

Intel[®] 875P Chipset

Datasheet

Intel® 82875P Memory Controller Hub (MCH)

February 2004

Document Number: 252525-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® 875P chipset MCH may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

 l^2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the l^2C bus/protocol and was developed by Intel. Implementations of the l^2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation

Intel, Pentium, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright[©] 2003–2004, Intel Corporation

int_{el}. Contents

1	Intro	duction	13
	1.1	Terminology	14
	1.2	Related Documents	
	1.3	Intel® 875P Chipset System Overview	
	1.4	Intel® 82875P MCH Overview	18
		1.4.1 Host Interface	18
		1.4.2 System Memory Interface	18
		1.4.3 Hub Interface	19
		1.4.4 Communications Streaming Architecture (CSA) Interface	19
		1.4.5 AGP Interface	19
	1.5	Clock Ratios	20
2	Sign	al Description	21
	2.1	Host Interface Signals	23
	2.2	Memory Interface	
		2.2.1 DDR DRAM Interface A	
		2.2.2 DDR DRAM Interface B	
	2.3	Hub Interface	
	2.4	CSA Interface	28
	2.5	AGP Interface Signals	
		2.5.1 AGP Addressing Signals	
		2.5.2 AGP Flow Control Signals	
		2.5.3 AGP Status Signals	
		2.5.4 AGP Strobes	
		2.5.5 PCI Signals-AGP Semantics	
		2.5.5.1 PCI Pins During PCI Transactions on AGP Interface	
	2.6	Clocks, Reset, and Miscellaneous	
	2.7	RCOMP, VREF, VSWING	34
	2.8	Power and Ground Signals	35
	2.9	MCH Sequencing Requirements	35
	2.10	Signals Used As Straps	36
		2.10.1 Functional Straps	36
		2.10.2 Strap Input Signals	36
		2.10.3 Test Mode Straps	36
	2.11	Full and Warm Reset States	37
3	Regi	ster Description	39
	3.1	Register Terminology	39
	3.2	Platform Configuration Structure	
	3.3	Routing Configuration Accesses	
		3.3.1 Standard PCI Bus Configuration Mechanism	
		3.3.2 PCI Bus 0 Configuration Mechanism	
		3.3.3 Primary PCI and Downstream Configuration Mechanism	
		3.3.4 AGP/PCI_B Bus Configuration Mechanism	
	3.4	I/O Mapped Registers	
		3.4.1 CONFIG_ADDRESS—Configuration Address Register	
		3.4.2 CONFIG_DATA—Configuration Data Register	
	3.5	DRAM Controller/Host-Hub Interface Device Registers (Device 0)	

int_{el®}

3.5.1	VID—Vendor Identification Register (Device 0)	
3.5.2	DID—Device Identification Register (Device 0)	
3.5.3	PCICMD—PCI Command Register (Device 0)	
3.5.4	PCISTS—PCI Status Register (Device 0)	50
3.5.5	RID—Revision Identification Register (Device 0)	51
3.5.6	SUBC—Sub-Class Code Register (Device 0)	51
3.5.7	BCC—Base Class Code Register (Device 0)	51
3.5.8	MLT—Master Latency Timer Register (Device 0)	
3.5.9	HDR—Header Type Register (Device 0)	
3.5.10	APBASE—Aperture Base Configuration Register (Device 0)	
3.5.11	SVID—Subsystem Vendor Identification Register (Device 0)	
3.5.12	SID—Subsystem Identification Register (Device 0)	
3.5.13	CAPPTR—Capabilities Pointer Register (Device 0)	
3.5.14	AGPM—AGP Miscellaneous Configuration Register	
	(Device 0)	55
3.5.15	GC—Graphics Control Register (Device 0)	55
3.5.16	CSABCONT—CSA Basic Control Register (Device 0)	
3.5.17	EAP—DRAM Error Data Register (Device 0)	
3.5.18	DERRSYN—DRAM Error Syndrome Register (Device 0)	
3.5.19	DES—DRAM Error Status Register (Device 0)	
3.5.20	FPLLCONT— Front Side Bus PLL Clock Control Register	• .
0.0.20	(Device 0)	. 58
3.5.21	PAM[0:6]—Programmable Attribute Map Registers	
	(Device 0)	59
3.5.22	FDHC—Fixed Memory(ISA) Hole Control Register (Device 0)	61
3.5.23	SMRAM—System Management RAM Control Register	
	(Device 0)	62
3.5.24	ESMRAMC—Extended System Management RAM Control	
	Register (Device 0)	63
3.5.25	ACAPID—AGP Capability Identifier Register (Device 0)	64
3.5.26	AGPSTAT—AGP Status Register (Device 0)	64
3.5.27	AGPCMD—AGP Command Register (Device 0)	
3.5.28	AGPCTRL—AGP Control Register (Device 0)	
3.5.29	APSIZE—Aperture Size Register (Device 0)	
3.5.30	ATTBASE—Aperture Translation Table Register (Device 0)	
3.5.31	AMTT—AGP MTT Control Register (Device 0)	
3.5.32	LPTT—AGP Low Priority Transaction Timer Register (Device 0)	
3.5.33	TOUD—Top of Used DRAM Register (Device 0)	
3.5.34	MCHCFG—MCH Configuration Register (Device 0)	71
3.5.35	ERRSTS—Error Status Register (Device 0)	
3.5.36	ERRCMD—Error Command Register (Device 0)	
3.5.37	SMICMD—SMI Command Register (Device 0)	
3.5.38	SCICMD—SCI Command Register (Device 0)	
3.5.39	SKPD—Scratchpad Data Register (Device 0)	
3.5.40	CAPREG—Capability Identification Register (Device 0)	
	AGP Bridge Registers (Device 1)	
3.6.1	VID1—Vendor Identification Register (Device 1)	
3.6.2	DID1—Device Identification Register (Device 1)	
3.6.3	PCICMD1—PCI Command Register (Device 1)	
3.6.4	PCISTS1—PCI Status Register (Device 1)	
3.6.5	RID1—Revision Identification Register (Device 1)	
3.6.6	SUBC1—Sub-Class Code Register (Device 1)	

3.6

intها

	3.6.7	BCC1—Base Class Code Register (Device 1)	82
	3.6.8	MLT1—Master Latency Timer Register (Device 1)	83
	3.6.9	HDR1—Header Type Register (Device 1)	83
	3.6.10	PBUSN1—Primary Bus Number Register (Device 1)	83
	3.6.11	SBUSN1—Secondary Bus Number Register (Device 1)	84
	3.6.12	SUBUSN1—Subordinate Bus Number Register (Device 1)	84
	3.6.13	SMLT1—Secondary Bus Master Latency Timer Register	
		(Device 1)	84
	3.6.14	IOBASE1—I/O Base Address Register (Device 1)	85
	3.6.15	IOLIMIT1—I/O Limit Address Register (Device 1)	85
	3.6.16	SSTS1—Secondary Status Register (Device 1)	86
	3.6.17	MBASE1—Memory Base Address Register (Device 1)	87
	3.6.18	MLIMIT1—Memory Limit Address Register (Device 1)	
	3.6.19	PMBASE1—Prefetchable Memory Base Address Register	
		(Device 1)	89
	3.6.20	PMLIMIT1—Prefetchable Memory Limit Address Register	
		(Device 1)	89
		BCTRL1—Bridge Control Register (Device 1)	
		ERRCMD1—Error Command Register (Device 1)	
3.7	PCI-to-	CSA Bridge Registers (Device 3)	
	3.7.1	VID3—Vendor Identification Register (Device 3)	93
	3.7.2	DID3—Device Identification Register (Device 3)	93
	3.7.3	PCICMD3—PCI Command Register (Device 3)	94
	3.7.4	PCISTS3—PCI Status Register (Device 3)	
	3.7.5	RID3—Revision Identification Register (Device 3)	95
	3.7.6	SUBC3—Class Code Register (Device 3)	96
	3.7.7	BCC3—Base Class Code Register (Device 3)	96
	3.7.8	MLT3—Master Latency Timer Register (Device 3)	96
	3.7.9	HDR3—Header Type Register (Device 3)	97
	3.7.10	PBUSN3—Primary Bus Number Register (Device 3)	97
	3.7.11	SBUSN3—Secondary Bus Number Register (Device 3)	97
	3.7.12		
		(Device 3)	98
	3.7.13	IOBASE3—I/O Base Address Register (Device 3)	98
		IOLIMIT3—I/O Limit Address Register (Device 3)	
		, , ,	
	3.7.16	MBASE3—Memory Base Address Register (Device 3)	
	3.7.17		102
	3.7.18	PMBASE3—Prefetchable Memory Base Address Register	
		(Device 3)	103
	3.7.19	PMLIMIT3—Prefetchable Memory Limit Address Register	
		(Device 3)	
	3.7.20	5 , ,	
	3.7.21	5 , ,	
		CSACNTRL—CSA Control Register (Device 3)	
3.8		w Configuration Registers (Device 6)	
	3.8.1	VID6—Vendor Identification Register (Device 6)	
	3.8.2	DID6—Device Identification Register (Device 6)	
	3.8.3	PCICMD6—PCI Command Register (Device 6)	
	3.8.4	PCISTS6—PCI Status Register (Device 6)	
	3.8.5	RID6—Revision Identification Register (Device 6)	
	3.8.6	SUBC6—Sub-Class Code Register (Device 6)	109

		3.8.7	BCC6—Base Class Code Register (Device 6)	109
		3.8.8	HDR6—Header Type Register (Device 6)	109
		3.8.9	BAR6—Memory Delays Base Address Register (Device 6)	110
		3.8.10		
			(Device 6)	110
			SID6—Subsystem Identification Register (Device 6)	
	3.9		6 Memory-Mapped I/O Register Space	
		3.9.1	DRB[0:7]—DRAM Row Boundary Registers (Device 6, MMR).	
		3.9.2	DRA— DRAM Row Attribute Register (Device 6, MMR)	
		3.9.3	DRT—DRAM Timing Register (Device 6, MMR)	
		3.9.4	DRC—DRAM Controller Mode Register (Device 6, MMR)	115
4	Syst	em Add	dress Map	117
	4.1		n Memory Address Ranges	
	4.2	Compa	atibility Area	119
	4.3	Extend	led Memory Area	121
		4.3.1	15-MB–16-MB Window	121
		4.3.2	Pre-Allocated Memory	122
	4.4	AGP M	lemory Address Ranges	124
5	Fund	ctional	Description	125
	5.1	Proces	ssor System Bus	125
		5.1.1	FSB Overview	125
		5.1.2	FSB Dynamic Bus Inversion	125
		5.1.3	FSB Interrupt Overview	
			5.1.3.1 Upstream Interrupt Messages	
	5.2	Systen	n Memory Controller	127
		5.2.1	DRAM Technologies and Organization	128
		5.2.2	Memory Operating Modes	
			5.2.2.1 Dynamic Addressing Mode	129
		5.2.3	Single-Channel (SC) Mode	130
			5.2.3.1 Linear Mode	130
		5.2.4	Memory Address Translation and Decoding	130
		5.2.5	Memory Organization and Configuration	133
		5.2.6	Configuration Mechanism for DIMMS	133
			5.2.6.1 Memory Detection and Initialization	133
			5.2.6.2 SMBus Configuration and Access of the Serial	
			Presence Detect Ports	
			5.2.6.3 Memory Register Programming	
		5.2.7	Memory Thermal Management	
			5.2.7.1 Determining When to Thermal Manage	
	5.3		rated Graphics Port (AGP)	
		5.3.1	MCH AGP Support	
		5.3.2	Selecting between AGP 3.0 and AGP 2.0	
		5.3.3	AGP 3.0 Downshift (4X Data Rate) Mode	
			5.3.3.1 Mechanism for Detecting AGP 2.0 and AGP 3.0	
		5.3.4	AGP Target Operations	
		5.3.5	AGP Transaction Ordering	
		5.3.6	Support for PCI-66 Devices	
		5.3.7	8X AGP Protocol	
			5.3.7.1 Fast Writes	
			5.3.7.2 PCI Semantic Transactions on AGP	139

