20 V dc R_{evr} = 6 kO$	0.85 us

 $\begin{array}{l} V_{CC} = 2.0 \; V \; dc, \; R_{EXT} = 6 \; k\Omega & \dots & 0.85 \; \mu s \\ V_{CC} = 4.5 \; V \; dc, \; R_{EXT} = 2 \; k\Omega & \dots & 220 \; ns \\ V_{CC} = 6.0 \; V \; dc, \; R_{EXT} = 2 \; k\Omega & \dots & 170 \; ns \end{array}$

Minimum removal time, $\overline{\text{CLRn}}$ to $\overline{\text{An}}$, $\overline{\text{CLRn}}$ to Bn (t_{REM}):

Device type 01, $T_C = -55^{\circ}C/+125^{\circ}C$:	
V _{CC} = 2.0 V	75 ns
V _{CC} = 4.5 V	
$V_{CC} = 6.0 \text{ V}$	
Device type 02, $T_C = -55^{\circ}C/+125^{\circ}C$:	
V _{CC} = 2.0 V	0 ns
$V_{CC} = 4.5 V$	0 ns
V _{CC} = 6.0 V	0 ns

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86847
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	3

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 Truth table. The truth table shall be as specified on figure 2.

3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.

3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86847
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	4

Test	Symbol	Test condition -55°C \leq T _C \leq +125 unless otherwise s	°C <u>1</u> ∕	Device type	Group A subgroups	Lin	nits	Unit
			Secilled			Min	Max	-
High-level output	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{CC} = 2.0 V$	All	1, 2, 3	1.9		V
voltage	0/	\mid I _O \mid \leq 20 μ A	$V_{CC} = 4.5 V$			4.4		
	<u>2</u> /		$V_{CC} = 6.0 V$	_		5.9		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_0 \mid \leq 4.0 \text{ mA}$	V _{CC} = 4.5 V			3.7		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_0 \le 5.2 \text{ mA}$	$V_{CC} = 6.0 V$			5.2		
Low-level output	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{CC} = 2.0 V$	All	1, 2, 3		0.1	V
voltage		\mid I _O \mid \leq 20 μ A	$V_{CC} = 4.5 V$				0.1	
	<u>2</u> /		$V_{CC} = 6.0 V$				0.1	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_O \mid \leq 4.0 \text{ mA}$	$V_{CC} = 4.5 V$				0.4	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_0 \mid \le 5.2 \text{ mA}$	V _{CC} = 6.0 V				0.4	
High-level input	V _{IH}		V_{CC} = 2.0 V	All	1, 2, 3	1.5		V
voltage	<u>3</u> /		$V_{CC} = 4.5 V$			3.15		
			$V_{CC} = 6.0 V$			4.2		
Low-level input	VIL		$V_{CC} = 2.0 V$	01	1, 2, 3		0.5	V
voltage	<u>3</u> /		$V_{CC} = 4.5 V$				1.35	
			$V_{CC} = 6.0 V$		1, 2, 3		1.8	-
			$V_{CC} = 2.0 V$	02			0.3	
			$V_{CC} = 4.5 V$				0.9	
			$V_{CC} = 6.0 V$				1.2	
Quiescent supply current (standby)	I _{CC1}	$V_{IN} = V_{CC} \text{ or GND}$ $I_{OUT} = 0 \ \mu A$	$V_{CC} = 6.0 V$	All	1, 2, 3		160	μA
Active supply current	I _{CC2}	$V_{IN} = V_{CC}$ or GND	$V_{CC} = 2.0 V$	01	1, 2, 3		130	μA
(per monostable)		$R/C_{EXT} = V_{CC/4}$	$V_{CC} = 4.5 V$				1.6	mA
		<u>4</u> / <u>5</u> /	$V_{\rm CC} = 6.0 \ V$				3.2	
		$V_{IN} = V_{CC}$ or GND	$V_{CC} = 2.0 V$	02	1, 2, 3		130	μA
		$R/C_{EXT} = 0.5 V_{CC}$	$V_{CC} = 4.5 V$				1.6	mA
			$V_{CC} = 6.0 V$				3.2	
Input current	I _{IN}	$V_{IN} = V_{CC} (R/C_{EXT}) \underline{6}/$	$V_{CC} = 6.0 V$		1, 2, 3		5.0	μA
		$V_{IN} = GND (R/C_{EXT}) \underline{6}/$					-5.0	
		$V_{IN} = V_{CC}$ (all other pins)					1.0	
		V _{IN} = GND (all other pins)					-1.0	
Functional tests		See 4.3.1d				7		
Gee footnotes at end of	table.			+				
MICRO		DRAWING	SIZE A				5962-86	6847
	PPLY CEN BUS, OHIC	ITER COLUMBUS		REVISIO	N LEVEL	SHI	EET	

