PEEL ${ }^{\text {TM }}$ 22CV10AZ-25
CMOS Programmable Electrically Erasable Logic Device

Features

Ultra Low Power Operation

- Vcc $=5$ Volts $\pm 10 \%$
- Icc $=10 \mu \mathrm{~A}$ (typical) at standby
- Icc $=2 \mathrm{~mA}$ (typical) at 1 MHz
$-\mathrm{tpD}=25 \mathrm{~ns}$.
CMOS Electrically Erasable Technology
- Superior factory testing
- Reprogrammable in plastic package
- Reduces retrofit and development costs

Development/Programmer Support

- Third party software and programmers
- Anachip PLACE Development Software

Architectural Flexibility

- 133 product terms x 44 input AND array
- Up to 22 inputs and 10 I/O pins
- 12 possible macrocell configur ons
- Synchronous preset, asynchro vus clear
- Independent output enab ${ }^{1}$
- Programmable clock arce and po
- 24-pin DIP/SOIC/TS OP ad 28-pin PLCC

Application Versat, y

- Replaces radom log,
- Pin and IED C compa ple with 22 V 10
- Ideal for ower ensi+ e systems

General Description

The PEEL ${ }^{\text {TM } 22 C V 10 A Z ~ i s ~ a ~ P r o g r a m m a b l e ~ E l e c t r i c a l l y ~ E r a s a b l e ~}$ Logic (PEEL ${ }^{\text {TM }}$) device that provides a low power alternative ${ }^{\text {to }}$ ordinary PLDs. The PEEL ${ }^{\text {TM }} 22$ CV10AZ is available in 24 -pin DIP, SOIC, TSSOP and 28-pin PLCC packages (see Fig, 19). A "zero-power" ($100 \mu \mathrm{~A}$ max. Icc) standby mode makes he PEEL ${ }^{\text {TM } 22 C V 10 A Z ~ i d e a l ~ f o r ~ p o w e r ~ s e n s i t i v e ~ a p r ~}{ }^{\prime}$. sum su has handheld meters, portable communication equi nent and $p-n_{1}$, computers/ peripherals. EE-reprogrammability rovides th convenience of instant reprogramming c dev opment and a reusable production inventory minim zing the impaut of programming changes or errors. E -reprograi mability also improves factory testability, thens ing the uighest quality possible.

Figure 19 Pin \quad figu ation

The PEE ${ }^{\text {m }} 22$ CV10AZ is JEDEC file compatible with standard 2. V10 PLDs. Eight additional configurations per macrocell (a tota f 12) are also available by using the " + " software/programming option (i.e., $22 \mathrm{CV} 10 \mathrm{AZ}+\& 22 \mathrm{CV} 10 \mathrm{AZ}++$). The additional macrocell configurations allow more logic to be put into every device, potentially reducing the design's component count and lowering the power requirements even further.

Development and programming support for the PEEL ${ }^{\text {TM } 22 C V 10 A Z ~ i s ~ p r o v i d e d ~ b y ~ p o p u l a r ~ t h i r d-p a r t y ~ p r o g r a m-~}$ mers and development software. Anachip also offers free WinPLACE development software.

Figure 19 Block Diagram

Not recommended for New designs contact factory for availability

Figure 21 PEEL ${ }^{\text {TM } 22 C V 10 A Z ~ L o g i c ~ A r r a y ~ D i a g r a m ~}$

Function Description

The implements logic functions as sum-of-products expressions in a programmable-AND/fixed-OR logic array. User-defined functions are created by programming the connections of input signals into the array. User-configurable output structures in the form of I/O macrocells further increase logic flexibility.

Architecture Overview

The architecture is illustrated in the block diagram of Figure 19. Twelve dedicated inputs and $10 \mathrm{I} / O s$ provide up to 22 inputs and 10 outputs for creating logic functions (see Figure 21). At the core of the device is a programmable electrically-erasable AND array that drives a fixed OR array. With this structure, the PEEL ${ }^{\text {TM } 22 C V 10 A Z ~ c a n ~ i m p l e m e n t ~ u p ~ t o ~} 10$ sum-of-products logic expressions.

Associated with each of the ten OR functions is an I/O macrocell that can be independently programmed to one of four different configurations in standard 22 V 10 mode, or any one of 12 configurations using the special "Plus" mode. The programmable macrocells allow each I / O to be used to create sequential or combinatorial logic functions of active-high or active-low pola ity, while providing three different feedback paths into the AND array.