intطِ

	5.4	Power Management	139
		5.4.0.1 Supported ACPI States	
	5.5	Thermal Management	
		5.5.1 External Thermal Sensor Interface Overview	
		5.5.1.1 External Thermal Sensor Usage Model	141
	5.6	Clocking	
6	Elec	trical Characteristics	143
	6.1	Absolute Maximum Ratings	143
	6.2	Thermal Characteristics	
	6.3	Power Characteristics	144
	6.4	Signal Groups	144
	6.5	DC Parameters	146
7	Balle	out and Package Information	151
	7.1	MCH Ballout	151
	7.2	Package Information	
8	Test	ability	165
	8.1	XOR Test Mode Initialization	165
		8.1.1 XOR Chain Definition	167

Figures

1	Intel® 875P Chipset System Block Diagram	17
2	Intel® 82875P MCH Interface Block Diagram	22
3	Intel® 875P Chipset System Clock and Reset Requirements	35
4	Full and Warm Reset Waveforms	
5	Conceptual Intel® 875P Chipset Platform PCI Configuration Diagram	41
6	Configuration Mechanism Type 0 Configuration Address to PCI	
	Address Mapping	43
7	Configuration Mechanism Type 1 Configuration Address to PCI	
	Address Mapping	44
8	PAM Register Attributes	
9	Memory System Address Map	
10	Detailed Memory System Address Map	118
11	Single-Channel Mode Operation	127
12	Dual-Channel Mode Operation	128
13	Platform External Sensor	
14	Intel® 875P Chipset System Clock Block Diagram	142
15	MCH Ballout Diagram (Top View—Left Side)	152
16	MCH Ballout Diagram (Top View—Right Side)	153
17	Intel® 82875P MCH Package Dimensions (Top View)	
18	Intel® 82875P MCH Package Dimensions (Side View)	
19	Intel® 82875P MCH Package Dimensions (Bottom View)	163
20	XOR Toggling of HCLKP and HCLKN	165
21	XOR Testing Chains Tested Sequentially	166

intط

Tables

1	General Terminology	
2	System Memory Clock Ratios	20
3	Full and Warm Reset States	
4	Internal MCH Device Assignment	41
5	Configuration Address Decoding	43
6	DRAM Controller/Host-Hub Interface Device Register Address	
	Map (Device 0)	46
7	PAM Register Attributes	60
8	PCI-to-AGP Bridge Register Address Map (Device 1)	78
9	VGAEN and MDAP Field Definitions	90
10	PCI-to-CSA Bridge Configuration Register Address Map (Device 3)	92
11	VGAEN and MDAP Definitions	104
12	Overflow Device Configuration Register Address Map (Device 6)	106
13	Device 6 Memory-Mapped I/O Register Address Map	111
14	Memory Segments and Their Attributes	119
15	Pre-Allocated Memory	
16	System Memory Capacity	127
17	MCH Memory Controller Operating Modes	129
18	DRAM Address Translation (Single-Channel Mode)	
	(Non-Dynamic Mode)	131
19	DRAM Address Translation (Dual-Channel Mode, Discrete)	
	(Non-Dynamic Mode)	
20	DRAM Address Translation (Single-Channel Mode) (Dynamic Mode)	132
21	DRAM Address Translation (Dual-Channel Mode, Discrete)	
	(Dynamic Mode)	132
22	Supported DDR DIMM Configurations	
23	Data Bytes on DIMM Used for Programming DRAM Registers	134
24	AGP Support Matrix	
25	AGP 3.0 Downshift Mode Parameters	
26	Pin and Strap Values Selecting AGP 2.0 and AGP 3.0	
27	AGP 3.0 Commands Compared to AGP 2.0	
28	Supported Data Rates	
29	Absolute Maximum Ratings	
30	Power Characteristics	
31	Signal Groups	
32	DC Operating Characteristics	
33	DC Characteristics	
34	MCH Ballout by Signal Name	
35	XOR Chain Outputs	167
36	XOR Chain 0 (60 Inputs) Output Pins: TESTP17, TESTP4	
37	XOR Chain 1 (33 Inputs) Output Pins: TESTP18, TESTP5	
38	XOR Chain 2 (44 Inputs) Output Pins: TESTP19, TESTP6	
39	XOR Chain 3 (41 Inputs) Output Pins: TESTP20, TESTP7	
40	XOR Chain 4 (40 Inputs) Output Pins: TESTP21, TESTP8	
41	XOR Chain 5 (44 Inputs) Output Pins: TESTP22, TESTP9	
42	XOR Chain 6 (40 Inputs) Output Pins: TESTP23, TESTP10	171
43	XOR Chain 7 (45 Inputs) Output Pins: TESTP24, TESTP11	
44	XOR Chain 8 (40 Inputs) Output Pins: TESTP8, TESTP8	
45	XOR Chain 9 (62 Inputs) Output Pins: RSB2, DEFER#	
46	XOR Chain 10 (9 Inputs) Output Pins: RS0#, RS1#	
47	XOR Chain 11 (9 Inputs) Output Pins: BREQ0#, CPURST#	
48	XOR Excluded Pins	174

Revision History

Revision	Description	Date
-001	Initial Release	April 2003
-002	Added Note 12 to the VCC Core Voltage of Table 32, "DC Operating Characteristics"	February 2004
	 Updated Note 6 of Table 33, "DC Characteristics". 	

Intel® 82875P MCH Features

- Host Interface Support
 Intel[®] Pentium 4 processor 0.13 micron process / Intel® Pentium 4 processor on 90 nm process
 - --- VTT 1.1 V 1.55 V ranges
 - 64-bit FSB frequencies of 400 MHz (100 MHz bus clock), 533 MHz (133 MHz bus clock), and 800 MHz (200 MHz bus clock). Maximum theoretical BW of 6.4 GB/s.
 - FSB Dynamic Bus Inversion on the data bus
 - 32-bit addressing for access to 4 GB of memory space
 - 12-deep In Order Queue
 - AGTL+ On-die Termination (ODT)
 - Hyper-Threading Technology
- System Memory Controller (DDR) Support
 - Dual-channel (128 bits wide for non-ECC or 144 bits wide for ECC) DDR memory interface
 - Single-channel (64 bits wide for non-ECC or 72 bits wide for ECC) DDR memory interface
 - Symmetric and asymmetric memory dual-channel upgrade
 - 128-Mb, 256-Mb, 512-Mb technologies implemented as x8, x16 devices
 - four bank devices
 - Non-ECC and ECC, un-buffered DIMMS only
 - Maximum of two DIMMs per channel, with each DIMM having one or two rows
 - Up to 4 GB system memory
 - Up to 16 simultaneously-open pages (four per row) in dualchannel mode and up to 32 open pages in single-channel mode
 - 4-KB to 64-KB page sizes (4 KB to 32 KB in single-channel, 8 KB to 64 KB in dual-channel)
 - Opportunistic refresh
 - Suspend-to-RAM support using CKE(S3)
 - SPD (Serial Presence Detect) Scheme for DIMM Detection
 - DDR (Double Data Rate type 1)
 - Maximum of two DDR DIMMs per channel, single-sided and/or double-sided
 - DDR266, DDR333, DDR400 DIMM modules
 - DDR channel operation at 266 MHz, 333 MHz and 400 MHz with a Peak BW of 2.1 GB/s, 2.7 GB/s, and 3.2 GB/s respectively per channel
 - Burst length of 4 and 8 for single-channel (32 or 64 bytes per access, respectively); for dual-channel a burst of 4 (64 bytes per access)
 - SSTL_2 signaling

- Communication Streaming Architecture (CSA) Interface Support
 8-bit Hub Interface 1.5 electrical/transfer protocols.

 - 266 MB/s point-to-point connection to MCH
 - Gigabit Ethernet (GbE) supported
 - 1.5 V operation
- Hub Interface (HI) Support
 - Hub Interface 1.5
 - 266 MB/s point-to-point Hub Interface to the ICH5
 - 66 MHz base clock
 - 1.5 V operation
- AGP Interface Support
 - Single AGP device
 - AGP 3.0 with 4X or 8X AGP data transfers and 4X or 8X fast writes, respectively
 - 32-bit 4X/8X data transfers and 4X/8X fast writes
 - Peak BW of 2 GB/s.
 - 0.8 V and 1.5 V AGP electrical characteristics, no 3.3 V support
 - AGP 2.0 1X/4X AGP data transfers and 4X fast writes
 - 32-deep AGP request queue
- MCH Package
 - 42.5 mm x 42.5 mm Flip Chip Ball Grid Array (FC-BGA) package
 - 1005 solder balls

This page is intentionally left blank.

intel® Introduction

The Intel[®] 875P chipset is designed for systems based on the Intel[®] Pentium[®] 4 processors on 0.13 micron process or the Intel[®] Pentium 4 processor on 90 nm process. The chipset supports FSB frequencies of 400 MHz, 533 MHz, and 800 MHz. The 875P chipset contains two main components: Memory Controller Hub (MCH) for the host bridge and I/O Controller Hub for the I/O subsystem. The 875P chipset uses either the Intel® 82801EB ICH5 or 82801ER ICH5R for the I/O Controller Hub. This document is the datasheet for the 82875P Memory Controller Hub (MCH) component.

The Intel[®] 875P chipset platform supports the following processors:

- Intel[®] Pentium[®] 4 processor with 512-KB L2 cache on 0.13 micron process in the 478-pin package.
- Intel® Pentium® 4 processor Extreme Edition supporting Hyper-Threading Technology¹
- Intel[®] Pentium[®] 4 processor on 90 nm process

Unless otherwise specified, the term ICH5 in t his document refers to both the 82801EB ICH5 and Note: 82801ER ICH5R.

Unless otherwise specified, the term processor in this document refers to the Pentium 4 processor Note: with 512-KB L2 cache on 0.13 micron process in the 478-pin package, Pentium 4 processor Extreme Edition supporting Hyper-Threading Technology, and Pentium 4 processor on 90 nm process

Unless otherwise specified, the term "Pentium 4 processor on 0.13 micron process" refers to both the Pentium 4 processor with 512-KB L2 cache on 0.13 micron process and the Pentium 4 processor Extreme Edition supporting Hyper-Threading Technology.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a Hyper-Threading Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See <<http://www.intel.com/info/hyperthreading/>> for more information including details on which processors support HT Technology.

