R R 员 Electrical Specifications Subject to Change LTC6994-1/LTC6994-2

feATURES

- Delay Range: $1 \mu \mathrm{~s}$ to 33.6 Seconds
- Configured with 1 to 3 Resistors
- Delay Max Error:
- <2.3\% for Delay > 512 $\mu \mathrm{s}$
- <3.4\% for Delay of $8 \mu \mathrm{~s}$ to $512 \mu \mathrm{~s}$
- $<5.1 \%$ for Delay of $1 \mu \mathrm{~s}$ to $8 \mu \mathrm{~s}$
- Delay One or Both Rising/Falling Edges
- 2.25 V to 5.5 V Single Supply Operation
- $70 \mu \mathrm{~A}$ Supply Current at $10 \mu \mathrm{~s}$ Delay
- 500 us Start-Up Time
- CMOS Output Driver Sources/Sinks 20mA
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range
- Available in Low Profile (1 mm) SOT-23 (ThinSOTTM) and $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN

APPLICATIONS

- Noise Discriminators/Pulse Qualifiers
- Delay Matching
- Switch Debouncing
- High Vibration, High Acceleration Environments
- Portable and Battery-Powered Equipment
$\boldsymbol{\Sigma T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and TimerBlox and ThinSOT are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTIOn

The LTC®6994 is a programmable delay block with a range of $1 \mu \mathrm{~s}$ to 33.6 seconds. The LTC6994 is part of the TimerBlox ${ }^{\text {TM }}$ family of versatile silicon timing devices.

A single resistor, $\mathrm{R}_{\text {SET }}$, programs the LTC6994's internal master oscillator frequency. The input-to-output delay is determined by this master oscillator and an internal clock divider, $\mathrm{N}_{\text {DIV }}$, programmable to eight settings from 1 to 2^{21} :

$$
\mathrm{t}_{\text {DELAY }}=\frac{\mathrm{N}_{\text {DIV }} \cdot R_{\text {SET }}}{50 \mathrm{k} \Omega} \cdot 1 \mu \mathrm{~s}, N_{\mathrm{DIV}}=1,8,64, \ldots, 2^{21}
$$

The output (OUT) follows the input (IN) after delaying the rising and/or falling transitions. The LTC6994-1 will delay the rising or falling edge. The LTC6994-2 will delay both transitions, and adds the option to invert the output.

DEVICE	DELAY FUNCTION	
LTC6994-1	or	
LTC6994-2	or	

The LTC6994 also offers the ability to dynamically adjust the width of the output pulse via a separate control voltage.
The LTC6994 is available in the 6-lead SOT-23 (ThinSOT) and 6 -lead $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN packages.

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATIOGS (Note 1)

Supply Voltage (V^{+}) to GND \qquadMaximum Voltageon Any Pin
\qquad $(G N D-0.3 \mathrm{~V}) \leq \mathrm{V}_{\text {PIN }} \leq\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ Operating Temperature Range (Note 2) LTC6994C \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ LTC6994 \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6994H...................................... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Specified Temperature Range (Note 3) LTC6994C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC6994 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6994H...................................... $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
S6 Package
$300^{\circ} \mathrm{C}$

pIn CONFIGURATIOn

DCB PACKAGE
6 -LEAD $(2 \mathrm{~mm} \times 3 \mathrm{~mm})$ PLASTIC DFN
$T_{J M A X}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=64^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=10.6^{\circ} \mathrm{C} / \mathrm{W}$ EXPOSED PAD (PIN 7) CONNECTED TO GND, PCB CONNECTION OPTIONAL

S6 PACKAGE 6-LEAD PLASTIC TSOT-23
$T_{J M A X}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=230^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=51^{\circ} \mathrm{C} / \mathrm{W}$

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6994CDCB-1\#PBF	LTC6994CDCB-1\#TRPBF	LFCT	6-Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6994IDCB-1\#PBF	LTC6994IDCB-1\#TRPBF	LFCT	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6994HDCB-1\#PBF	LTC6994HDCB-1\#TRPBF	LFCT	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6994CDCB-2\#PBF	LTC6994CDCB-2\#TRPBF	LFCW	6-Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6994IDCB-2\#PBF	LTC6994IDCB-2\#TRPBF	LFCW	6-Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6994HDCB-2\#PBF	LTC6994HDCB-2\#TRPBF	LFCW	6-Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6994CS6-1\#PBF	LTC6994CS6-1\#TRPBF	LTFCV	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6994IS6-1\#PBF	LTC6994IS6-1\#TRPBF	LTFCV	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6994HS6-1\#PBF	LTC6994HS6-1\#TRPBF	LTFCV	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6994CS6-2\#PBF	LTC6994CS6-2\#TRPBF	LTFCX	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6994IS6-2\#PBF	LTC6994IS6-2\#TRPBF	LTFCX	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6994HS6-2\#PBF	LTC6994HS6-2\#TRPBF	LTFCX	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LTC6994-1/LTC6994-2

