Slim Rectangular Inductive Prox

Miniature, Slim-styled Type Proximity

- Space-saving prox ideal for timing cam and dog detection
- Four mounting holes provided: two from the side and two from the rear of the housing
- Ganged mounting possible for multiple
 pulse generation
- Alternate frequency models available to avoid mutual interference

Ordering Information

Type	Sensing Distance	Part number					
		DC 3-wire switching type				AC switching type	
		NPN-NO	NPN-NC	PNP-NO	PNP-NC	SCR-NO	SCR-NC
Shielded	2 mm (0.08 in)	TL-T2E1	TL-T2E2	TL-T2F1	TL-T2F2	TL-T2Y1	TL-T2Y2
Unshielded	5 mm (0.20 in)	TL-T5ME1	TL-T5ME2	TL-T5MF1	TL-T5MF2	TL-T5MY1	TL-T5MY2
\square							

Note: 1. To avoid mutual interference, this sensor can be ordered with a different oscillating frequency. Add a " 5 " to the end of the part number (e.g. TL-N2E15).
2. Add suffix " G " to the model number when placing your order for European models with color-coded cables conforming to CENELEC standard (EN50044). Refer to the color code table in the "Output Stage Circuit Diagram" for the cable color codes of the European models.

Specifications

RATINGS/CHARACTERISTICS

Part number		TL-T2E1, TL-T2E2, TL-T2F1, TL-T2F2	TL-T2Y1, TL-T2Y2	TL-T5ME1, TL-T5ME2, TL-T5MF1, TL-T5MF2	TL-T5MY1, TL-T5MY2
Supply voltage (operating voltage range)		E and F models: 12 to 24 VDC (10 to 30 VDC), ripple (p-p): 20% max. Y models: 100 to 220 VAC (90 to 250 VAC), $50 / 60 \mathrm{~Hz}$			
Current consumption		E and F models: 15 mA max. at 24 VDC			
Leakage current		Y models: 2.5 mA max. at 200 VAC			
Sensing object		Magnetic metal (The sensing distance decreases with non-magnetic metal.)			
Sensing distance		$2 \mathrm{~mm} \pm 10 \%$ (0.08 $\pm 10 \%$)		$5 \mathrm{~mm} \pm 10 \%$ (0.19 $\pm 10 \%$)	
Sensing distance (standard object)		0 to 1.6 mm (iron, $12 \times 12 \times 1 \mathrm{~mm}$) 0 to 0.06 in (iron $0.47,47 \times 0.04$ in)		0 to 4 mm (iron, $15 \times 15 \times 1 \mathrm{~mm}$) 0 to 0.157 in (iron $0.59 \times 0.59 \times 0.39 \mathrm{in}$)	
Differential travel		10\% max. of sensing distance			
Response frequency		E and F models: Y models:	$\begin{aligned} & 800 \mathrm{~Hz}, \\ & 20 \mathrm{~Hz} \end{aligned}$	$\begin{array}{ll}\text { E and F models: } & 250 \mathrm{~Hz}, \\ \text { Y models: } & 20 \mathrm{~Hz}\end{array}$	
Operating status (with sensing object approaching)		E1 models: L output signal with load ON E2 models: H output signal with load OFF F1 models: H output signal with load ON Y1 models: Load ON Y2 models: Load OFF			
Control output	Type	E1: NPN-NO Y1: SCR-NO E2: NPN-NC Y2: SCR-NC F1: PNP-NO F2: PNP-NC			
	Switching capacity	$\begin{array}{ll}\text { E and F models: } 100 \mathrm{~mA} \text { max. at } 12 \mathrm{VDC} \text { and } 200 \mathrm{~mA} \text { max. at } 24 \text { VDC } \\ \text { Y models: } & 10 \text { to } 200 \mathrm{~mA}\end{array}$			
Circuit protection		E and F models: Reverse connection protection and surge absorber Y models: Surge absorber			
Indicator		Operation indicator (red LED)			
Ambient temperature	Operating	$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ with no icing			
Ambient humidity	Operating	35\% to 95\%			
Temperature influence		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F}\right)$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$			
Voltage influence		E and F models: $\pm 2.5 \%$ max. of sensing distance within a range of $\pm 15 \%$ of the rated power supply voltage Y models: $\pm 2.5 \%$ max. of sensing distance within a range of $\pm 10 \%$ of the rated power supply voltage			
Residual voltage		$\begin{array}{ll}\text { E and F models: } & 1.0 \mathrm{~V} \text { max. with a load current of } 100 \mathrm{~mA} \text { and a cord length of } 2 \mathrm{~m} \\ \text { Y models: } & \text { Refer to Residual Load Voltage (Typical) on page } 4 .\end{array}$			
Insulation resistance		$50 \mathrm{M} \Omega$ min. (at 500 VDC) between case and current carry parts			
Dielectric strength		DC switching models: $\quad 1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between case and current carry parts AC switching models: $\quad 2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between case and current carry parts			
Vibration resistance		10 to 55 Hz , 1.5-mm (0.06 in)double amplitude for 2 hours each in X, Y, and Z directions			
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2}\left(1640 \mathrm{ft} / \mathrm{s}^{2}\right)$ approx. 50G for 10 times each in X, Y, and Z directions			
Enclosure rating		IEC IP67			
Weight (with 2-m cord)		Approx. $70 \mathrm{~g} \mathrm{(2.47} \mathrm{oz)}$			
Material	Case	Heat-resistant ABS resin			
	Sensing surface	Heat-resistant ABS resin			