1.1 Terminology

This section provides the definitions of some of the terms used in this document.

Table 1. General Terminology (Sheet 1 of 2)

Terminology	Description
AGP	Accelerated Graphics Port. In this document AGP refers to the AGP/PCI interface that is in the MCH. The MCH AGP interface supports only 0.8 V/1.5 V AGP 2.0/AGP 3.0 compliant devices using PCI (66 MHz), AGP 1X (66 MHz), 4X (266 MHz), and 8X (533 MHz) transfers. MCH does not support any 3.3 V devices. For AGP 2.0, PIPE# and SBA addressing cycles and their associated data phases are generally referred to as AGP transactions. FRAME# cycles are generally referred to as AGP/PCI transactions.
Bank	DRAM chips are divided into multiple banks internally. Commodity parts are all 4 bank, which is the only type the MCH supports. Each bank acts somewhat like a separate DRAM, opening and closing pages independently, allowing different pages to be open in each. Most commands to a DRAM target a specific bank, but some commands (i.e., Precharge All) are targeted at all banks. Multiple banks allows higher performance by interleaving the banks and reducing page miss cycles.
Channel	In the MCH a DRAM channel is the set of signals that connects to one set of DRAM DIMMs. The MCH has two DRAM channels, (a pair of DIMMs added at a time, one on each channel).
Chipset Core	The MCH internal base logic.
Column Address	The column address selects one DRAM location, or the starting location of a burst, from within the open page on a read or write command.
Double-Sided DIMM	Terminology often used to describe a DIMM that contain two DRAM rows. Generally a Double-sided DIMM contains two rows, with the exception noted above. This terminology is not used within this document.
DDR	Double Data Rate SDRAM. DDR describes the type of DRAMs that transfers two data items per clock on each pin. This is the only type of DRAM supported by the MCH.
ECC	ERROR Checking and Correction. ECC describes a DRAM feature to detect bit errors.
Full Reset	A Full MCH Reset is defined in this document when RSTIN# is asserted.
GART	Graphics Aperture Re-map Table. GART is a table in memory containing the page re-map information used during AGP aperture address translations.
MCH	The Memory Controller Hub component that contains the processor interface, DRAM controller, CSA interface, and AGP interface. It communicates with the I/O controller hub (ICH5) over a proprietary interconnect called the hub interface (HI).
GTLB	Graphics Translation Look-aside Buffer. A cache used to store frequently used GART entries.
н	Hub Interface. HI is the proprietary hub interconnect that connects the MCH to the ICH5. In this document HI cycles originating from or destined for the primary PCI interface on the ICH5 are generally referred to as HI/PCI or simply HI cycles.
Host	This term is used synonymously with processor.
Intel [®] ICH5	Fifth generation I/O Controller Hub component that contains additional functionality compared to the Intel [®] ICH4.
Primary PCI	The physical PCI bus that is driven directly by the ICH5 component. Communication between PCI and the MCH occurs over HI. Note that even though the Primary PCI bus is referred to as PCI it is not PCI Bus 0 from a configuration standpoint.
FSB	Processor Front Side Bus. This is the bus that connects the processor to the MCH.
Row	A group of DRAM chips that fill out the data bus width of the system and are accessed in parallel by each DRAM command.

Table 1. General Terminology (Sheet 2 of 2)

Terminology	Description
Row Address	The row address is presented to the DRAMs during an Activate command, and indicates which page to open within the specified bank (the bank number is presented also).
Scalable Bus Processor-to-MCH interface. The compatible mode of the Scalable Bus is the P6 enhanced mode of the Scalable Bus is the P6 Bus plus enhancements primarily of source synchronous transfers for address and data, and FSB interrupt delivery Intel [®] Pentium [®] 4 processor implements a subset of the enhanced mode.	
Single-Sided DIMM	Terminology often used to describe a DIMM that contains one DRAM row. Usually one row fits on a single side of the DIMM allowing the backside to be empty.
SDR	Single Data Rate SDRAM.
SDRAM	Synchronous Dynamic Random Access Memory.
Secondary PCI	The physical PCI interface that is a subset of the AGP bus driven directly by the MCH. It supports a subset of 32-bit, 66 MHz PCI 2.0 compliant components, but only at 1.5 V (not 3.3 V or 5 V).
SSTL_2	Stub Series Terminated Logic for 2.6 Volts (DDR)

1.2 Related Documents

Document	Document Number/ Location
Intel® 875P Chipset Platform Design Guide	http://developer.intel.com/design/ chipsets/designex/252527.htm
Intel [®] 875P Chipset Thermal Design Guide	http://developer.intel.com/design/ chipsets/designex/252528.htm
Intel [®] 82801EB I/O Controller Hub 5 (ICH5) and Intel [®] 82801ER I/O Controller Hub 5 R (ICH5R) Datasheet	http://developer.intel.com/design/ chipsets/datashts/252516.htm
Intel [®] Pentium [®] 4 Processor with 512-KB L2 Cache on 0.13 Micron Process and Intel [®] Pentium [®] 4 Processor Extreme Edition Supporting Hyper-Threading Technology Datasheet	http://developer.intel.com/design/ pentium4/datashts/298643.htm
JEDEC Double Data Rate (DDR) SDRAM Specification	www.jedec.org
Intel® PC SDRAM Specification	http://developer.intel.com/ technology/memory/pcsdram/spec/ index.htm
Accelerated Graphics Port Interface Specification, Revision 3.0	http://www.intel.com/technology/ agp/agp_index.htm
Digital Visual Interface (DVI) Specification, Revision 1.0	http://www.ddwg.org/ downloads.html

NOTE: For additional related documents, refer to the Intel® 875P Chipset Platform Design Guide./

1.3 Intel[®] 875P Chipset System Overview

Figure 1 shows an example block diagram of an 875P chipset-based platform. The 875P chipset is designed for use in a desktop system based on the Pentium 4 processor on 0.13 micron process and the Pentium 4 processor on 90 nm process. The processor interface supports the Pentium 4 processor subset of the Extended Mode of the Scalable Bus Protocol. In an 875P chipset-based platform, the MCH provides the processor interface, system memory interface, CSA interface, AGP interface, and hub interface.

The 875P chipset platform supports an external graphics device on AGP. The MCH's AGP interface supports 1X/4X/8X AGP data transfers and 4X/8X AGP Fast Writes, as defined in the *Accelerated Graphics Port Interface Specification, Revision 3.0* for 0.8 V signaling.

The MCH provides a Communications Streaming Architecture (CSA) Interface that connects the MCH to a Gigabit Ethernet (GbE) controller.

The 875P chipset platform support 4 GB of system memory. The memory can be 266/333/400 MHz Double Data Rate (DDR) memory components with a 64-bit wide data bus. Available bandwidth is 6.4 GB/s using DDR400 in dual-channel mode.

The 82801EB ICH5 / 82801ER ICH5R integrates an Ultra ATA 100 controller, two Serial ATA host controllers, one EHCI host controller, and four UHCI host controllers supporting eight external USB 2.0 ports, LPC interface controller, flash BIOS interface controller, PCI interface controller, AC '97 digital controller, integrated LAN controller, an ASF controller and a hub interface for communication with the MCH. The ICH5 component provides the data buffering and interface arbitration required to ensure that system interfaces operate efficiently and provide the bandwidth necessary to enable the system to obtain peak performance. The 82801ER ICH5R elevates Serial ATA storage performance to the next level with Intel® RAID Technology.

The ACPI compliant ICH5 platform can support the Full-on, Stop Grant, Suspend to RAM, Suspend to Disk, and Soft-Off power management states. Through the use of the integrated LAN functions, the ICH5 also supports Alert Standard Format for remote management.

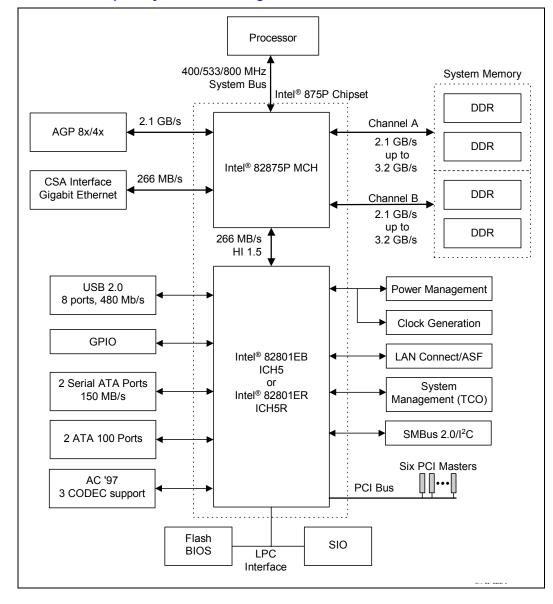


Figure 1. Intel® 875P Chipset System Block Diagram

1.4 Intel[®] 82875P MCH Overview

The 82875P Memory Controller Hub (MCH) provides the host bridge interfaces in a 875P chipset based platform. The MCH contains advanced desktop power management logic.

The MCH's role in a system is to manage the flow of information between its five interfaces: the processor Front Side Bus (FSB), the memory attached to the DRAM controller, the AGP 3.0 port, the Hub Interface, and CSA interface. This includes arbitrating between the five interfaces when each initiates an operation. While doing so, the MCH provides data coherency via snooping and performs address translation for access to AGP aperture memory. To increase system performance, the MCH incorporates several queues and a write cache.

The MCH supports Performance Acceleration Technology (PAT). PAT is only available when the MCH is set at FSB 800 MHz and DDR 400 MHz mode. PAT enables lower latency paths from the FSB to system memory. This enables increased system performance for the 875P chipset system.

1.4.1 Host Interface

The 82875P Memory Controller Hub (MCH) is designed for use with a single UP processor in a 478-pin package. The processor interface supports the Pentium 4 processor subset of the extended mode of the Scalable Bus Protocol. The MCH supports FSB frequencies of 400 MHz, 533 MHz, and 800 MHz (100 MHz, 133 MHz, and 200 MHz HCLK, respectively) using a scalable FSB VCC_CPU. The MCH supports 32-bit host addressing, decoding up to 4 GB of the processor's memory address space.

Host-initiated I/O cycles are decoded to AGP/PCI_B, hub interface, or MCH configuration space. Host-initiated memory cycles are decoded to AGP/PCI_B, hub interface, or system memory. All memory accesses from the host interface that hit the graphics aperture are translated using an AGP address translation table. AGP/PCI_B device accesses to non-cacheable system memory are not snooped on the host bus. Memory accesses initiated from AGP/PCI_B using PCI semantics and from the hub interface to system memory are snooped on the host bus.

1.4.2 System Memory Interface

The MCH integrates a system memory DDR controller with two 64-bit wide interfaces. Only Double Data Rate (DDR) memory is supported; consequently, the buffers support only SSTL_2 signal interfaces. The memory controller interface is fully configurable through a set of control registers.