Test	Symbol	Test condit -55°C \leq T _C \leq +1 unless otherwise	25°C <u>1</u> /	Device type	Group A subgroups	Limits	Un			
rigger propagation	t _{PLH1}	$C_{L} = 50 \text{ pF minimum}$	$V_{CC} = 2.0 V$	01	9	300	ns			
elay time,		See figure 4			10, 11	450				
(An to Qn, Bn to Qn, CLRn to Qn)	<u>2</u> /	<u>2</u> /	<u>2</u> /	<u>2</u> /	<u>2</u> /		02	9	169	
							10, 11	210		
			$V_{CC} = 4.5 V$	01	9	60				
					10, 11	90				
				02	9	42	_			
					10, 11	57				
			$V_{CC} = 6.0 V$	01	9	51				
					10, 11	76				
				02	9	32	-			
					10, 11	44	1			
rigger propagation	pagation t_{PHL1} $C_L = 50 \text{ pF minimum}$	V _{CC} = 2.0 V	01	9	320	ns				
delay time,	PHL1	See figure 4	VCC - 2.0 V		9 10, 11	480				
(An to Qn, Bn to	<u>2</u> /			02	9	197	-			
$\overline{Qn}, \overline{CLRn} \text{ to } \overline{Qn})$				02	10, 11	250	-			
			V _{CC} = 4.5 V	01	9	64	-			
						96				
				02	9	48	-			
				02	9 10, 11	67	-			
			V _{CC} = 6.0 V	01	9	54	-			
			VCC - 0.0 V		9 10, 11	82	-			
				02	9	38	-			
				02	9 10, 11	51				
ee footnotes at end o	f table.									
	STANDA	ARD	SIZE A			5962-86	2047			