AND/OR Logic Array

The programmable AND array of the PEF $\cos ^{2 / 2}$ V16 Z (shown in Figure 21) is formed by input lines in rsecting p od- L.ct terms. The input lines and product terms are use as follow

44 Input Lines:

> -24 input lines carry the true anc compleme t of the signals applied to the 12 input
> -20 additional lines car the tron and complement values of feedback or input sigi. $10 \mathrm{I} / \mathrm{Os}$

133 Product T s:

- 120 pro ct terms (rang in 2 groups of $8,10,12,14$, and

16) are us to form m of product functions
-10 output en. le $\dagger \mathrm{ms}$ (one for each I/O)

- 1 global synchınous preset term
-1 global asynchronous clear term
- 1 programmable clock term

At each input-line/product-term intersection, there is an EEPROM memory cell that determines whether or not there is a logical connection at that intersection. Each product term is essentially a 44 -input AND gate. A product term that is connected to both the true and complement of an input signal will always be FALSE and therefore will not affect the OR function that it drives. When all the connections on a product term are opened, a "don't care" state exists and that term will always be TRUE.

When programming the PEEL ${ }^{\text {TM } 22 C V 10 A Z, ~ t h e ~ d e v i c e ~ p r o-~}$
grammer first performs a bulk erase to remove the previous pattern. The erase cycle opens every logical connection in the array. The device is configured to perform the user-defined function by programming selected connections in the AND array. (Note that PEEL ${ }^{\text {TM }}$ device programmers automatically program all of the connections on unused product terms so that they will have no effect on the output function).

Variable Product Term Dist bution

The PEEL ${ }^{\text {тм }} 22 \mathrm{CV} 10 \mathrm{AZ}$ pr ides 120 , ody terms to drive the 10 OR functions. These F duct ms are a stributed among the outputs in groups of $810, ~ \sqrt{\prime} 4$, an ${ }^{\top} 16$ to form logical sums (see Figure 21). This trib ion aows optimum use of the device resources

Programm, ble \& M crocell

The un melve onfiguration output macrocell provides comple con ol over architecture of each output. The ability to ont ${ }_{\mathrm{c}}$, re e h output independently lets you to tailor the configuration ${ }^{\circ}$ the $2 E E L{ }^{\text {TM }} 22 \mathrm{CV} 10 \mathrm{AZ}$ to the precise requirements of our desig.

Manocell Architecture

Each I/O macrocell, as shown in Figure 20, consists of a D-type flip-flop and two signal-select multiplexers. The configuration of the macrocell is determined by four EEPROM bits that control the multiplexers. These bits determine the output polarity, output type (registered or non-registered) and input-feedback path (bidirectional I/O, combinatorial feedback). Refer to Table 1. for details. Four of these macrocells duplicate the functionality of the industry-standard PAL22V10. (See Figure 21 and Table 1.)

Figure 20 Block Diagram of the PEEL ${ }^{\text {TM22CV10A }}$ I/O Macrocell

In addition to emulating the four PAL-type output structures (configurations 3, 4, 9, and 10), The macrocell provides eight additional configurations. Equivalent circuits for the twelve macrocell configurations are illustrated in Figure 22. These structures are accessed by specifying the PEELTM22CV10A+ or PEEL ${ }^{\text {TM }} 22 \mathrm{CV} 10 \mathrm{~A}++$ option when assembling the equations.

Figure 21 Equivalent Circuits for the Four Con-
figurations of the I/O Macrocell

Table 1. PEEL ${ }^{\text {TM2 }} 2 \mathrm{CV} 10 \mathrm{~A}$ Macrocell Configuration Bits

Configuration			Input/Feedback Select		
\#	A	B		Outrut Select	
1	0	0	egis ${ }^{+}$		Active Low
2	1	0			Active High
3	0	1	D		Active Low
4				Combinatorial	Active High

When creating a A a device design, the desired macrocell configuration is generally specified explicitly in the design file. When the design is assembled or compiled, the macrocell configuration bits are defined in the last lines of the JEDEC programming file.

Output Type

The signal from the OR array can be fed directly to the output pin (combinatorial function) or latched in the D-type flip-flop (registered function). The D-type flip-flop latches data on the rising edge of the clock and is controlled by the global preset and clear terms. When the synchronous preset term is satisfied, the Q output of the register is set HIGH at the next rising edge of the clock input. Satisfying the asynchronous clear sets Q LOW, regardless of the clock state. If both terms are satisfied simultaneously, the clear will override the preset.

