SEMICONDUCTOR

DM74AS286 9-Bit Parity Generator/Checker with Bus-Driver Parity I/O Port

General Description

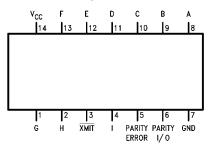
These universal, 9-bit parity generators/checkers utilize advanced Schottky high performance circuitry and feature odd/even outputs to facilitate operation of either odd or even parity applications. The word length capability is easily expanded by cascading.

The DM74AS286 can be used to upgrade the performance of most systems utilizing the DM74AS280 parity generator/ checker. Although the DM74AS286 is implemented without expander inputs, the corresponding function is provided by the availability of an input pin XMIT. XMIT is a control line which makes parity error output active and parity an input port when HIGH; when LOW, parity error output is inactive and parity becomes an output port. In addition, parity I/O control circuitry contains a feature to keep the I/O port in the 3-STATE during power UP or DOWN to prevent bus glitches.

Features

- PNP inputs to reduce bus loading
- Generates either odd or even parity for nine data lines

October 1986


Revised April 2000

- Inputs are buffered to lower the drive requirements
- Can be used to upgrade existing systems using MSI parity circuits
- Cascadable for n-bits
- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- A parity I/O portable to drive bus

Ordering Code:

Order Number	Package Number	Package Description				
DM74AS286M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow				
DM74AS286N N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide						
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Connection Diagram

Function Table

Number of Inputs (A thru I)	Parity I/O		хміт	Parity Error	Mode of
that are HIGH	Input	Output			Operation
0, 2, 4, 6, 8	N/A	Н	L	Н	Parity
1, 3, 5, 7, 9	N/A	L	L	Н	Generator
0, 2, 4, 6, 8	Н	N/A	Н	Н	Parity
0, 2, 4, 6, 8	L	N/A	Н	L	Checker
1, 3, 5, 7, 9	Н	N/A	Н	L	Parity
1, 3, 5, 7, 9	L	N/A	Н	Н	Checker

L = LOW Logic Level H = HIGH Logic Level N/A = Not Applicable

© 2000 Fairchild Semiconductor Corporation DS006305

Absolute Maximum Ratings(Note 1)

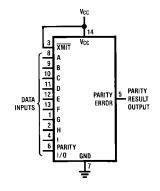
Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Typical θ _{JA}	
N Package	77.0°C/W
M Package	108.0°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Тур	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
VIH	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Current	Parity I/O			-15	mA
		Parity Error			-2	mA
I _{OL}	LOW Level Output Current	Parity I/O			48	mA
		Parity Error			20	mA
T _A	Operating Free-Air Temperature	•	0		70	°C

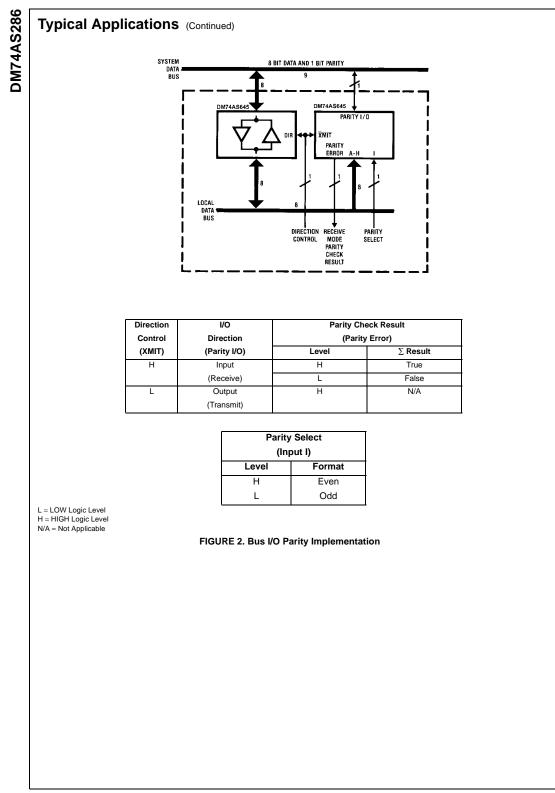
Electrical Characteristics


over recommended free-air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25^{\circ}C.