ymbol t _{PLH2}																
tours	l est conditions -55°C \leq T _C \leq +125°C <u>1</u> / unless otherwise specified		-55°C ≤ T _C ≤ +125°C <u>1</u> /		-55°C ≤ T _C ≤ +125°C <u>1</u> /		Device Group A type subgroups		Limits		Unit					
tours		peemed		-	Min	Max										
•PLH2	$C_L = 50 \text{ pF} \text{ minimum}$	$V_{CC} = 2.0 V$	01	9		215	ns									
	2/	2/	2/	0/	- /	21	0/	2/	2/	See figure 4			10, 11		325	
<u>2</u> /			02	9		114										
				10, 11		143										
		$V_{CC} = 4.5 V$	01	9		43										
				10, 11		65										
			02	9		34										
				10, 11		45										
		$V_{CC} = 6.0 V$	01	9		37										
				10, 11		55										
			02	9		28										
tours	$C_{\rm L} = 50 \rm nF$ minimum	$V_{cc} = 2.0 V$	01				ns									
n to Qn) See figure 4	VCC - 2.0 V	01				113										
<u>2</u> /			02													
			02													
		$V_{ab} = 4.5 V$	01				-									
	V _{CC} = 4.3	$V_{CC} = 4.5 V$														
			02				-									
		V - 6 0 V	01													
		$v_{CC} = 0.0 v$	01													
							-									
			02				-									
				10, 11		37										
	t _{PHL2} 2/ ble.	See figure 4	$t_{PHL2} C_{L} = 50 \text{ pF minimum} V_{CC} = 6.0 \text{ V}$ $\frac{V_{CC} = 2.0 \text{ V}}{\text{See figure 4}}$ $\frac{V_{CC} = 2.0 \text{ V}}{\text{V}_{CC} = 4.5 \text{ V}}$ $\frac{V_{CC} = 4.5 \text{ V}}{\text{V}_{CC} = 6.0 \text{ V}}$	$\frac{1}{2} \begin{bmatrix} C_{L} = 50 \text{ pF minimum} \\ See \text{ figure 4} \end{bmatrix} \begin{bmatrix} C_{L} = 50 \text{ pF minimum} \\ C_{L} = 50 \text{ pF minimum} \\ See \text{ figure 4} \end{bmatrix} \begin{bmatrix} V_{CC} = 2.0 \text{ V} \\ 01 \\ 02 \\ 02 \\ V_{CC} = 4.5 \text{ V} \\ 01 \\ 02 \\ 02 \\ 02 \\ 02 \\ 02 \\ 02 \\ 02$	$\frac{10, 11}{10, 11}$ $\frac{10, 11}{02}$ $\frac{9}{10, 11}$ $\frac{10, 11}{02}$ $\frac{10, 11}{02}$ $\frac{10, 11}{02}$ $\frac{10, 11}{02}$ $\frac{10, 11}{02}$ $\frac{10, 11}{02}$	$\frac{100}{10,11}$ $\frac{10,11}{10,11}$	$\frac{t_{\text{PHL2}}}{2}$ $\frac{2}{2}$ $\frac{t_{\text{CL}} = 50 \text{ pF minimum}}{2}$ $\frac{C_{\text{L}} = 50 \text{ pF minimum}}{C_{\text{L}} = 50 \text{ pF minimum}}$ $\frac{C_{\text{L}} = 50 \text{ pF minimum}}{C_{\text{L}} = 50 \text{ pF minimum}}$ $\frac{V_{\text{CC}} = 2.0 \text{ V}}{2}$ $\frac{V_{\text{CC}} = 2.0 \text{ V}}{10, 11}$ $\frac{V_{\text{CC}} = 2.0 \text{ V}}{10, 11}$ $\frac{01}{9}$ $\frac{9}{215}$ $\frac{02}{9}$ $\frac{9}{116}$ $10, 11$ $\frac{147}{10, 11}$ $\frac{147}{10, 11}$ $\frac{147}{10, 11}$ $\frac{V_{\text{CC}} = 4.5 \text{ V}}{10, 11}$ $\frac{01}{9}$ $\frac{9}{43}$ $\frac{10, 11}{10, 11}$ $\frac{65}{102}$ $\frac{9}{10, 11}$ $\frac{147}{10, 11}$ $\frac{147}{$									