Output Polarity

Each macrocell can be configured to implement active-high or active-low logic. Programmable polarity eliminates the need for external inverters.

Output Enable

The output of each I/O macroce ${ }^{1}$ can be nabled or disabled under the control of its associated rogramm ble output enable product term. When the lo al con tions ogrammed on the output enable term are sat ned, th outp ${ }^{+}$gnal is propagated to the I/O pin. Otherwise, a put buffer is switched into the high-impedance state.
Under the contr ${ }^{-1}$ of the ou ut enable term, the I/O pin can function as a ded atea put, a de icated output, or a bi-directional I/ O. Opening every cont tior on the output enable term will permanen ${ }^{+1 \times}$, enable 'he output buffer and yield a dedicated output. Convers v, ir connection is intact, the enable term will 2lw. a be gically false and the I/O will function as a dedicated input.

h. nut/Feedback Select

Whe. configuring an I/O macrocell to implement a registered function (configurations 1 and 2 in Figure 21), the $\overline{\mathrm{Q}}$ output of the lip-flop drives the feedback term. When configuring an I/O macrocell to implement a combinatorial output (configurations 3 and 4 in Figure 21), the feedback term is taken from the I/O pin. In this case, the pin can be used as a dedicated input or a bi-direc- tional I/O (Refer also to Table 1.)

Programmable Clock Options

A unique feature of the PEEL ${ }^{\text {TM2 }} 22 \mathrm{CV} 10 \mathrm{AZ}$ is a programmable clock multiplexer that allows you to select true or complement forms of either the input pin or a product-term clock source. This feature can be accessed by specifying the PEEL ${ }^{\text {TM }} 22 \mathrm{CV} 10 \mathrm{~A}++$ option when assembling the equations.

Figure 22 Eq ivalent Circuits for the Twelve Configurations of the PEEL ${ }^{\text {TM }} 22 \mathrm{CV} 10 \mathrm{AZ}+\mathrm{I} / \mathrm{O}$ Macrocell
Table 1. I/O Macrocell Equivalent Circuits

Configuration					Input/Feedback Select	Output Select	
\#	A	B	C	D			
1	0	0	1	0	Bi-directional I/O	Register	Active Low
2	1	0	1	0			Active High
3	0	1	0	0		Combinatorial	Active Low
4	1	1	0	0			Active High
5	0	0	1	1	Combinatorial Feedback	Register	Active Low
6	1	0	1	1			Active High
7	0	1	1	1		Combinatorial	Active Low
8	1	1	1	1			Active High
9	0	0	0	0	Register Feedback	Register	Active Low
10	1	0	0	0			Active High
11	0	1	1	0		Combinatorial	Active Low
12	1	1	1	0			Active High

Zero Power Feature

The CMOS PEEL ${ }^{\text {TM } 22 C V 10 A Z ~ f e a t u r e s ~ " Z e r o-P o w e r " ~ s t a n d b y ~}$ operation for ultra-low power consumption. With the "ZeroPower" feature, transition-detection circuitry monitors the inputs, I/Os (including CLK) and feedbacks. If these signals do not change for a period of time greater than approximately two tpDS, the outputs are latched in their current state and the device automatically powers down. When the next signal transition is detected, the device will "wake up" for active operation until the signals stop switching long enough to trigger the next powerdown.

As a result of the "Zero-Power" feature, significant power savings can be realized for combinatorial or sequential operations when the inputs or clock change at a modest rate (see Figure 23).

Figure 23 Typical ICC vs. Input Clock Frequency for the 22 CV 10 AZ .

Design Security

The PEEL ${ }^{\text {TM } 22 C V 10 A Z ~ p r o v i d e s ~ a ~ s p e c i a l ~ E E P R O M ~ s e c u r i t y ~ b i t ~}$ that prevents unauthorized reading or copying of designs programmed into the device. The security bit is set by the PLD programmer, either at the conclusion of the programming cycle or as a separate step, after the device has been programmed. Once the security bit is set it is impossible to crily ead) or program the PEEL ${ }^{\text {TM }}$ until the entire device is first bo n erased with the bulk-erase function.

Signature Word

The signature word ature llows 64 -bit code to be programmed into th $\mathrm{T}^{\text {TM } 22 C V 10 A Z ~ i f ~ t h e ~}$ PEEL ${ }^{\text {TM } 22 C V 1-~} \mathrm{Z}+$ softh e option is used. The code can be read back er η at the ser rity bit has been set. The signature word can be u. do for the pattern programmed into the device recor the design revision, etc.