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{IN}=0 \mathrm{~V}$, DIVCODE $=0$ to 15 $\left(N_{\text {DIV }}=1\right.$ to $\left.2^{21}\right), R_{\text {SET }}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=5 \mathrm{k}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.

ELECTRICAL CHARACTGRISTICS The odenotes the speciitications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{IN}=0 \mathrm{~V}$, DIVCODE $=0$ to 15 $\left(N_{\text {DIV }}=1\right.$ to $\left.{ }^{211}\right), R_{S E T}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=\infty, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Digital I/O								
	IN Pin Input Capacitance					2.5		pF
	IN Pin Input Current	$\mathrm{IN}=0 \mathrm{~V}$ to V^{+}					± 10	nA
$\mathrm{V}_{\text {IH }}$	High Level IN Pin Input Voltage	(Note 6)		\bullet	0.7 • V^{+}			V
$\mathrm{V}_{\text {IL }}$	Low Level IN Pin Input Voltage	(Note 6)		\bullet			$0.3 \cdot \mathrm{~V}^{+}$	V
IOUT(MAX)	Output Current	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5.5 V				± 20		mA
V_{OH}	High Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-16 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 5.45 \\ & 4.84 \end{aligned}$	$\begin{aligned} & 5.48 \\ & 5.15 \end{aligned}$		V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-10 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.24 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 3.27 \\ & 2.99 \end{aligned}$		V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-8 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 2.17 \\ & 1.58 \end{aligned}$	$\begin{aligned} & 2.21 \\ & 1.88 \end{aligned}$		V
V_{0}	Low Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=16 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.02 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.54 \end{aligned}$	V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.03 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.46 \end{aligned}$	V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=8 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.03 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.54 \end{aligned}$	V
$t_{\text {PD }}$	Propagation Delay	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 10 \\ & 14 \\ & 24 \end{aligned}$		ns ns ns
twIDTH	Minimum Recognized Input Pulse Width	$\mathrm{V}^{+}=3.3 \mathrm{~V}$				5		ns
t_{r}	Output Rise Time (Note 8)	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 1.1 \\ & 1.7 \\ & 2.7 \end{aligned}$		ns ns ns
t_{f}	Output Fall Time (Note 8)	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$				1.0 1.6 2.4		ns ns ns

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC6994C is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 3: The LTC6994C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LTC6994C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but it is not tested or QA sampled at these temperatures. The LTC69941 is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LTC6994H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: Frequency accuracy is defined as the deviation from the fout equation, assuming RSET $^{\text {is used to program the frequency. }}$
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation of how the DIV pin voltage selects the value of DIVCODE.

Note 6: The IN pin has hysteresis to accommodate slow rising or falling signals. The threshold voltages are proportional to V^{+}. Typical values can be estimated at any supply voltage using:
$\mathrm{V}_{\text {IN(RIIIING) }} \approx 0.55 \bullet \mathrm{~V}^{+}+185 \mathrm{mV}$ and $\mathrm{V}_{\text {IN(FALIING })} \approx 0.48 \bullet \mathrm{~V}^{+}-155 \mathrm{mV}$
Note 7: To conform to the Logic IC Standard, current out of a pin is arbitrarily given a negative value.
Note 8: Output rise and fall times are measured between the 10% and the 90% power supply levels with 5 pF output load. These specifications are based on characterization.
Note 9: Settling time is the amount of time required for the output to settle within $\pm 1 \%$ of the final delay after a $0.5 \times$ or $2 \times$ change in ISET.
Note 10: Jitter is the ratio of the deviation of the programmed delay to the mean of the delay. This specification is based on characterization and is not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Delay Error vs Temperature
($\mathrm{N}_{\text {DIV }}=1$)

Delay Error vs Temperature
($\mathrm{N}_{\text {DIV }}=1$)
Delay Error vs Temperature ($\mathrm{N}_{\text {DIV }}=1$)

Delay Error vs Temperature
($8 \leq \mathrm{N}_{\text {DIV }} \leq 64$)

Delay Error vs Temperature ($8 \leq \mathrm{N}_{\text {DIV }} \leq 64$)