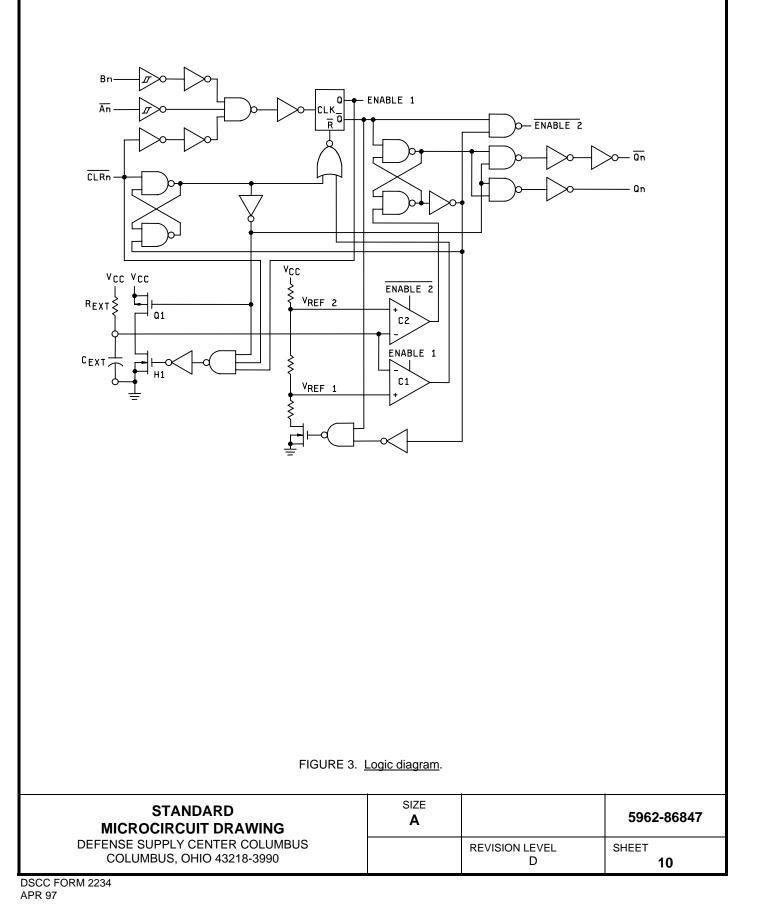
Test	Symbol	ol Test conditions $-55^{\circ}C \le T_{C} \le +125^{\circ}C \underline{1}/$ unless otherwise specified		Device type	Group A subgroups	Lin	nits	Unit
			, cined			Min	Max	_
Output pulse width	t _{WQ}	$C_L = 50 \text{ pF} \text{ minimum}$	$V_{CC} = 5.0 V$	01	9	0.4	0.5	ms
(standby)	<u>2</u> /, <u>5</u> /	R_{EXT} = 10 k Ω , C_{EXT} = 0.1 μ F			10, 11	0.38	0.52	
		See figure 4	$V_{CC} = 4.5 V$	02	9	0.9	1.2	
					10, 11	0.70	1.15	
Output rise and fall	t _{THL,}		V _{CC} = 2.0 V	_{CC} = 2.0 V All	9		75	ns
time	t _{TLH}	See figure 4			10, 11		110	
	<u>5</u> /		$V_{CC} = 4.5 V$		9		15	
	<u></u>				10, 11		22	
			$V_{CC} = 6.0 V$		9		13	
					10, 11		19	
Maximum input capacitance		R/C _{EXT} , See 4.3.1c		All	4		20	pF
-		Other inputs, See 4.3.1c		1			10	

- 1/ For a power supply of 5.0 V ±10% the worst-case output voltage (V_{OH} and V_{OL}) occur for HC at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst case V_{IN} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V, respectively. (The V_{IH} value at V_{CC} = 5.5 V is 3.85 V.) The worst case leakage current (I_{IN} and I_{CC}) occur for CMOS at the higher voltage so the 6.0 V values should be used.
- 2/ Testing at V_{CC} = 2.0 V and V_{CC} = 6.0 V shall be guaranteed, if not tested, to the specified limit in table I.
- $\underline{3}$ / V_{IH} and V_{IL} tests are not required if applied as forcing functions for the V_{OH} and V_{OL} tests.
- <u>4</u>/ Limit current to I_{OL} or use a suitable series resistor $\ge 500\Omega$; perform test while Q is high.
- 5/ Guaranteed, if not tested, to the limits specified in table I.
- $\underline{6}$ / When testing I_{IL}, the Q output must be high, if Q is low (device not triggered) the pull-up P device will be on and the low resistance path from V_{DD} to the test pin will cause a current far exceeding the specification.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86847
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	8

r		
Device types	01 ar	nd 02
Case outlines	E	2
Terminal number	Termina	l symbol
1	A1	NC
2	B1	A1
3	CLR1	B1
4	Q1	CLR1
5	Q2	Q1
6	C _{EXT} 2	NC
7	R _{EXT} 2,C _{EXT}	Q2
8	GND	C _{EXT} 2
9	A2	$R_{EXT}2, C_{EXT}$
10	B2	GND
11	CLR2	NC
12	Q2	A2
13	Q1	B2
14	C _{EXT} 1	CLR2
15	$R_{EXT}1, C_{EXT}$	Q2
16	V _{CC}	NC
17		Q1
18		C _{EXT} 1
19		R_{EXT} 1, C_{EXT}
20		V _{CC}