Pros am. ing Support
Anachip. IEDEC file translator allows easy conversion of exist. 24 pin YLD designs to the PEEL ${ }^{\text {TM } 22 C V 10 A Z, ~ w i t h o u t ~ t h e ~}$ nee, for redesign. Anachip supports a broad range of popular third party design entry systems, including the Abel-to-PEEL Arrays fitter software. Anachip also offers (for free) its proprietary WinPLACE software, an easy-to-use entry level PC-based software development system.

Programming support includes all the popular third party programmers such as BP Microsystems, System General, Logical Devices, and numerous others.

Table 1. Absolute Maximum Ratings

This device has been designed and tested for the specified operating ranges. Improper operation outside of these levels is not guaranteed. Exposure to absolute maximum ratings may cause permanent damage.

Symbol	Parameter	Conditions	Fating	Unit
V_{CC}	Supply Voltage	Relative to Ground	$-0.0+7.0$	V
$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}$	Voltage Applied to Any Pin ${ }^{2}$	Relative to Ground ${ }^{1}$	-0.5 to Va 0.6	V
I_{0}	Output Current	$\operatorname{Per} \operatorname{Pin}\left(\mathrm{I}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{OH}}\right)$	± 25	mA
$\mathrm{T}_{\text {ST }}$	Storage Temperature		$-6<0+150$	${ }^{\circ} \mathrm{C}$
T_{LT}	Lead Temperature	Soldering 10 Seconds	+300	${ }^{\circ} \mathrm{C}$

Table 2. Operating Range

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage	Commercia	4.75	5.25	V
		Industrial	4.5	5.5	V
$\mathrm{T}_{\text {A }}$	Ambient Temperature	Comı	0	+70	${ }^{\circ} \mathrm{C}$
			-40	+85	${ }^{\circ} \mathrm{C}$
T_{R}	Clock Rise Time	See No 3		20	ns
T_{F}	Clock Fall Time	See Not 3.		20	ns
$\mathrm{T}_{\text {RVCC }}$	V_{CC} Rise Time	N e 3.		250	ms

Table 3. D.C. Electric Charac. .as Over the operating range (Unless otherwise specified)

Symbol	ramet	Conditions	Min	Max	Unit
V_{OH}	\bigcirc put K ₹H Itage - TTL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\mathrm{OHC}}$	- tput HIC I Voltage - CMOS	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{I}_{\mathrm{OH}}=-10.0 \mu \mathrm{~A}$	VCC-0.3		V
$\mathrm{V}_{\text {OL }}$	Out ${ }_{\text {H }}$ +LS N Voltage - TTL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$		0.5	V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage - CMOS	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=10.0 \mu \mathrm{~A}$		0.15	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3	0.8	V
$\mathrm{I}_{\text {IL }}$	Input and I/O Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, GND $\leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{I} / \mathrm{O}=$ High Z		± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30	-135	mA
$\mathrm{I}_{\mathrm{CCS}}$	V_{CC} Current, Standby	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{CC}, All Outputs disabled ${ }^{4}$	10 (typ)	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC}}{ }^{10}$	V_{CC} Current, $\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{CC}, All Outputs disabled ${ }^{4}$	2 (typ)	5	mA
$\mathrm{C}_{\text {IN }}{ }^{7}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		6	pF
$\mathrm{C}_{\text {Out }}{ }^{7}$	Output Capacitance			12	pF