System Memory Interface

- Supports one or two, 64-bit wide DDR data channels with 1 or 2 DIMMs per-channel
- Available bandwidth up to 3.2 GB/s (DDR400) for single-channel mode and 6.4 GB/s (DDR400) in dual-channel mode.
- Configurable optional ECC operation (single-bit Error Correction and multiple-bit Error Detection)
- Supports 128-Mb, 256-Mb, 512-Mb DDR technologies
- Supports only x8, x16, DDR devices with four banks
- Registered DIMMs not supported
- Supports opportunistic refresh
- SPD (Serial Presence Detect) scheme for DIMM detection support
- Suspend-to-RAM support using CKE
- Supports configurations defined in the JEDEC DDR1 DIMM specification only
- Performance Acceleration Technology support

Single-Channel DDR Configuration

- Up to 4.0 GB of DDR
- Supports up to four DDR DIMMs (two DIMMs per channel), single-sided and/or double-sided
- Supports DDR266, DDR333, or DDR400 unregistered ECC or non-ECC DDR DIMMs
- Does not support registered DIMMs
- Supports up to 32 simultaneously open pages
- Does not support mixed-mode / uneven double-sided DDR DIMMs
- Does not support double sided x16 DIMMS

Dual-Channel DDR Configuration - Lockstep

- Up to 4.0 GB of DDR
- Supports up to four DDR DIMMs (two DIMMs per channel), single-sided and/or double-sided
- Does not support double sided x16 DIMMS
- DIMMS must be populated in identical pairs for dual-channel operation
- Supports 16 simultaneously open pages (four per row)
- Supports DDR266, DDR333, or DDR400 unregistered non-ECC or ECC DDR DIMMs

1.4.3 Hub Interface

The Hub Interface (HI) connects the MCH to the I/O Controller Hub (ICH5). Most communication between the MCH and the I/O Controller Hub occurs over the hub interface. The MCH supports HI 1.5 that uses HI 1.0 protocol with HI 2.0 electrical characteristics. The hub interface runs at 266 MT/s (with 66-MHz base clock) and uses 1.5 V signaling. Accesses between the hub interface and AGP/PCI_B are limited to hub interface originated memory writes to AGP.

1.4.4 Communications Streaming Architecture (CSA) Interface

The CSA interface connects the MCH with a Gigabit Ethernet (GbE) controller. The MCH supports HI 1.5 over the interface that uses a HI 1.0 protocol with HI 2.0 electrical characteristics. The CSA interface runs at 266 MT/s (with 66-MHz base clock) and uses 1.5 V signaling.

1.4.5 AGP Interface

A single AGP or PCI 66 component or connector (not both) is supported by the MCH's AGP interface. Support for AGP 3.0 includes 0.8 V and 1.5 V AGP electrical characteristics. Support for a single PCI-66 device is limited to the subset supported by the AGP 2.0 specification. The AGP/PCI_B interface supports up to 8X AGP signaling and up to 8X fast writes. AGP semantic cycles to system memory are not snooped on the host bus. PCI semantic cycles to system memory are snooped on the host bus. The MCH supports PIPE# or SBA[7:0] AGP address mechanisms, but not both simultaneously. Either the PIPE# or the SBA[7:0] mechanism must be selected during system initialization. The MCH contains a 32-deep AGP request queue. High-priority accesses are supported.

1.5 Clock Ratios

Table 2 lists the supported system memory clock ratios. AGP, CSA, and HI run at 66-MHz common clock and are asynchronous to the chipset core. There is no required skew or ratio between FSB/chipset core and 66-MHz system clocks.

Table 2. System Memory Clock Ratios

Host Clock	DRAM Clock	Ratios	DRAM Data Rate	DRAM Type	Peak Bandwidth
100 MHz	133 MHz	3/4	266 MT/s	DDR-DRAM	2.1 GB/s
133 MHz	133 MHz	1/1	266 MT/s	DDR-DRAM	2.1 GB/s
200 MHz	133 MHz	3/2	266 MT/s	DDR-DRAM	2.1 GB/s
133 MHz	166 MHz	4/5	333 MT/s	DDR-DRAM	2.7 GB/s
200 MHz	160 MHz	5/4	320 MT/s	DDR-DRAM	2.6 GB/s
200 MHz	200 MHz	1/1	400 MT/s	DDR-DRAM	3.2 GB/s

Signal Description

2

This section provides a detailed description of MCH signals. The signals are arranged in functional groups according to their associated interface.

The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name the signal is asserted when at the high voltage level.

The following notations are used to describe the signal type:

I	Input pin
O	Output pin
I/O	Bi-directional Input/Output pin
s/t/s	Sustained Tri-state. This pin is driven to its inactive state prior to tri-stating.

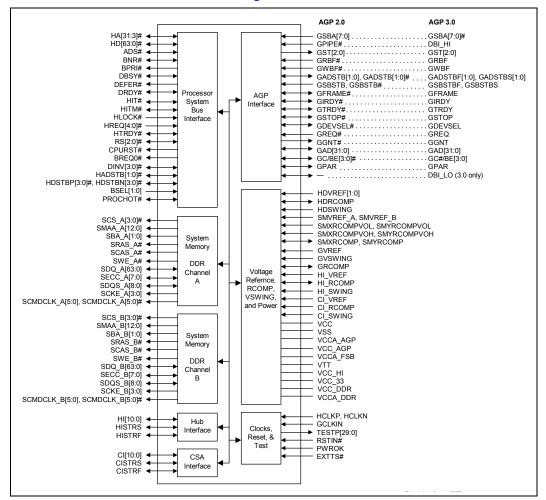
The signal description also includes the type of buffer used for the particular signal:

AGTL+	Open Drain AGTL+ interface signal. Refer to the AGTL+ I/O Specification for complete details. The MCH integrates AGTL+ termination resistors, and supports VTT from 1.15 V to 1.55 V.
AGP	AGP interface signals. These signals are compatible with AGP 2.0 1.5 V signaling and AGP 3.0 0.8 V swing signaling environment DC and AC specifications. The buffers are not 3.3 V tolerant.
HI15	Hub Interface 1.5 compatible signals and CSA signals

LVTTL Low Voltage TTL 3.3 V compatible signals

SSTL_2 Stub Series Terminated Logic 2.6 V compatible signals

2.6 VGPIO 2.6 V buffers used for miscellaneous GPIO signals


CMOS CMOS buffers

Host Interface signals that perform multiple transfers per clock cycle may be marked as either "4X" (for signals that are "quad-pumped") or 2X (for signals that are "double-pumped").

Note: Processor address and data bus signals are logically inverted signals. In other words, the actual values are inverted of what appears on the processor bus. This must be taken into account and the addresses and data bus signals must be inverted inside the MCH host bridge. All processor control signals follow normal convention. A 0 indicates an active level (low voltage) if the signal is followed by # symbol and a 1 indicates an active level (high voltage) if the signal has no # suffix.

Figure 2. Intel[®] 82875P MCH Interface Block Diagram

2.1 Host Interface Signals

Signal Name	Туре	Description
ADS#	I/O AGTL+	Address Strobe: The processor bus owner asserts ADS# to indicate the first of two cycles of a request phase. The MCH can assert this signal for snoop cycles and interrupt messages.
BNR#	I/O AGTL+	Block Next Request: This signal is used to block the current request bus owner from issuing a new request. This signal is used to dynamically control the processor bus pipeline depth.
BPRI#	O AGTL+	Priority Agent Bus Request: The MCH is the only Priority Agent on the processor bus. It asserts this signal to obtain ownership of the address bus. This signal has priority over symmetric bus requests and cause the current symmetric owner to stop issuing new transactions unless the HLOCK# signal was asserted.
BREQ0#	O AGTL+	Bus Request 0#: The MCH pulls the BREQ0# signal low during CPURST#. The signal is sampled by the processor on the active-to-inactive transition of CPURST#. The minimum setup time for this signal is 4 HCLKs. The minimum hold time is 2 clocks and the maximum hold time is 20 HCLKs. BREQ0# should be terminated high (Pulled up) after the hold time requirement has been satisfied. NOTE: This signal is called BR0# in the Intel processor specification.
BSEL[1:0]	I CMOS	Core / FSB Frequency (FSBFREQ) Select Strap. This strap is latched at the rising edge of PWROK. These pins have no default internal pull-up resistor. 00 = Core frequency is 100 MHz, FSB frequency is 400 MHz 01 = Core frequency is 133 MHz, FSB frequency is 533 MHz 10 = Core Frequency is 200 MHz, FSB frequency is 800 MHz 11 = Reserved
CPURST#	O AGTL+	CPU Reset: The CPURST# pin is an output from the MCH. The MCH asserts CPURST# while RSTIN# (PCIRST# from Intel [®] ICH5) is asserted and for approximately 1 ms after RSTIN# is deasserted. The CPURST# allows the processors to begin execution in a known state. Note that the ICH5 must provide processor frequency select strap setup and hold times around CPURST#. This requires strict synchronization between MCH CPURST# deassertion and ICH5 driving the straps.
DBSY#	I/O AGTL+	Data Bus Busy: This signal is used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
DEFER#	O AGTL+	Defer: DEFER# indicates that the MCH will terminate the transaction currently being snooped with either a deferred response or with a retry response.
DINV[3:0]#	I/O AGTL+ 4X	Dynamic Bus Inversion: These signals are driven along with the HD[63:0]# signals. They indicate if the associated signals are inverted. DINV[3:0]# are asserted such that the number of data bits driven electrically low (low voltage) within the corresponding 16-bit group never exceeds 8. DINV[x]# Data Bits DINV3# HD[63:48]# DINV2# HD[47:32]# DINV1# HD[31:16]# DINV0# HD[15:0]# NOTE: This signal is called DBI[3:0] in the Intel processor specification.
DRDY#	I/O AGTL+	Data Ready: This signal is asserted for each cycle that data is transferred.