FIGURE 1.	Terminal connections.
-----------	-----------------------


	Inputs		Out	outs
CLRn	An	Bn	Qn	Qn
L	Х	Х	L	Н
Х	Н	Х	L	Н
Х	Х	L	L	Н
Н	L	\leftarrow	Л	ۍ
Н	\downarrow	Н	л	J
\uparrow	L	Н		Ŀ

H = High voltage level

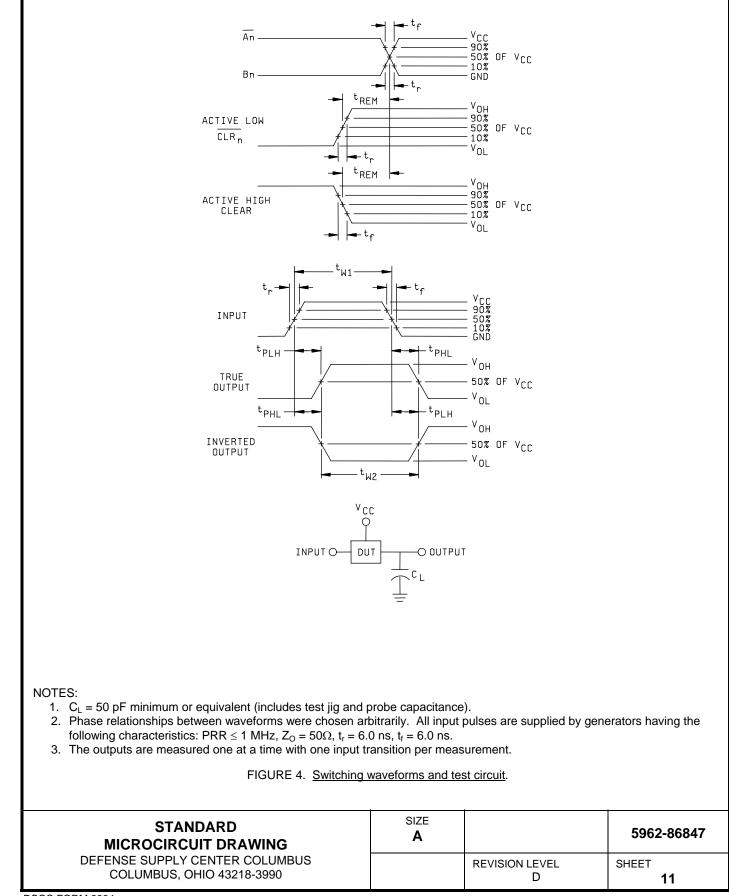

- L = Low voltage level
- X = Irrelevant
- \downarrow = High to low clock transition
- $\uparrow = \text{Low to high clock transition}$ $\downarrow = \text{One high level pulse}$ $\downarrow = \text{One low level pulse}$

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-86847
		REVISION LEVEL D	SHEET 9

Downloaded from Elcodis.com electronic components distributor

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups
	(in accordance with
	MIL-STD-883, method 5005,
	table I)
Interim electrical parameters	1
(method 5004)	
Final electrical test parameters	1, 2, 3, 7, 9
(method 5004)	<u>1</u> /
Group A test requirements	1, 2, 3, 4, 7, 9, 10, 11
(method 5005)	<u>2</u> /
Groups C and D end-point	1, 2, 3
electrical parameters	
(method 5005)	

TABLE II. Electrical test requirements.

1/ PDA applies to subgroup 1.

2/ Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroup 7 shall include verification of the truth table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-86847
		REVISION LEVEL D	SHEET 12

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86847
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	13

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 07-12-17

Approved sources of supply for SMD 5962-86847 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-8684701EA	01295	CD54HC123F3A
5962-8684702EA	0C7V7	MM54HC123AJ/883
5962-86847022A	0C7V7	MM54HC123AE/883

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u>

01295

Vendor name and address

Texas Instruments Incorporated Semiconductor Group 8505 Forest Lane P.O. Box 660199 Dallas, TX 75243 Point of contact: U.S. Highway 75 South P.O. Box 84, M/S 853 Sherman, TX 75090-9493

0C7V7

QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.