Delay Error vs Temperature
($8 \leq \mathrm{N}_{\text {DIV }} \leq 64$)

Delay Error vs Temperature
($\mathrm{N}_{\text {DIV }} \geq 512$)

Delay Error vs Temperature ($\mathrm{N}_{\text {DIV }} \geq 512$)

Delay Error vs Temperature
($\mathrm{N}_{\text {DIV }} \geq 512$)

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Delay Error vs DIVCODE

Delay Error vs $\mathrm{R}_{\text {SET }}\left(\mathrm{N}_{\mathrm{DIV}}=1\right.$)

Delay Drift vs Supply Voltage
($\mathrm{N}_{\text {DIV }}=1$)

Delay Error vs DIVCODE

Delay Error vs R SET $^{\text {SE }}$
($8 \leq \mathrm{N}_{\text {DIV }} \leq 64$)

Delay Drift vs Supply Voltage
($8 \leq \mathrm{N}_{\text {DIV }} \leq 64$)

Delay Error vs $\mathrm{R}_{\text {SET }}\left(\mathrm{N}_{\mathrm{DIV}} \geq 512\right)$
Delay Error vs DIVCODE

Delay Drift vs Supply Voltage ($\mathrm{N}_{\text {DIV }} \geq 512$)

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Supply Current vs Supply Voltage

Supply Current vs IN Pin Voltage

Supply Current vs Temperature

TYPICAL PGRFORMAOCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=200 \mathrm{k}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PIn fUnCTIOnS

(DCB/S6)
V^{+}(Pin $1 /$ Pin 5): Supply Voltage (2.25 V to 5.5 V). This supply should be kept free from noise and ripple. It should be bypassed directly to the GND pin with a $0.1 \mu \mathrm{~F}$ capacitor.

DIV (Pin 2/Pin 4): Programmable Divider and Polarity Input. The DIV pin voltage (VIIV) is internally converted into a 4-bit result (DIVCODE). VIIV may be generated by a resistor divider between V^{+}and GND. Use 1% resistors to ensure an accurate result. The DIV pin and resistors should be shielded from the OUT pin or any other traces that have fast edges. Limit the capacitance on the DIV pin to less than 100pF so that $\mathrm{V}_{\text {DIV }}$ settles quickly. The MSB of DIVCODE (POL) selects the delay functionality. For the LTC6994-1, POL $=0$ will delay the rising transition and POL = 1 will delay the falling transition. For the LTC69942, both transitions are delayed so POL = 1 can be used to invert the output.

SET (Pin 3/Pin 3): Delay Setting Input. The voltage on the SET pin $\left(V_{S E T}\right)$ is regulated to $1 V$ above GND. The amount of current sourced from the SET pin ($I_{\text {SET }}$) programs the master oscillator frequency. The ISET current range is $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$. The delayed output transition will be not occur if $I_{\text {SET }}$ drops below approximately 500 nA . Once $\mathrm{I}_{\text {SET }}$ increases above 500 nA the delayed edge will transition. A resistor connected between SET and GND is the most accurate way to set the delay. For best performance, use a precision metal or thin film resistor of 0.5% or better tolerance and $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better temperature coefficient. For lower accuracy applications an inexpensive 1\% thick film resistor may be used.

Limit the capacitance on the SET pin to less than 10pF to minimize jitter and ensure stability. Capacitance less than 100 pF maintains the stability of the feedback circuit regulating the $\mathrm{V}_{\text {SET }}$ voltage.

IN (Pin 4/Pin1): Logic Input. Depending on the version and POL bit setting, rising or falling edges on IN will propagate to OUT after a programmable delay. The LTC6994-1 will delay only the rising or falling edge. The LTC6994-2 will delay both edges.
GND (Pin 5/Pin2): Ground. Tie to alow inductance ground plane for best performance.
OUT (Pin 6/Pin 6): Output. The OUT pin swings from GND to V^{+}with an output resistance of approximately 30Ω. When driving an LED or other low impedance load a series output resistor should be used to limit source/sink current to 20 mA .