Table 10.
Over the operating range ${ }^{8}$

Symbol	Parameter	-25		Unit
		Min	Max	
$\mathrm{t}_{\text {PD }}$	Input ${ }^{5}$ to non-registered output		25	ns
$\mathrm{t}_{\text {OE }}$	Input ${ }^{5}$ to output enable ${ }^{6}$		4	ns
t_{OD}	Input ${ }^{5}$ to output disable ${ }^{6}$		25	ns
$\mathrm{t}_{\mathrm{CO} 1}$	Clock to Output			ns
$\mathrm{t}_{\mathrm{CO} 2}$	Clock to comb. Output delay via internal registered feedback		3.	ns
$\mathrm{t}_{\text {CF }}$	Clock to Feedback		9	ns
$\mathrm{t}_{\text {SC }}$	Input ${ }^{5}$ or feedback setup to clock			ns
t_{HC}	Input ${ }^{5}$ hold after clock	0		ns
$\mathrm{t}_{\mathrm{CL}}, \mathrm{t}_{\mathrm{CH}}$	Clock low time, clock high time ${ }^{8}$			ns
t_{CP}	Min clock period Ext ($\mathrm{t}_{\mathrm{SC}}+\mathrm{t}_{\mathrm{CO} 1}$)	30		ns
$\mathrm{f}_{\mathrm{MAX} 1}$	Internal feedback ($\left.1 / \mathrm{t}_{\mathrm{SC}}+\mathrm{t}_{\mathrm{CF}}\right)^{11}$	41.6		MHz
$\mathrm{f}_{\text {MAX2 }}$	External feedback (1/t $\left.{ }_{\text {CP }}\right)^{11}$	33.3		MHz
$\mathrm{f}_{\text {MAX } 3}$	No feedback ($\left.1 / \mathrm{t}_{\mathrm{CL}}+\mathrm{t}_{\mathrm{CH}}\right)^{11}$	38.4		MHz
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Pulse Width	25		ns
$\mathrm{t}_{\text {AP }}$	Input to Asynchronous Reset		25	ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset recovery time		25	ns
$\mathrm{t}_{\text {RESET }}$	Power-on reset time for registers ir crac.tato ?		5	$\mu \mathrm{s}$

Switching Waveforms

Notes:

1. Minimum DC input is -0.5 V , however, inputs may undershoot to -2.0 V for periods less than 20 ns .
2. VI and VO are not specified for program/verify operation.
3. Test Points for Clock and VCC in tR and tF are referenced at the 10% and 90% levels.
4. I/O pins are 0 V and VCC.
5. "Input" refers to an input pin signal.
6. tOE is measured from input transition to VREF $\pm 0.1 \mathrm{~V}$, TOD is measured from input transition to $\mathrm{VOH}-0.1 \mathrm{~V}$ or $\mathrm{VOL}+0.1 \mathrm{~V}$; VREF=VL.
7. Capacitances are tested on a sample basis.
8. Test conditions assume: signal transition times of 3 ns or less from the 10% and 90% points, timing reference levels of 1.5 V (Unless otherwise specified).
9. Test one output at a time for a duration of less than 1 second.
10. ICC for a typical application: This parameter is tested with the device programmed as a 10 -bit Counter.
11. Parameters are not 100% tested. Specifications are based on initial characterization and are tested after any design process modification that might affect operational frequency.
12. All inputs at GND.

PEEL ${ }^{\text {TM }}$ Device and Array Test Loads

Technology	$\mathbf{R 1}$	$\mathbf{R 2}$	$\mathbf{R}_{\mathbf{L}}$	
CMOS	$480 \mathrm{k} \Omega$	$480 \mathrm{k} \Omega$	228	
TTL	235Ω	159Ω	75 V	33 pF

Ordering Information

Part Number	Speed	emperature	Package
PEEL22CV10AZP-25 (L)		Commercial	24-pin Plastic DIP
PEEL22CV10AZJ-25 (L)	25 ns	Commercial	28-pin PLCC
PEEL22CV10AZS-25 (L)	5 ns	Commercial	24-pin SOIC
PEEL22CV10AZT-25 (L)	25 ns	Commercial	24-pin TSSOP
PEEL22CV10AZPI-25 (L)	5 ns	Industrial	24-pin Plastic DIP
PEEL22CV10AZJI-2 (L)	25 ns	Industrial	28-pin PLCC
PEEL22CV10AZSI- -	25 ns	Industrial	24-pin SOIC
PEEL22CV10AZ 25 (L)	25 ns	Industrial	24-pin TSSOP

Part Number

Anachip Corp.
Head Office,
2F, No. 24-2, Industry E. Rd. IV, Science-Based
Industrial Park, Hsinchu, 300, Taiwan
Tel: +886-3-5678234
Fax: +886-3-5678368
Email: sales usa@anachip.com
Website: http://www.anachip.com

©2004 Anachip Corp.

Anachip reserves the right to make changes in specifications at any time and with it no ce he information furnished by Anachip in this publication is believed to be accurat and reliau . However, there is no responsibility assumed by Anachip for its use nor for any infrivemb ${ }^{\text {ts }}$ of pat its or other rights of third parties resulting from its use. No license is granted under any, atent ar \mathfrak{r}. ent rights of Anachip. Anachip's products are not authorized for use as critical c monents η life support devices or systems.
Marks bearing ${ }^{\circ}$ or ${ }^{\text {TM }}$ are registered trademarks and trademarıs © Anau ip Corp.