Signal Name	Type	Description
HA[31:3]#	I/O AGTL+ 2X	Host Address Bus: HA[31:3]# connect to the processor address bus. During processor cycles, HA[31:3]# are inputs. The MCH drives HA[31:3]# during snoop cycles on behalf of HI and AGP/Secondary PCI initiators. HA[31:3]# are transferred at 2X rate. Note that the address is inverted on the processor bus. NOTE: The MCH drives the HA7# signal, which is then sampled by the processor and the MCH on the active-to-inactive transition of CPURST#. The minimum setup time for this signal is 4 HCLKs. The minimum hold time is 2 clocks and the maximum hold time is 20 HCLKs.
HADSTB[1:0]#	I/O AGTL+ 2X	Host Address Strobe: HADSTB[1:0]# are source synchronous strobes used to transfer HA[31:3]# and HREQ[4:0]# at the 2X transfer rate. Strobe Address Bits HADSTB0# A[16:3]#, REQ[4:0]# HADSTB1# A[31:17]#
HD[63:0]#	I/O AGTL+ 4X	Host Data: These signals are connected to the processor data bus. Data on HD[63:0]# is transferred at a 4X rate. Note that the data signals may be inverted on the processor bus, depending on the DINV[3:0] signals.
HDSTBP[3:0]# HDSTBN[3:0]#	I/O AGTL+ 4X	Differential Host Data Strobes: The differential source synchronous strobes used to transfer HD[63:0]# and DINV[3:0]# at the 4X transfer rate. Strobe Data Bits HDSTBP3#, HDSTBN3# HD[63:48]#, DINV3# HDSTBP2#, HDSTBN2# HD[47:32]#, DINV2# HDSTBP1#, HDSTBN1# HD[31:16]#, DINV1# HDSTBP0#, HDSTBN0# HD[15:0]#, DINV0#
HIT#	I/O AGTL+	Hit: This signal indicates that a caching agent holds an unmodified version of the requested line. HIT# is also driven in conjunction with HITM# by the target to extend the snoop window.
HITM#	I/O AGTL+	Hit Modified: This signal indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. HITM# is also driven in conjunction with HIT# to extend the snoop window.
HLOCK#	l AGTL+	Host Lock : All processor bus cycles sampled with the assertion of HLOCK# and ADS#, until the negation of HLOCK# must be atomic (i.e., no HI or AGP/PCI snoopable access to system memory are allowed when HLOCK# is asserted by the processor).
HREQ[4:0]#	I/O AGTL+ 2X	Host Request Command: These signals define the attributes of the request. HREQ[4:0]# are transferred at 2X rate. They are asserted by the requesting agent during both halves of request phase. In the first half the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half the signals carry additional information to define the complete transaction type. The transactions supported by the MCH Host bridge are defined in Chapter 5.

Signal Name	Туре		Description
HTRDY#	O AGTL+	Host Target Ready: This signal indicates that the target of the processor transaction is able to enter the data transfer phase.	
PROCHOT#	I/0 AGTL+	Processor Hot: monitor trip poin	This signal informs the chipset when processor Tj>thermal t.
	I/O AGTL+	Response Sign following:	als: These signals indicates type of response according to the
		Encoding	Response type
		000	Idle state
		001	Retry response
RS[2:0]#		010	Deferred response
		011	Reserved (not driven by MCH)
		100	Hard Failure (not driven by MCH)
		101	No data response
		110	Implicit Writeback
		111	Normal data response

The following is the list of processor bus interface signals that are **not** supported by the MCH:

Signal Name Not Supported	Function Not Supported	Thus, MCH Does Not Support
AP[1:0]#	Address Bus Parity	Parity protection on address bus
DP[3:0]#	Data Parity	Data parity errors on host interface
HA[35:32]	Upper Address Bits	Only supports a 4-GB system address space
RSP#	Response (RS) parity	Response parity errors on host interface
IERR#	Processor Internal Error	Responding to processor internal error
BINIT#	Bus Initialization Signal	Reset of the Host Bus state machines.
MCERR#	Machine Check Error	Signaling or recognition of Machine Check Error

2.2 Memory Interface

2.2.1 DDR DRAM Interface A

The following DDR signals are for DDR channel A.

Signal Name	Type	Description	
SCMDCLK_A[5:0]	O SSTL_2	Differential DDR Clock: SCMDCLK_Ax and SCMDCLK_Ax# pairs are differential clock outputs. The crossing of the positive edge of SCMDCLK_Ax and the negative edge of SCMDCLK_Ax# is used to sample the address and control signals on the DRAM. There are three pairs to each DIMM.	
SCMDCLK_A[5:0]#	O SSTL_2	Complementary Differential DDR Clock: These are the complementary Differential DDR Clock signals.	
SCS_A[3:0]#	O SSTL_2	Chip Select: These signals select particular DRAM components during the active state. There is one SCS_A# for each DRAM row, toggled on the positive edge of SCMDCLK_A.	
SMAA_A[12:0]	O SSTL_2	Memory Address: These signals are used to provide the multiplexed row and column address to the DRAM.	
SBA_A[1:0]	O SSTL_2	Bank Select (Bank Address): These signals define which banks are selected within each DRAM row. Bank select and memory address signals combine to address every possible location within an DRAM device.	
SRAS_A#	O SSTL_2	Row Address Strobe: This signal is used with SCAS_A# and SWE_A# (along with SCS_A#) to define the DRAM commands.	
SCAS_A#	O SSTL_2	Column Address Strobe: This signal is used with SRAS_A# and SWE_A# (along with SCS_A#) to define the DRAM commands.	
SWE_A#	O SSTL_2	Write Enable: This signal is used with SCAS_A# and SRAS_A# (along with SCS_A#) to define the DRAM commands.	
SDQ_A[63:0]	I/O SSTL_2	Data Lines: SDQ_A signals interface to the DRAM data bus.	
		Data Strobes: Data strobes are used for capturing data. During writes, SDQS_A is centered in data. During reads, SDQS_A is edge aligned with data. The following list matches the data strobe with the data bytes.	
		Data Strobes Data Bytes	
		SDQS_A8 SECC_A[7:0]	
		SDQS_A7 SDQ_A[63:56]	
SDQS_A[8:0]	I/O	SDQS_A6 SDQ_A[55:48]	
	SSTL_2	SDQS_A5 SDQ_A[47:40]	
		SDQS_A4 SDQ_A[39:32]	
		SDQS_A3 SDQ_A[31:24]	
		SDQS_A2 SDQ_A[23:16]	
		SDQS_A1 SDQ_A[15:8]	
		SDQS_A0 SDQ_A[7:0]	
SCKE_A[3:0]	O SSTL_2	Clock Enable: SCKE_A is used to initialize DDR DRAM during power-up and to place all DRAM rows into and out of self-refresh during Suspend-to-RAM. SCKE_A is also used to dynamically power down inactive DRAM rows. There is one SCKE_A per DRAM row, toggled on the positive edge of SCMDCLK_A.	
SECC_A{7:0]	I/O SSTL-2	ECC Data bits : These signals provide the 8-bit ECC data, running at 2X data rate. The data is source synchronous using the DQS Strobes.	

2.2.2 DDR DRAM Interface B

The following DDR signals are for DDR channel B.

Signal Name	Туре	Description
SCMDCLK_B[5:0]	O SSTL_2	Differential DDR Clock: SCMDCLK_Bx and SCMDCLK_Bx# pairs are differential clock outputs. The crossing of the positive edge of SCMDCLK_Bx and the negative edge of SCMDCLK_Bx# is used to sample the address and control signals on the DRAM. There are three pairs to each DIMM.
SCMDCLK_B[5:0]#	O SSTL_2	Complementary Differential DDR Clock: These are the complementary differential DDR Clock signals.
SCS_B[3:0]#	O SSTL_2	Chip Select: These signals select particular DRAM components during the active state. There is one SCS_B# for each DRAM row, toggled on the positive edge of SCMDCLK_B.
SMAA_B[12:0]	O SSTL_2	Memory Address: These signals are used to provide the multiplexed row and column address to the DRAM.
SBA_B[1:0]	O SSTL_2	Bank Select (Bank Address): These signals define which banks are selected within each DRAM row. Bank select and memory address signals combine to address every possible location within an DRAM device.
SRAS_B#	O SSTL_2	Row Address Strobe: This signal is used with SCAS_B# and SWE_B# (along with SCS_B#) to define the DRAM commands.
SCAS_B#	O SSTL_2	Column Address Strobe: This signal is used with SRAS_B# and SWE_B# (along with SCS_B#) to define the DRAM commands.
SWE_B#	O SSTL_2	Write Enable: This signal is used with SCAS_B# and SRAS_B# (along with SCS_B#) to define the DRAM commands.
SDQ_B[63:0]	I/O SSTL_2	Data Lines: SDQ_B signals interface to the DRAM data bus.
SDQS_B[8:0]	I/O SSTL_2	Data Strobes: Data strobes are used for capturing data. During writes, SDQS_B is centered in data. During reads, SDQS_B is edge aligned with data. The following list matches the data strobe with the data bytes.Data StrobesData BytesSDQS_B8SECC_B[7:0]SDQS_B7SDQ_B[63:56]SDQS_B6SDQ_B[55:48]SDQS_B5SDQ_B[47:40]SDQS_B4SDQ_B[39:32]SDQS_B3SDQ_B[31:24]SDQS_B2SDQ_B[23:16]SDQS_B1SDQ_B[15:8]SDQS_B0SDQ_B[7:0]
SCKE_B[3:0]	O SSTL_2	Clock Enable: SCKE_B is used to initialize DDR DRAM during power-up and to place all DRAM rows into and out of self-refresh during Suspend-to-RAM. SCKE_B is also used to dynamically power down inactive DRAM rows. There is one SCKE_B per DRAM row, toggled on the positive edge of SCMDCLK_B.
SECC_B{7:0]	I/O SSTL-2	ECC Data bits : These signals provide the 8-bit ECC data, running at 2X data rate. The data is source synchronous using the DQS Strobes.

2.3 Hub Interface

Package/ Signal Name	Type	Description
HI[10:0]	I/O sts HI15	Packet Data: HI[10:0] are the data signals used for HI read and write operations.
HISTRS	I/O sts HI15	Packet Strobe: HISTRS is one of two differential strobe signals used to transmit or receive packet data over HI.
HISTRF	I/O sts HI15	Packet Strobe Complement: HISTRF is one of two differential strobe signals used to transmit or receive packet data over HI.

2.4 CSA Interface

Package/ Signal Name	Type	Description
CI[10:0]	I/O sts HI15	Packet Data: CI[10:0] are the data signals used for CI read and write operations.
CISTRS	I/O sts HI15	Packet Strobe: CISTRS is one of two differential strobe signals used to transmit or receive packet data over CI.
CISTRF	I/O sts HI15	Packet Strobe Complement: CISTRF is one of two differential strobe signals used to transmit or receive packet data over CI.

2.5 AGP Interface Signals

2.5.1 AGP Addressing Signals

Signal Name	Type	Description
		Pipelined Read: This signal is asserted by the current master to indicate a full width address is to be queued by the target. The master enqueues one request each rising clock edge while GPIPE# is asserted. When GPIPE# is deasserted no new requests are enqueued across the GAD bus.
		GPIPE# may be used in AGP 2.0 signaling modes, but is not permitted by the AGP 3.0 Spec. When operating in AGP 3.0 signaling mode, the GPIPE# signal is used for DBI_HI.
ODIDE# (0.0)		GPIPE# is a sustained tri-state signal from the master (graphics controller) and is an input to the MCH.
GPIPE# (2.0)	I/O	In AGP 3.0 signaling mode this signal is Dynamic Bus Inversion HI:
DBI_HI (3.0)	AGP	DYNAMIC BUS Inversion HI : This signal goes along with GAD[31:16] to indicate whether GAD[31:16] must be inverted on the receiving end.
		DBI_HI = 0: GAD[31:16] are not inverted so receiver may use as is.
		DBI_HI= 1: GAD[31:16] are inverted so receiver must invert before use.
		The GADSTBF1 and GADSTBS1 strobes are used with DBI_HI. In AGP 3.0 4X data rate mode dynamic bus inversion is disabled by the MCH while transmitting (data never inverted and BI_HI driven low); dynamic bus inversion is enabled when receiving data. For 8X data rate, dynamic bus inversion is enabled when transmitting and receiving data.
		Sideband Address: This bus provides an additional bus to pass address and command to the MCH from the AGP master.
GSBA[7:0] (2.0) GSBA#[7:0] (3.0)	I AGP	NOTE: In AGP 2.0 signaling mode, when sideband addressing is disabled, these signals are isolated. When sideband addressing is enabled, internal pull-ups are enabled to prevent indeterminate values on them in cases where the graphics card may not have its GSBA[7:0] output drivers enabled yet.