LTC6994-1/LTC6994-2

BLOCK DIAGRAM (Ss padages iin ummers shown)

OPERATION

The LTC6994 is built around a master oscillator with a $1 \mu \mathrm{~s}$ minimum period. The oscillator is controlled by the SET pin current ($\mathrm{I}_{\mathrm{SET}}$) and voltage ($\mathrm{V}_{\mathrm{SET}}$), with a $1 \mu \mathrm{~s} / 50 \mathrm{k} \Omega$ conversion factor that is accurate to $\pm 1.7 \%$ under typical conditions.

$$
\mathrm{t}_{\text {MASTER }}=\frac{1 \mu \mathrm{~s}}{50 \mathrm{k} \Omega} \cdot \frac{\mathrm{~V}_{\text {SET }}}{I_{\text {SET }}}
$$

A feedback loop maintains $\mathrm{V}_{\text {SET }}$ at $1 \mathrm{~V} \pm 30 \mathrm{mV}$, leaving $\mathrm{I}_{\text {SET }}$ as the primary means of controlling the input-to-output delay. The simplest way to generate $I_{\text {SET }}$ is to connect a resistor ($\mathrm{R}_{\text {SET }}$) between SET and GND, such that $\mathrm{I}_{\text {SET }}=$ $V_{S E T} / R_{\text {SET }}$. The master oscillator equation reduces to:

$$
\mathrm{t}_{\mathrm{MASTER}}=1 \mu \mathrm{~s} \cdot \frac{\mathrm{R}_{\mathrm{SET}}}{50 \mathrm{k} \Omega}
$$

From this equation, it is clear that $\mathrm{V}_{\text {SET }}$ drift will not affect the input-to-output delay when using a single program resistor ($\mathrm{R}_{\text {SET }}$). Error sources are limited to $\mathrm{R}_{\text {SET }}$ tolerance and the inherent accuracy $\Delta \mathrm{t}_{\text {DELAY }}$ of the LTC6994.

RSET may range from 50k to 800k (equivalent to ISET between $1.25 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A})$.
When the input makes a transition that will be delayed (as determined by the part version and POL bit setting), the master oscillator is enabled to time the delay. When the desired duration is reached, the output is allowed to transition.

The LTC6994 also includes a programmable frequency divider which can further divide the frequency by $1,8,64$, $512,4096,2^{15}, 2^{18}$ or 2^{21}. This extends the delay duration by those same factors. The divider ratio $N_{\text {DIV }}$ is set by a resistor divider attached to the DIV pin.

$$
\mathrm{t}_{\mathrm{DELAY}}=\frac{\mathrm{N}_{\mathrm{DIV}}}{50 \mathrm{k} \Omega} \cdot \frac{V_{\text {SET }}}{I_{\text {SET }}} \cdot 1 \mu \mathrm{~S}
$$

With $R_{S E T}$ in place of $V_{S E T} / I_{\text {SET }}$ the equation reduces to:

$$
t_{D E L A Y}=\frac{N_{\text {DIV }} \bullet R_{\text {SET }}}{50 \mathrm{k} \Omega} \cdot 1 \mu \mathrm{~s}
$$

DIVCODE

The DIV pin connects to an internal, V^{+}referenced 4-bit A / D converter that determines the DIVCODE value. DIVCODE programs two settings on the LTC6994:

1. DIVCODE determines the output frequency divider setting, NDIV.
2. The DIVCODE MSB is the POL bit, and configures a different polarity setting on the two versions.
a. LTC6994-1: POL selects rising or falling-edge delays. POL $=0$ will delay rising-edge transitions. POL = 1 will delay falling-edge transitions.
b. LTC6994-2: POL selects the output inversion. POL = 1 inverts the output signal.
$V_{\text {DIV }}$ may be generated by a resistor divider between V_{+} and GND as shown in Figure 1.

Figure 1. Simple Technique for Setting DIVCODE

Table 1 offers recommended 1% resistor values that accurately produce the correct voltage division as well as the corresponding $\mathrm{N}_{\text {DIV }}$ and POL values for the recommended resistor pairs. Other values may be used as long as:

1. The $\mathrm{V}_{\mathrm{DIV}} / \mathrm{V}^{+}$ratio is accurate to $\pm 1.5 \%$ (including resistor tolerances and temperature effects)
2. The driving impedance ($\mathrm{R} 1 \| \mathrm{R} 2$) does not exceed $500 \mathrm{k} \Omega$.

LTC6994-1/LTC6994-2

OPERATION

If the voltage is generated by other means (i.e., the output of a DAC) it must track the V^{+}supply voltage. The last column in Table 1 shows the ideal ratio of $V_{\text {DIV }}$ to the supply voltage, which can also be calculated as:

$$
\frac{V_{\text {DIV }}}{\mathrm{V}^{+}}=\frac{\text { DIVCODE }+0.5}{16} \pm 1.5 \%
$$

For example, ifthe supply is 3.3 V and the desired DIVCODE is $4, \mathrm{~V}_{\text {DIV }}=0.281 \cdot 3.3 \mathrm{~V}=928 \mathrm{mV} \pm 50 \mathrm{mV}$.
Figure 2 illustrates the information in Table 1, showing that $\mathrm{N}_{\text {DIV }}$ is symmetric around the DIVCODE midpoint.