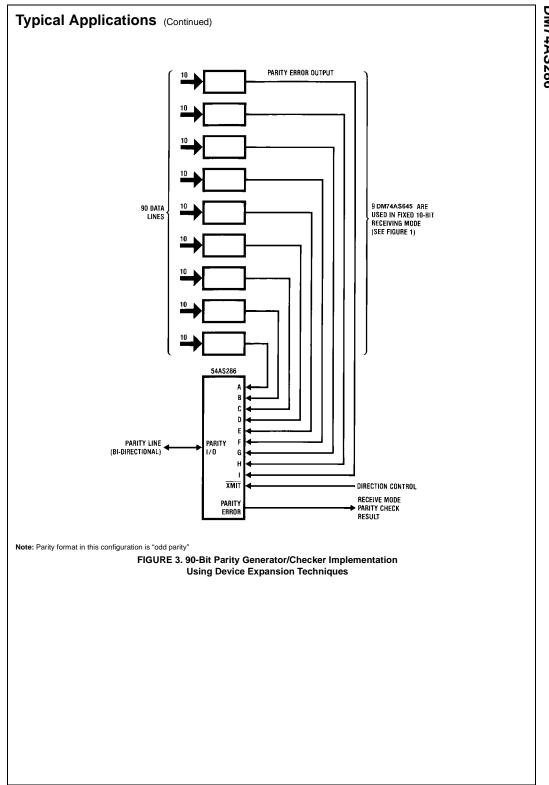
Symbol	Parameter	Condition	Conditions		Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_{IN} = -18 \text{ mA}$	V _{CC} = 4.5V, I _{IN} = -18 mA			-1.2	V
V _{OH}	HIGH Level	$I_{OH} = Max, V_{CC} = 4.5V$		2.4	3.2		V
	Output Voltage	$V_{CC} = 4.5V$ to 5.5V, $I_{OH} = -2$ m	пA	V _{CC} – 2			V
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V$, $I_{OL} = Max$	$V_{CC} = 4.5V, I_{OL} = Max$		0.35	0.5	V
l _l	Input Current at Maximum Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$ (V ₁ = 5.5V for Parity I/O)				0.1	mA
IIH	HIGH Level Input Current	$V_{CC} = 5.5V$	Others			20	
		V _{IH} = 2.7V (Note 2)	Parity I/O			50	μA
IIL	LOW Level Input Current	V _{CC} = 5.5V, V _{IL} = 0.4V (Note 2)				-0.5	mA
I _O	Output Drive Current	V _{CC} = 5.5V, V _{OUT} = 2.25V		-30		-112	mA
I _{CC}	Supply Current	$V_{CC} = 5.5V$, Transmit Mode $\overline{XMIT} = LOW$				43	mA
		Receive Mode XMIT = HIGH				50	mA

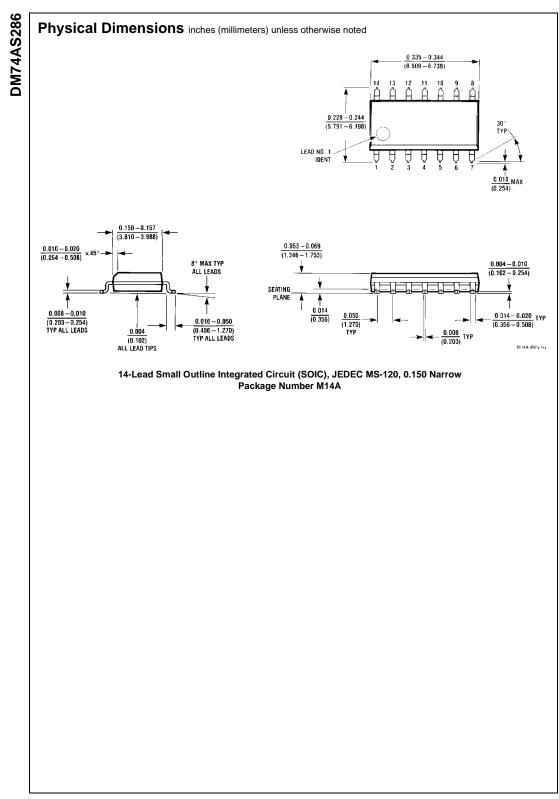
Note 2: For I/O ports, the parameters I_{IH} and I_{IL} include the OFF-state current, I_{OZH} and I_{OZL} .