Operation

OUTPUT CIRCUITS

Note: 1. 200 mA max. (load current)
2. When a transistor is connected

Y Models

(AC 2-wire)

TIMING CHARTS

F Models
PNP (DC 3-wire)

Note: 1. 200 mA max. (load current)
2. When a transistor is connected

F Models

PNP (DC 3-wire)

Y Models (DC 2-wire)
Target
object \quad Yes

Engineering Data

- OPERATING RANGE (TYPICAL)

LEAKAGE CURRENT

 (TYPICAL)

SENSING OBJECT SIZE AND MATERIAL VS. SENSING DISTANCE (TYPICAL)

TL-T2

TL-T5M

RESIDUAL LOAD VOLTAGE (TYPICAL)

(at constant 100 VAC)

(at constant 200 VAC)

Dimensions

Unit: mm (inch)

DC switching model: Three, $0.2-\mathrm{mm}(0.007 \mathrm{in})$ conductors AC switching model: Two, $0.3-\mathrm{mm}$ (0.012 in) conductors Oil- and vibration-resistant, vinyl-insulated round cord, 4 external dia.; standard length: 2 m (6.56 ft)

Precautions

CONNECTION TO THE LOAD

Be sure to connect the Proximity Sensor to the power source through a load. Direct connection of the Sensor may damage the Sensor.

MOUNTING

At the time of rear mounting, be sure that the tightening torque does not exceed $6 \mathrm{kgf} \cdot \mathrm{cm}(0.59 \mathrm{~N} \cdot \mathrm{~m}) 5.22 \mathrm{in} \cdot \mathrm{lbf}$.

At the time of side mounting, be sure that the tightening torque does not exceed $8 \mathrm{kgf} \cdot \mathrm{cm}(0.78 \mathrm{~N} \cdot \mathrm{~m}) 2.02 \mathrm{in} \cdot \mathrm{lbf}$.

EFFECT OF SURROUNDING METALS

If the TL-T5M is embedded in metal, keep at least the following distances between the TL-T and the metal.

If the TL-T2 is embedded in metal, the TL-T2 will not be influenced by metal.

MUTUAL INTERFERENCE

When two or more TL-T sensors are mounted face-to-face or side-by-side, separate them as shown below. The table below indicates the minimum distances A and B.

Distance	A	B
TL-T5 $\square \square$	$120 \mathrm{~mm}(4.72 \mathrm{in})$	$80 \mathrm{~mm}(3.15 \mathrm{in})$
TL-T5 $\square \square 5$	$60 \mathrm{~mm}(2.36 \mathrm{in})$	$40 \mathrm{~mm}(1.57 \mathrm{in})$
TL-T2 $\square \square$	$40 \mathrm{~mm}(1.57 \mathrm{in})$	$12 \mathrm{~mm}(0.47 \mathrm{in})$
TL-T2 $\square \square 5$	$10 \mathrm{~mm}(0.39 \mathrm{in})$	0 mm

Note: Figures in parentheses will apply if the Sensors in use are different from each other in response frequency.

OmROn.
One East Commerce Drive
Schaumburg, IL 60173
1-800-55-OMRON

OMRON ON-LINE
Global - http://www.omron.com USA - http://www.omron.com/oei
Canada - http://www.omron.com/oci

OMRON CANADA, INC.
885 Milner Avenue
Scarborough, Ontario M1B 5V8
416-286-6465