Table 1. DIVCODE Programming

DIVCODE	POL	$\mathrm{N}_{\text {DIV }}$	Recommended $\mathrm{t}_{\text {DELAY }}$	R1 (k)	R2 (k)	$\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}$
0	0	1	$1 \mu \mathrm{~s}$ to $16 \mu \mathrm{~s}$	Open	Short	$\leq 0.03125 \pm 0.015$
1	0	8	$8 \mu \mathrm{~s}$ to $128 \mu \mathrm{~s}$	976	102	0.09375 ± 0.015
2	0	64	64μ to 1.024 ms	976	182	0.15625 ± 0.015
3	0	512	$512 \mu \mathrm{~s}$ to 8.192 ms	1000	280	0.21875 ± 0.015
4	0	4,096	4.096 ms to 65.54 ms	1000	392	0.28125 ± 0.015
5	0	32,768	32.77 ms to 524.3 ms	1000	523	0.34375 ± 0.015
6	0	262,144	262.1 ms to 4.194 ms	1000	681	0.40625 ± 0.015
7	0	2,097,152	2.097 sec to 33.55 sec	1000	887	0.46875 ± 0.015
8	1	2,097,152	2.097 sec to 33.55 sec	887	1000	0.53125 ± 0.015
9	1	262,144	262.1 ms to 4.194 ms	681	1000	0.59375 ± 0.015
10	1	32,768	32.77 ms to 524.3 ms	523	1000	0.65625 ± 0.015
11	1	4,096	4.096 ms to 65.54 ms	392	1000	0.71875 ± 0.015
12	1	512	$512 \mu \mathrm{~s}$ to 8.192 ms	280	1000	0.78125 ± 0.015
13	1	64	$64 \mu \mathrm{~s}$ to 1.024 ms	182	976	0.84375 ± 0.015
14	1	8	$8 \mu \mathrm{~s}$ to $128 \mu \mathrm{~s}$	102	976	0.90625 ± 0.015
15	1	1	$1 \mu \mathrm{~s}$ to $16 \mu \mathrm{~s}$	Short	Open	$\geq 0.96875 \pm 0.015$

Figure 2. Pulse Width Range and POL Bit vs DIVCODE

LTC6994-1/LTC6994-2

OPERATION

Edge-Controlled Delay

The LTC6994 is a programmable delay or pulse qualifier. It can perform noise filtering, which distinguishes it from a delay line (which simply delays all input transitions).

When the voltage on the LTC6994 input pin (IN) transitions low or high, the LTC6994 can delay the corresponding output transition by any time from $1 \mu \mathrm{~s}$ to 33.6 seconds.

LTC6994-1 Functionality

Figures 3 details the basic operation of the LTC6994-1 when configured to delay rising edge transitions (POL = 0). A rising edge on the IN pin initiates the timing. OUT remains low for the duration of $\mathrm{t}_{\text {DELA }}$. If IN stays high then OUT
will transition high after this time. If the input doesn't remain high long enough for OUT to transition high then the timing will restart on each successive rising edge. In this way, the LTC6994-1 can serve as a pulse qualifier, filtering out noisy or short signals.
On a falling edge at the input, the output will follow immediately (after a short propagation delay $t_{p D}$).

Finally, note that the output pulse width may be extremely short if IN falls immediately after OUT rises.

Figure 4 details the operation of the LTC6994-1 when configured to delay falling edges ($\mathrm{POL}=1$).

Figure 3. Rising-Edge Delayed Timing Diagram (LTC6994-1, POL = 0)

Figure 4. Falling-Edge Delayed Timing Diagram (LTC6994-1, POL = 1)

LTC6994-1/LTC6994-2

OPERATION

LTC6994-2 Functionality

Figures 5 details the basic operation of the LTC6994-2 when configured for noninverting operation ($\mathrm{POL}=0$). As before, a rising edge on the IN pin initiates the timing and, if IN remains high, OUT will transition high after $t_{\text {DELAY }}$.
Unlike the LTC6994-1, falling edges are delayed in the same way. When IN transitions low, OUT will follow after $t_{\text {DeLAY. }}$

If the input doesn't remain high or low long enough for OUT to follow, the timing will restart on the next transition.
Also unlike the LTC6994-1, the output pulse width can never be less than $t_{\text {DeLAY. }}$ Therefore, the LTC6994-2 can generate pulses with a defined minimum width.
Figure 6 details the operation of the LTC6994-2 when the output is inverted ($\mathrm{POL}=1$).