NOTES:

- 1. The previous table contains two mechanisms to queue requests by the AGP master. Note that the master can only use one mechanism. When GPIPE# is used to queue addresses the master is not allowed to queue addresses using the SB bus. For example, during configuration time, if the master indicates that it can use either mechanism, the configuration software will indicate which mechanism the master will use. Once this choice has been made, the master will continue to use the mechanism selected until the master is reset (and reprogrammed) to use the other mode. This change of modes is not a dynamic mechanism but rather a static decision when the device is first being configured after reset.
- 2. The term (2.0) following a signal name indicates its function in AGP 2.0 signaling mode (1.5 V swing).
- 3. The term (3.0) following a signal name indicates its function in AGP 3.0 signaling mode (0.8 V swing).

AGP Flow Control Signals 2.5.2

Signal Name	Туре	Description
GRBF# (2.0) GRBF (3.0)	I AGP	Read Buffer Full: This signal indicates if the master is ready to accept previously requested low priority read data. When GRBF(#) is asserted the MCH is not allowed to return low priority read data to the AGP master on the first block. GRBF(#) is only sampled at the beginning of a cycle. If the AGP master is always ready to accept return read data, it is not required to implement this signal.
GWBF# (2.0) GWBF (3.0)	I AGP	Write Buffer Full: This signal indicates if the master is ready to accept fast write data from the MCH. When GWBF(#) is asserted, the MCH is not allowed to drive fast write data to the AGP master. GWBF(#) is only sampled at the beginning of a cycle. If the AGP master is always ready to accept fast write data, it is not required to implement this signal.

- The term (2.0) following a signal name indicates its function in AGP 2.0 signaling mode (1.5 V swing).
 The term (3.0) following a signal name indicates its function in AGP 3.0 signaling mode (0.8 V swing).

2.5.3 **AGP Status Signals**

Signal Name	Type	Description	
GST[2:0] (2.0) GST[2:0] (3.0)	O AGP	Status: These signals provide information from the arbiter to a AGP Master on what it may do. GST[2:0] only have meaning to the master when its GGNT(#) is asserted. When GGNT(#) is deasserted, these signals have no meaning and must be ignored. GST[2:0] are always an output from the MCH and an input to the master.	
		Encoding	Meaning
		000 Previously requested low priority read data (Async read for AGP 3.0 signaling mode) is being returned to the master.	
		001 Previously requested high priority read data is being returned to the master. Reserved in AGP 3.0 signaling mode.	
		The master is to provide low priority write data (Async write for AGP 3.0 signaling mode) for a previously queued write command.	
		O11 The master is to provide high priority write data for a previously queued write command. Reserved in AGP 3.0 signaling mode	
		100 Reserved	
		101	Reserved
		110	Reserved
		111	The master has been given permission to start a bus transaction. The master may queue AGP requests by asserting GPIPE# (4X signaling mode) or start a PCI transaction by asserting GFRAME(#).

2.5.4 AGP Strobes

Signal Name	Туре	Description
GADSTB0 (2.0) GADSTBF0 (3.0)	I/O (s/t/s) AGP	AD Bus Strobe-0: GADSTB0 provides timing for 4X clocked data on GAD[15:0] and GC/BE[1:0]# in AGP 2.0 signaling mode. The agent that is providing data drives this signal. AD Bus Strobe First-0: In AGP 3.0 signaling mode GADSTBF0 strobes the first and all odd numbered data items with a low-to-high transition. It is used with GAD [15:0] and GC#/BE[1:0]
GADSTB0# (2.0) GADSTBS0 (3.0)	I/O (s/t/s) AGP	AD Bus Strobe-0 Complement: GADSTB0# is the differential complement to the GADSTB0 signal. It is used to provide timing for 4X clocked data in AGP 2.0 signaling mode. AD Bus Strobe Second-0: In AGP 3.0 signaling mode GADSTBS0 strobes the second and all even numbered data items with a low-to-high transition.
GADSTB1 (2.0) GADSTBF1 (3.0)	I/O (s/t/s) AGP	AD Bus Strobe-1: GADSTB1 provides timing for 4X clocked data on GAD[31:16] and GC/BE[3:2]# in AGP 2.0 signaling mode. The agent that is providing data drives this signal. AD Bus Strobe First-1: In AGP 3.0 signaling mode GADSTBF1 strobes the first and all odd numbered data items with a low-to-high transition. It is used with GAD[31:16], GC#/BE[3:2], DBI_HI, and DBI_LO.
GADSTB1# (2.0) GADSTBS1 (3.0)	I/O (s/t/s) AGP	AD Bus Strobe-1 Complement: GADSTB1# is the differential complement to the GADSTB1 signal. It is used to provide timing for 4X clocked data in AGP 2.0 signaling mode. AD Bus STrobe Second-1: In AGP 3.0 signaling mode GADSTBS1 strobes the second and all even numbered data items with a low-to-high transition.
GSBSTB (2.0) GSBSTBF (3.0)	l AGP	Sideband Strobe: GSBSTB provides timing for 4X clocked data on the GSBA[7:0] bus in AGP 2.0 signaling mode. It is driven by the AGP master after the system has been configured for 4X clocked sideband address delivery. Sideband Strobe First: In AGP 3.0 signaling mode GSBSTBF strobes the first and all odd numbered data items with a low-to-high transition.
GSBSTB# (2.0) GSBSTBS (3.0)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

- **NOTE:**1. The term *(2.0)* following a signal name indicates its function in AGP 2.0 signaling mode (1.5 V swing).
 2. The term *(3.0)* following a signal name indicates its function in AGP 3.0 signaling mode (0.8 V swing).

2.5.5 PCI Signals-AGP Semantics

PCI signals are redefined when used in AGP transactions carried using AGP protocol extension. For transactions on the AGP interface carried using PCI protocol, these signals completely preserve PCI 2.1 semantics. The exact roles of all PCI signals during AGP transactions are defined in the following table.

Signal Name	Туре	Description	
GFRAME# (2.0) GFRAME (3.0)	I/O s/t/s AGP	GFRAME(#): This signal is driven by the current master to indicate the beginning and duration of a standard PCI protocol ("Frame-based") transaction and during fast writes. This signal is not used, and must be inactive during AGP transactions.	
GIRDY# (2.0) GIRDY (3.0)	I/O s/t/s AGP	GIRDY(#): This signal is used for both GFRAME (#) based and AGP transactions. During AGP transactions, it indicates the AGP compliant master is ready to provide all write data for the current transaction. Once GIRDY (#) is asserted for a write operation, the master is not allowed to insert wait states. The assertion of GIRDY(#) for reads indicates that the master is ready to transfer to a subsequent block (4 clocks) of read data. The master is never allowed to insert a wait state during the initial data transfer (first 4 clocks) of a read transaction. However, it may insert wait states after each 4-clock block is transferred. (There is no GFRAME(#) — GIRDY(#) relationship for AGP transactions.)	
GTRDY# (2.0) GTRDY (3.0)	I/O s/t/s AGP	GTRDY(#): This signal is used for both GFRAME(#) based and AGP transactions. During AGP transactions, it indicates the AGP compliant target is ready to provide read data for the entire transaction (when the transfer size is less than or equal to 4 clocks) or is ready to transfer the initial or subsequent block (4 clocks) of data when the transfer size is greater than 4 clocks. The target is allowed to insert wait states after each block (4 clocks) is transferred on both read and write transactions.	
GSTOP# (2.0) GSTOP (3.0)	I/O s/t/s AGP	GSTOP(#): This signal is used during GFRAME(#) based transactions by the target to request that the master stop the current transaction. This signal is not used during AGP transactions.	
GDEVSEL# (2.0) GDEVSEL (3.0)	I/O s/t/s AGP	Device Select: During GFRAME (#) based accesses, GDEVSEL(#) is driven active by the target to indicate that it is responding to the access. This signal is not used during AGP transactions.	
GREQ# (2.0) GREQ (3.0)	I AGP	Request: This signal is an output from the AGP device. It is used to request access to the bus to initiate a PCI (GFRAME(#)) or AGP(GPIPE(#)) request. This signal is not required to initiate an AGP request via SBA.	
GGNT# (2.0) GGNT (3.0)	O AGP	Grant: This signal is an output of the MCH either granting the bus to the AGP device to initiate a GFRAME(#) or GPIPE(#) access (in response to GREQ(#) active) or to indicate that data is to be transferred for a previously enqueued AGP transaction. GST[2:0] indicates the purpose of the grant.	
GAD[31:0] (2.0) GAD[31:0] (3.0)	I/O AGP	Address/Data: These signals provide the address for GFRAME(#) and GPIPE(#) transactions, and the data for all transactions. They operate at a 1X data rate for GFRAME(#) based cycles, and operate at the specified channel rate (1X, 4X, or 8X) for AGP data phases and fast write data phases.	
GC/BE[3:0]# (2.0) GC#/BE[3:0] (3.0)	I/O AGP	Command/Byte Enables: These signals provide the command during the address phase of a GFRAME(#) or GPIPE(#) transaction, and byte enables during data phases. Byte enables are not used for read data of AGP 1X and 2X and 4X and 8X reads. These signals operate at the same data rate as the GAD[31:0] signals at any given time.	
GPAR (2.0) GPAR (3.0)	I/O AGP	Parity: This signal is not used on AGP transactions but is used during GFRAME(#) based transactions as defined by the PCI specification. GPAR is not used during fast writes. This signal contains an internal pull-up.	

Signal Name	Type	Description
	1/0	Dynamic Bus Inversion LO: This signal goes along with GAD[15:0] to indicate whether GAD[15:0] must be inverted on the receiving end.
		DBI_LO= 0: GAD[15:0] are not inverted so receiver may use as is.
		DBI_LO= 1: GAD[15:0] are inverted so receiver must invert before use.
DBI_LO (3.0 only)	I/O AGP	The GADSTBF1 and GADSTBS1 strobes are used with the DBI_LO. Dynamic bus inversion is used in AGP 3.0 signaling mode only. In AGP 3.0 4X data rate mode dynamic bus inversion is disabled by the MCH while transmitting (data never inverted and DBI_LO driven low); it is enabled when receiving data, For 8X data rate, dynamic bus inversion is enable when transmitting and receiving data.