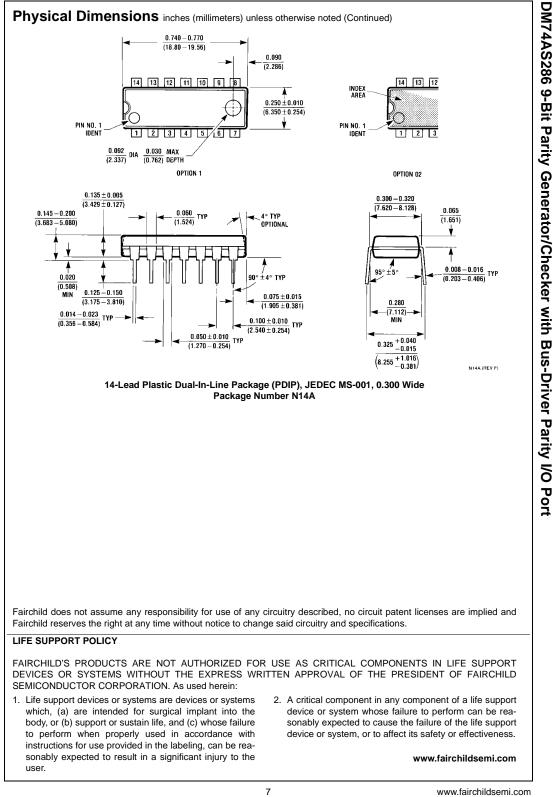
over recommended supply and temperature range							
Symbol	Parameter	From	То	Min	Max	Units	
t _{PLH}	Propagation Delay Time	Any Data Input	Parity I/O	3	15	ns	
	from LOW-to-HIGH Level Output	Any Data Input			15		
t _{PHL}	Propagation Delay Time	Any Data Input	Parity I/O	3	14	ns	
	from HIGH-to-LOW Level Output	Any Data Input	Tanty 1/0	3	14	115	
t _{PLH}	Propagation Delay Time	Any Data Input	Parity Error	3	16.5	ns	
	from LOW-to-HIGH Level Output	Any Data Input		5	10.5	110	
1112	Propagation Delay Time	Any Data Input	Parity Error	3	16.5	ns	
	from HIGH-to-LOW Level Output	Any Data Input					
t _{PLH}	Propagation Delay Time	Parity I/O	Parity Error	3	9	ns	
	from LOW-to-HIGH Level Output	Tanty 1/0	Tanty End	5	5	113	
t _{PHL}	Propagation Delay Time	Parity I/O	Parity Error	3	9	ns	
	from HIGH-to-LOW Level Output	T unty 1/0	T any End	Ũ	5	110	
t _{PZL}	Output Enable Time to LOW Level	XMIT	Parity I/O	3	16	ns	
t _{PLZ}	Output Disable Time from LOW Level	XMIT	Parity I/O	3	10	ns	
t _{PZH}	Output Disable Time from HIGH Level	XMIT	Parity I/O	3	13	ns	
t _{PHZ}	Output Enable Time to HIGH Level	XMIT	Parity I/O	3	11.5	ns	


Typical Applications

Number o	Parity		
Inputs tha	Result		
are Logic "	Output		
0, 2, 4, 6, 8, 10	Even	L	
1, 3, 5, 7, 9	Н		


FIGURE 1. Dedicated 10-Bit Parity Sensing Configuration


Downloaded from Elcodis.com electronic components distributor



www.fairchildsemi.com

4