Figure 5. Both Edges Delayed Timing Diagram (LTC6994-2, POL $=0$)

Figure 6. Both Edges Delayed (Inverting) Timing Diagram (LTC6994-2, POL = 1)

LTC6994-1/LTC6994-2

operation

Changing DIVCODE After Start-Up

Following start-up, the A/D converter will continue monitoring VDIV for changes. Changes to DIVCODE will be recognized slowly, as the LTC6994 places a priority on eliminating any "wandering" in the DIVCODE. The typical delay depends on the difference between the old and new DIVCODE settings and is proportional to the master oscillator period.

$$
\mathrm{t}_{\text {DIVCODE }}=16 \cdot(\Delta \mathrm{DIVCODE}+6) \cdot \mathrm{t}_{\text {MASTER }}
$$

A change in DIVCODE will not be recognized until it is stable, and will not pass through intermediate codes. Adigital filter is used to guarantee the DIVCODE has settled to a new value before making changes to the output. However, if the delay timing is active during the transition, the actual delay can take on a value between the two settings.

Figure 7a. DIVCODE Change from 0 to 2

Figure 7b. DIVCODE Change from 2 to 0

Start-Up Time

When power is first applied, the power-on reset (POR) circuit will initiate the start-up time, tstart. The OUT pin is held low during this time and the IN pin has no control over the output. The typical value for $\mathrm{t}_{\text {START }}$ ranges from 0.5 ms to 8 ms depending on the master oscillatorfrequency (independent of $\mathrm{N}_{\mathrm{DIV}}$):

$$
\mathrm{t}_{\text {START(TYP) }}=500 \bullet \mathrm{t}_{\text {MASTER }}
$$

During start-up, the DIV pin A/D converter must determine the correct DIVCODE before an output pulse can be generated. The start-up time may increase if the supply or DIV pin voltages are not stable. For this reason, it is recommended to minimize the capacitance on the DIV pin so it will properly track V^{+}. Less than 100pF will not extend the start-up time.

At the end of $\mathrm{t}_{\text {START }}$ the DIVCODE and IN pin settings are recognized, and the state of the IN pin is transferred to the output (without additional delay). If IN is high at the end of tsTART, OUT will go high. Otherwise OUT will remain Iow. The LTC6994-2 is the exception because it inverts the signal. At this point, the LTC6994 is ready to respond to rising/falling edges on the input.

Figure 8. Start-Up Timing Diagram

APPLICATIONS INFORMATION

Basic Operation

The simplest and most accurate method to program the LTC6994 is to use a single resistor, $\mathrm{R}_{\text {SET }}$, between the SET and GND pins. The design procedure is a 3-step process.

Step 1: Select the LTC6994 Version and POL Bit Setting.

Choose LTC6994-1 to delay one (rising or falling) input transition. The POL bit then defines which edge is to be delayed. POL $=0$ delays rising edges. POL $=1$ delays falling edges.
Choose LTC6994-2 to delay rising and falling edges. Set POL = 0 for normal operation, or POL = 1 to invert the output.

Step 2: Select the $\mathrm{N}_{\text {DIV }}$ Frequency Divider Value.

As explained earlier, the voltage on the DIV pin sets the DIVCODE which determines both the POL bit and the $N_{\text {DIV }}$ value. For a given delay time ($t_{\text {DELAY }}$), $N_{\text {DIV }}$ should be selected to be within the following range:

$$
\begin{equation*}
\frac{t_{\text {DELAY }}}{16 \mu \mathrm{~s}} \leq \mathrm{N}_{\mathrm{DIV}} \leq \frac{\mathrm{t}_{\mathrm{DELAY}}}{1 \mu \mathrm{~s}} \tag{1}
\end{equation*}
$$

To minimize supply current, choose the lowest $\mathrm{N}_{\text {DIV }}$ value. However, in some cases a higher value for $\mathrm{N}_{\text {DIV }}$ will provide better accuracy (see Electrical Characteristics).
Table 1 can also be used to select the appropriate $N_{\text {DIV }}$ values for the desired $t_{\text {DeLAY }}$.
With POL already chosen, this completes the selection of DIVCODE. Use Table 1 to select the proper resistor divider or $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}$ratio to apply to the DIV pin.