NOTES:

- 1. PCIRST# from the ICH5 is connected to RSTIN# and is used to reset AGP interface logic within the MCH. The AGP agent will also typically use PCIRST# provided by the ICH5 as an input to reset its internal logic.
- 2. LOCK# signal is not supported on the AGP interface (even for PCI operations).
- The term (2.0) following a signal name indicates its function in AGP 2.0 signaling mode (1.5 V swing).
 The term (3.0) following a signal name indicates its function in AGP 3.0 signaling mode (0.8 V swing).

2.5.5.1 **PCI Pins During PCI Transactions on AGP Interface**

PCI signals described above behave according to PCI 2.1 specifications when used to perform PCI transactions on the AGP interface.

2.6 Clocks, Reset, and Miscellaneous

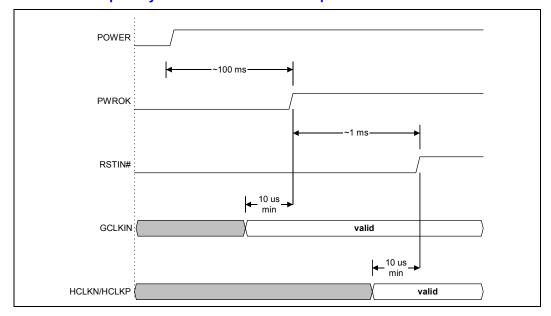
Signal Name	Type	Description	
TESTP[3:0]	O 3.3 V GPIO	Test Point: These signals are used as part the XOR/ALL Z test chain and should be routed to a VIA for XOR testing.	
TESTP[29:4]	O SSTL_2	Test Point: These signals route to pull-up for XOR/ALL Z test chain usage.	
HCLKP HCLKN	I CMOS	Differential Host Clock In: These pins receive a low-voltage differential host clock from the external clock synthesizer. This clock is used by all of the MCH logic that is in the Host clock domain. 0.7 V	
GCLKIN	I LVTTL (3.3 V)	66 MHz Clock In: . This pin receives a 66 MHz clock from the clock synthesizer. This clock is used by AGP/PCI and HI clock domains. Note that this clock input is required to be 3.3 V tolerant.	
RSTIN#	I LVTTL (3.3 V)	Reset In: When asserted, this signal asynchronously resets the MCH logic. This signal is connected to the PCIRST# output of the ICH5. All AGP/PCI output and bi-directional signals will also tri-state compliant to PCI Revision 2.0 and 2.1 specifications. This input should have a Schmitt trigger to avoid spurious resets. Note that this input needs to be 3.3 V tolerant.	
PWROK	I LVTTL (3.3 V)	Power OK: When asserted, PWROK is an indication to the MCH that the core power and GCLKIN have been stable for at least 10 μs.	
EXTTS#	I LVTTL (3.3 V)	External Thermal Sensor Input: EXTTS# is an open-drain signal indicating an Over-Temp condition in the platform. This signal should remains asserted for as long as the Over-temp Condition exists. This input pin can be programmed to activate hardware management of memory reads and writes and/or trigger software interrupts.	

2.7 RCOMP, VREF, VSWING

Signal Name	Type	Description	
HDVREF[1:0]	I	Host Data Reference Voltage: HDVREF[1:0] are reference voltage inputs for the data signals of the host AGTL+ interface.	
HDRCOMP	I/O CMOS	Host RCOMP: HDRCOMP is used to calibrate the host AGTL+ I/O buffers.	
HDSWING	I	Host Voltage Swing: These signals provide a reference voltage used by the FSB RCOMP circuit.	
SMVREF_A	I	Memory Reference Voltage for Channel A: Reference voltage input for system memory interface.	
SMXRCOMPVOL	I	Memory RCOMP for Channel A: This signal is used to Calibrate V _{OL} .	
SMXRCOMPVOH	I	Memory RCOMP for Channel A: This signal is used to Calibrate V _{OH} .	
SMXRCOMP	I/O CMOS	Memory RCOMP for Channel A: This signal is used to calibrate the memory I/O buffers.	
SMVREF_B	I	Memory Reference Voltage for Channel B: This signal is a reference voltage input for System Memory Interface.	
SMYRCOMPVOL	I	Memory RCOMP for Channel B: This signal is used to Calibrate V _{OL} .	
SMYRCOMPVOH	I	Memory RCOMP for Channel B: This signal is used to Calibrate V _{OH} .	
SMYRCOMP	I/O CMOS	Memory RCOMP for Channel B: This signal is used to calibrate the memory I/O buffers.	
GVREF	I	AGP Reference: This signal is the reference voltage for the AGP I/O buffers is 0.75 V.	
GVSWING	I	AGP Voltage Swing : This signal provides a reference voltage for GRCOMP in AGP mode.	
GRCOMP	I/O CMOS	Compensation for AGP: This signal is used to calibrate the AGP buffers. This signal should be pulled up through a 43 Ω resistor.	
HI_VREF	I	HI Reference: This signal provides the reference voltage input for the HI interface.	
HI_RCOMP	I/O CMOS	Compensation for HI: This signal is used to calibrate the HI I/O buffers.	
HI_SWING	I	HI Voltage Swing: This signal provides a reference voltage used by the HI_RCOMP circuit.	
CI_VREF	I	CSA Reference: This signal provides the reference voltage input for the CSA interface.	
CI_RCOMP	I/O CMOS	Compensation for CSA: This signal is used to calibrate the CSA I/O buffers.	
CI_SWING	I	CSA Voltage Swing: This signal provides a reference voltage used by the CI_RCOMP circuit.	

NOTE: Reference the *Intel*® 875*P Chipset Platform Design Guide* for platform design information.

2.8 Power and Ground Signals


Signal Name	Description
VCC	VCC Supply: This is the 1.5 V core.
VSS	Gnd Supply
VCC_AGP	VCC for AGP: This value can be either 0.8 V or 1.5 V as the MCH supports both AGP electrical characteristics.
VCCA_AGP	AGP PLL Power: This is the 1.5 V analog AGP supply.
VCCA_FSB	Analog VCC for the Host PLL: This 1.5 V supply requires special filtering. Refer to the Intel [®] 875P Chipset Platform Design Guide for details.
VTT	VTT Supply: VTT is a FSB supply and has a range of 1.1 V-1.55 V.
VCC_HI	Hub VCC Power: This is a 1.5 V supply for the hub interface and CSA interface.
VCC_33	3.3 V Supply: This supply is used for XOR Chain testing.
VCC_DDR	VCC for System Memory: VCC_DDR is 2.6 V for DDR.
VCCA_DDR	Analog VCC for System Memory: This signal is a 1.5 V supply for DDR. The supply requires special filtering. Refer to the Intel® 875P Chipset Platform Design Guide for details.

2.9 MCH Sequencing Requirements

Power Plane and Sequencing Requirements:

- Clock Valid Timing:
- GCLKIN must be valid at least 10 µs prior to the rising edge of PWROK.
- HCLKN/HCLKP must be valid at least 10 µs prior to the rising edge of RSTIN#.

Figure 3. Intel® 875P Chipset System Clock and Reset Requirements

The MCH uses the rising edge of PWROK to latch straps values. During S3, when power is not valid, the MCH requires that PWROK de-assert and then re-assert when power is valid so that it can properly re-latch the straps.

2.10 Signals Used As Straps

2.10.1 Functional Straps

Signal Name	Strap Name	Description
HA7#	FSB IOQ Depth	The value on HA7# is sampled by all processor bus agents, including the MCH, on the de-asserting edge of CPURST#.
		NOTE: For HA7# the minimum setup time is 4 HCLKs. The minimum hold time is 2 clocks and the maximum hold time is 20 HCLKs.
		The latched value determines the maximum IOQ depth supported on the processor bus.
		0 (low voltage) = BUS IOQ depth on the bus is 1
		1 (high voltage) = BUS IOQ depth on the bus is the maximum of 12

NOTE:

2.10.2 Strap Input Signals

Signal Name	Type	Description		
BSEL[1:0]	I CMOS	Core / FSB Frequency (FSBFREQ) Select Strap: This strap is latched at the rising edge of PWROK. These pins has no default internal pull-up resistor.		
		00 = Core frequency is 100 MHz, FSB frequency is 400 MHz		
		01 = Core frequency is 133 MHz, FSB frequency is 533 MHz		
		10 = Core Frequency is 200 MHz, FSB frequency is 800 MHz		
		11 = Reserved		

2.10.3 Test Mode Straps

Signal Name	Strap Name	AGP 2.0: Strap Sampled High Voltage OR TESTIN# High AGP 3.0: Strap Sampled Low Voltage OR TESTIN# High	AGP 2.0: Strap Sampled Low Voltage AND TESTIN# Low AGP 3.0: Strap Sampled High Voltage AND TESTIN# Low
GSBA7	All Z	Normal	All Z
GSBA6	XOR Chain Test Mode	Normal	XOR Mode

^{1.} All straps, have internal 8 k Ω pull-ups (HA7# has GTL pull-up) enabled during their sampling window. Therefore, a strap that is not connected or not driven by external logic will be sampled high.

Warm Reset

Running

Running

2.11 Full and Warm Reset States

ICH5 PWROK In

ICH5 PCIRST# Out
MCH RSTIN# In

MCH CPURST# Out
MCH Power

Figure 4. Full and Warm Reset Waveforms

All register bits assume their default values during full reset. PCIRST# resets all internal flops and state machines (except for a few configuration register bits). A full reset occurs when PCIRST# (MCH RSTIN#) is asserted and PWROK is deasserted (see Table 3). A warm reset occurs when PCIRST# (MCH RSTIN#) is asserted and PWROK is also asserted.

Full Reset | Warm Reset

Table 3. Full and Warm Reset States

MCH PWROK In

MCH Reset State

Reset State	RSTIN#	PWROK
Full Reset	L	L
Warm Reset	L	Н
Does Not Occur	Н	L
Normal Operation	Н	Н

Unknown

This page is intentionally left blank.

Register Description

The MCH contains two sets of software accessible registers, accessed via the host processor I/O address space:

- Control registers I/O mapped into the processor I/O space that controls access to PCI and AGP configuration space.
- Internal configuration registers residing within the MCH are partitioned into logical device register rests ("logical" since they reside within a single physical device). The first register set is dedicated to host-hub interface functionality (controls PCI bus 0, i.e., DRAM configuration, other chipset operating parameters, and optional features). The second register block is dedicated to host-AGP/PCI_B bridge functions (controls AGP/PCI_B interface configurations and operating parameters). The third register set is dedicated to host-CSA control.

The MCH supports PCI configuration space accesses using the mechanism denoted as Configuration Mechanism 1 in the PCI specification. The MCH internal registers (both I/O mapped and configuration registers) are accessible by the host processor. The registers can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities, with the exception of CONFIG_ADDRESS which can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., Lower addresses contain the least significant parts of the field).

3.1 Register Terminology

Term	Description
RO	Read Only. If a register is read only, writes to this register have no effect.
R/W	Read/Write. A register with this attribute can be read and written.
R/W/L	Read/Write/Lock. A register with this attribute can be read, written, and Locked.
R/WC	Read/Write Clear. A register bit with this attribute can be read and written. However, a write of a 1 clears (sets to 0) the corresponding bit and a write of a 0 has no effect.
R/WO	Read/Write Once. A register bit with this attribute can be written to only once after power up. After the first write, the bit becomes read only.
L	Lock. A register bit with this attribute becomes Read Only after a lock bit is set.
Reserved Bits	Some of the MCH registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note that software does not need to perform a read-merge-write operation for the Configuration Address (CONFIG_ADDRESS) register.