Step 3: Calculate and Select R ${ }_{\text {SET }}$.

The final step is to calculate the correct value for $\mathrm{R}_{\text {SET }}$ using the following equation:

$$
\begin{equation*}
\mathrm{R}_{\text {SET }}=\frac{50 \mathrm{k}}{1 \mu \mathrm{~s}} \cdot \frac{\mathrm{t}_{\text {DELAY }}}{\mathrm{N}_{\text {DIV }}} \tag{2}
\end{equation*}
$$

Select the standard resistor value closest to the calculated value.

Example: Design a one-shot circuit to delay falling edges
by $t_{\text {DELAY }}=100 \mu \mathrm{~s}$ with minimum power consumption.

Step 1: Select the LTC6994 Version and POL Bit Setting.

To delay negative transitions, choose the LTC6994-1 with POL = 1 .

Step 2: Select the $\mathrm{N}_{\text {DIV }}$ Frequency Divider Value.

Choose an $N_{\text {DIV }}$ value that meets the requirements of Equation (1), using $\mathrm{t}_{\mathrm{DEL}} \mathrm{AY}=100 \mu \mathrm{~s}$:

$$
6.25 \leq \mathrm{N}_{\text {DIV }} \leq 100
$$

Potential settings for $\mathrm{N}_{\text {DIV }}$ include 8 and 64 . $\mathrm{N}_{\text {DIV }}=8$ is the best choice, as it minimizes supply current by using a large $R_{\text {SET }}$ resistor. POL $=1$ and $\mathrm{N}_{\text {DIV }}=8$ requires DIVCODE $=14$. Using Table 1, choose R1 $=102 \mathrm{k}$ and R 2 $=976 \mathrm{k}$ values to program DIVCODE $=14$.

Step 3: Select RSET.

Calculate the correct value for $\mathrm{R}_{\text {SET }}$ using Equation (2).

$$
\mathrm{R}_{\text {SET }}=\frac{50 \mathrm{k}}{1 \mu \mathrm{~s}} \cdot \frac{100 \mu \mathrm{~s}}{8}=625 \mathrm{k}
$$

Since 625 k is not available as a standard 1% resistor, substitute 619 k if a -0.97% shift in $\mathrm{t}_{\text {DELAY }}$ is acceptable. Otherwise, select a parallel or series pair of resistors such as 309 k and 316 k to attain a more precise resistance.
The completed design is shown in Figure 9.

Figure 9. 100 $\mu \mathrm{s}$ Negative-Edge Delay

APPLICATIONS INFORMATION

Voltage-Controlled Delay

With one additional resistor, the LTC6994 output delay can be manipulated by an external voltage. As shown in Figure 10, voltage $\mathrm{V}_{\text {CTRL }}$ sources/sinks a current through $\mathrm{R}_{\text {MOD }}$ to vary the $\mathrm{I}_{\text {SET }}$ current, which in turn modulates the delay as described in Equation (3):

Figure 10. Voltage-Controlled Delay

Digital Delay Control

The control voltage can be generated by a DAC (digital-toanalog converter), resulting in a digitally-controlled delay. Many DACs allow for the use of an external reference. If such a DAC is used to provide the $V_{\text {CTRL }}$ voltage, the $V_{\text {SET }}$ dependency can be eliminated by buffering $\mathrm{V}_{\text {SET }}$ and using it as the DAC's reference voltage, as shown in Figure 11. The DAC's output voltage now tracks any $\mathrm{V}_{\text {SET }}$ variation and eliminates it as an error source. The SET pin cannot be tied directly to the reference input of the DAC because the current drawn by the DAC's REF input would affect the delay.

$I_{\text {Set }}$ Extremes (Master Oscillator Frequency Extremes)

When operating with $\mathrm{I}_{\text {SET }}$ outside of the recommended $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$ range, the master oscillator operates outside of the 62.5 kHz to 1 MHz range in which it is most accurate.

The oscillator will still function with reduced accuracy for $I_{\text {SET }}<1.25 \mu \mathrm{~A}$. At approximately 500 nA , the oscillator will stop. Under this condition, the output pulse can still be initiated, but will not terminate until $I_{\text {SET }}$ increases and the master oscillator starts again.

At the other extreme, it is not recommended to operate the master oscillator beyond 2 MHz because the accuracy of the DIV pin ADC will suffer.

Figure 11. Digitally Controlled Delay

LTC6994-1/LTC6994-2

APPLICATIONS INFORMATION

Settling Time

Following a $2 \times$ or $0.5 \times$ step change in $I_{S E T}$, the output delay takes approximately six master clock cycles ($6 \cdot \mathrm{t}_{\text {MASTER }}$) to settle to within 1% of the final value. An example is shown in Figure 12, using the circuit in Figure 10.

Figure 12. Typical Settling Time

Coupling Error

The current sourced by the SET pin is used to bias the internal master oscillator. The LTC6994 responds to changes in ISET almost immediately, which provides excellent settling time. However, this fast response also makes the SET pin sensitive to coupling from digital signals, such as the IN input.
Even an excellent layout (examples are provided in the next section) will allow some coupling between IN and SET that can affect fast output pulses. Additional error is included in the specified accuracy for $\mathrm{N}_{\text {DIV }}=1$ to account for this.

A very poor layout can actually degrade performance further. The PCB layout should avoid routing SET next to IN (or any other fast-edge, wide-swing signal).

APPLICATIONS INFORMATION

Power Supply Current

TBA

Supply Bypassing and PCB Layout Guidelines

The LTC6994 is an accurate monostable multivibrator when used in the appropriate manner. The part is simple to use and by following a few rules, the expected performance is easily achieved. Adequate supply bypassing and proper PCB layout are important to ensure this.

Figure 13 shows example PCB layouts for both the SOT-23 and DCB packages using 0603 sized passive components. The layouts assume a two layer board with a ground plane layer beneath and around the LTC6994. These layouts are a guide and need not be followed exactly.

1. Connect the bypass capacitor, C 1 , directly to the V^{+}and GND pins using a low inductance path. The connection from C 1 to the V^{+}pin is easily done directly on the top layer. For the DCB package, C1's connection to GND is also simply done on the top layer. For the SOT-23, OUT can be routed through the C 1 pads to allow a good C1

GND connection. If the PCB design rules do not allow that, C1's GND connection can be accomplished through multiple vias to the ground plane. Multiple vias for both the GND pin connection to the ground plane and the C1 connection to the ground plane are recommended to minimize the inductance. Capacitor C 1 should be a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
2. Place all passive components on the top side of the board. This minimizes trace inductance.
3. Place $R_{\text {SET }}$ as close as possible to the SET pin and make a direct, short connection. The SET pin is a current summing node and currents injected into this pin directly modulate the output delay. Having a short connection minimizes the exposure to signal pickup.
4. Connect $R_{\text {SET }}$ directly to the GND pin. Using a long path or vias to the ground plane will not have a significant affect on accuracy, but a direct, short connection is recommended and easy to apply.
5. Use a ground trace to shield the SET pin. This provides another layer of protection from radiated signals.
6. Place R1 and R2 close to the DIV pin. A direct, short

DCB PACKAGE

TSOT-23 PACKAGE

Figure 13. Supply Bypassing and PCB Layout

LTC6994-1/LTC6994-2

TYPICAL APPLICATIONS
Delayed One-Shot

Pulse Stretcher

OUTPUT PULSE DURATION = tPULSE-IN +1 ms

TYPICAL APPLICATIONS

Edge Chatter Filter

Crossover Gate—Break-Before-Make Interval Timer

DCB Package
6 -Lead Plastic DFN ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1715 Rev A)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (TBD)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

S6 Package

6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

LTC6994-1/LTC6994-2

TYPICAL APPLICATION

Press-and-Hold (0.3 s to 4s) Delay Timer

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1799	1MHz to 33MHz ThinSOT Silicon Oscillator	Wide Frequency Range
LTC6900	1MHz to 20MHz ThinSOT Silicon Oscillator	Low Power, Wide Frequency Range
LTC6906/LTC6907	10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator	Micropower, IsuPply = 35 $\mu \mathrm{A}$ at 400kHz
LTC6930	Fixed Frequency Oscillator, 32.768kHz to 8.192MHz	0.09% Accuracy, 110 Hs Start-Up Time, 105 $\mu \mathrm{A}$ at 32kHz
LTC6990	TimerBlox: Voltage-Controlled Silicon Oscillator	Fixed-Frequency or Voltage-Controlled Operation
LTC6991	TimerBlox: Resettable Low Frequency Oscillator	Clock Periods up to 9.5 hours
LTC6992	TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM)	Simple PWM with Wide Frequency Range
LTC6993	TimerBlox: Monostable Pulse Generator (One-Shot)	Resistor-Programmable Pulse Width of $1 \mu \mathrm{~s}$ to 34s