Term	Description
Reserved Registers	In addition to reserved bits within a register, the MCH contains address locations in the configuration space of the Host-HI bridge entity that are marked either "Reserved" or "Intel Reserved". The MCH responds to accesses to "Reserved" address locations by completing the host cycle. When a "Reserved" register location is read, a zero value is returned. ("Reserved" registers can be 8, 16, or 32 bits in size). Writes to "Reserved" registers have no effect on the MCH. Registers that are marked as "Intel Reserved" must not be modified by system software. Writes to "Intel Reserved" registers may cause system failure. Reads to "Intel Reserved" registers may return a non-zero value.
Default Value upon a Reset	Upon a reset, the MCH sets all of its internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bring up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the MCH registers accordingly.

3.2 Platform Configuration Structure

In some previous chipsets, the "MCH" and the "I/O Controller Hub (ICHx)" were physically connected by PCI bus 0. From a configuration standpoint, both components appeared to be on PCI bus 0 which was also the system's primary PCI expansion bus. The MCH contained two PCI devices while the ICHx was considered one PCI device with multiple functions.

In the 875P chipset platform the configuration structure is significantly different. The MCH and the ICH5 are physically connected by the hub interface; thus, from a configuration standpoint, the hub interface is logically PCI bus 0. As a result, all devices internal to the MCH and ICH5 appear to be on PCI bus 0. The system's primary PCI expansion bus is physically attached to the ICH5 and, from a configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore, it has a programmable PCI Bus number. Note that the primary PCI bus is referred to as PCI_A in this document and is **not** PCI bus 0 from a configuration standpoint. The AGP appears to system software to be real PCI bus behind PCI-to-PCI bridges resident as devices on PCI bus 0.

The MCH contains four PCI devices within a single physical component. The configuration registers for the four devices are mapped as devices residing on PCI bus 0.

- **Device 0:** Host-HI bridge/DRAM controller. Logically, this appears as a PCI device residing on PCI bus 0. Physically, Device 0 contains the standard PCI registers, DRAM registers, the Graphics Aperture controller, configuration for HI, and other MCH specific registers.
- **Device 1:** Host-AGP bridge. Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus 0. Physically, Device 1 contains the standard PCI-to-PCI bridge registers and the standard AGP/PCI configuration registers (including the AGP I/O and memory address mapping).
- Device 3: CSA Port. This device appears as a Virtual PCI-CSA (PCI-to-PCI) bridge device.
- **Device 6:** Function 0: Overflow Device. The purpose of this device is to provide additional configuration register space for Device 0.

Table 4 shows the Device # assignment for the various internal MCH devices.


Table 4. Internal MCH Device Assignment

MCH Function	Bus #0, Device #
DRAM Controller/8-bit HI Controller	Device 0
Host-to-AGP Bridge (virtual PCI-to-PCI)	Device 1
Intergrated GBE (CSA)	Device 3
Overflow	Device 6

Logically, the ICH5 appears as multiple PCI devices within a single physical component also residing on PCI bus 0. One of the ICH5 devices is a PCI-to-PCI bridge. Logically, the primary side of the bridge resides on PCI 0 while the secondary side is the standard PCI expansion bus.

Note: A physical PCI bus 0 does not exist and that HI and the internal devices in the MCH and ICH5 logically constitute PCI Bus 0 to configuration software.

Figure 5. Conceptual Intel® 875P Chipset Platform PCI Configuration Diagram

3.3 Routing Configuration Accesses

The MCH supports two bus interfaces: HI and AGP/PCI. PCI configuration cycles are selectively routed to one of these interfaces. The MCH is responsible for routing PCI configuration cycles to the proper interface. PCI configuration cycles to ICH5 internal devices and Primary PCI (including downstream devices) are routed to the ICH5 via HI. AGP/PCI_B configuration cycles are routed to AGP. The AGP/PCI_B interface is treated as a separate PCI bus from the configuration point of view. Routing of configuration AGP/PCI_B is controlled via the standard PCI-to-PCI bridge mechanism using information contained within the Primary Bus Number, the Secondary Bus Number, and the Subordinate Bus Number Registers of the corresponding PCI-to-PCI bridge device.

A detailed description of the mechanism for translating processor I/O bus cycles to configuration cycles on one of the buses is described in the following sections.

3.3.1 Standard PCI Bus Configuration Mechanism

The PCI Bus defines a slot based "configuration space" that allows each device to contain up to eight functions with each function containing up to 256, 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the processor. Configuration space is supported by a mapping mechanism implemented within the MCH. The PCI 2.3 specification defines the configuration mechanism to access configuration space. The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O address 0CF8h though 0CFBh) and CONFIG_DATA Register (at I/O address 0CFCh through 0CFFh). To reference a configuration register a DWord I/O write cycle is used to place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device, and a specific configuration register of the device function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA will result in the MCH translating the CONFIG_ADDRESS into the appropriate configuration cycle.

The MCH is responsible for translating and routing the processor's I/O accesses to the CONFIG_ADDRESS and CONFIG_DATA registers to internal MCH configuration registers, HI or AGP/PCI_B.

3.3.2 PCI Bus 0 Configuration Mechanism

The MCH decodes the Bus Number (bits 23:16) and the Device Number fields of the CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0, the configuration cycle is targeting a PCI Bus 0 device. The Host-HI bridge entity within the MCH is hardwired as Device 0 on PCI Bus 0. The Host-AGP/PCI_B bridge entity within the MCH is hardwired as Device 1 on PCI Bus 0. Device 6 contains device configuration registers.

3.3.3 Primary PCI and Downstream Configuration Mechanism

If the Bus Number in the CONFIG_ADDRESS is non-zero, and is less than the value in the Host-AGP/PCI_B device's Secondary Bus Number register or greater than the value in the Host-AGP/PCI_B device's Subordinate Bus Number Register, the MCH will generate a Type 1 HI configuration cycle. A[1:0] of the HI request packet for the Type 1 configuration cycle will be 01. Bits 31:2 of the CONFIG_ADDRESS register will be translated to the A[31:2] field of the HI request packet of the configuration cycle as shown in Figure 7. This HI configuration cycle will be sent over HI.

If the cycle is forwarded to the ICH5 via HI, the ICH5 compares the non-zero Bus Number with the Secondary Bus Number and Subordinate Bus Number Registers of its PCI-to-PCI bridges to determine if the configuration cycle is meant for Primary PCI, one of the ICH5's HIs, or a downstream PCI bus.

3.3.4 AGP/PCI_B Bus Configuration Mechanism

From the chipset configuration perspective, AGP/PCI_B is seen as PCI bus interfaces residing on a Secondary Bus side of the "virtual" PCI-to-PCI bridges referred to as the MCH Host-PCI_B/AGP bridge. On the primary bus side, the "virtual" PCI-to-PCI bridge is attached to PCI Bus 0. Therefore, the Primary Bus Number Register is hardwired to 0. The "virtual" PCI-to-PCI bridge entity converts Type 1 PCI Bus Configuration cycles on PCI Bus 0 into Type 0 or Type 1 configuration cycles on the AGP/PCI_B interface. Type 1 configuration cycles on PCI Bus 0 that have a Bus Number that matches the Secondary Bus Number of the MCH's "virtual" Host-to-PCI_B/AGP bridge will be translated into Type 0 configuration cycles on the PCI_B/AGP interface. The MCH will decode the Device Number field [15:11] and assert the appropriate GAD signal as an IDSEL in accordance with the PCI-to-PCI bridge Type 0 configuration mechanism. The remaining address bits will be mapped as described in Figure 6.

Figure 6. Configuration Mechanism Type 0 Configuration Address to PCI Address Mapping

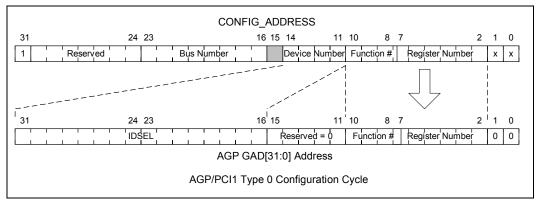
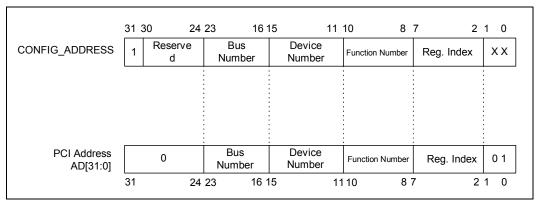


Table 5. Configuration Address Decoding


Config Address AD[15:11]	AGP GAD[31:16] IDSEL
00000	0000 0000 0000 0001
00001	0000 0000 0000 0010
00010	0000 0000 0000 0100
00011	0000 0000 0000 1000
00100	0000 0000 0001 0000
00101	0000 0000 0010 0000
00110	0000 0000 0100 0000
00111	0000 0000 1000 0000

Config Address AD[15:11]	AGP GAD[31:16] IDSEL
01000	0000 0001 0000 0000
01001	0000 0010 0000 0000
01010	0000 0100 0000 0000
01011	0000 1000 0000 0000
01100	0001 0000 0000 0000
01101	0010 0000 0000 0000
01110	0100 0000 0000 0000
01111	1000 0000 0000 0000
1xxxx	0000 0000 0000 0000

If the Bus Number is non-zero, greater than the value programmed into the Secondary Bus Number Register, and less than or equal to the value programmed into the Subordinate Bus Number Register the configuration cycle is targeting a PCI bus downstream of the targeted interface. The MCH will generate a Type 1 PCI configuration cycle on PCI_B/AGP. The address bits will be mapped as described in Figure 7.

Figure 7. Configuration Mechanism Type 1 Configuration Address to PCI Address Mapping

To prepare for mapping of the configuration cycles on AGP/PCI_B, the initialization software will go through the following sequence:

- 1. Scan all devices residing on the PCI Bus 0 using Type 0 configuration accesses.
- 2. For every device residing at bus 0 that implements PCI-to-PCI bridge functionality, it will configure the secondary bus of the bridge with the appropriate number and scan further down the hierarchy. This process will include the configuration of the "virtual" PCI-to-PCI bridges within the MCH used to map the AGP device's address spaces in a software specific manner.

Note: Although initial AGP platform implementations will not support hierarchical buses residing below AGP, this specification still must define this capability to support PCI-66 compatibility. Note also that future implementations of the AGP devices may support hierarchical PCI or AGP-like buses coming out of the root AGP device.

3.4 I/O Mapped Registers

The MCH contains two registers that reside in the processor I/O address space: the Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The Configuration Address Register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

3.4.1 CONFIG_ADDRESS—Configuration Address Register

I/O Address: 0CF8h Accessed as a DWord

Default Value: 00000000h Access: R/W Size: 32 bits

CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DWord. A Byte or Word reference will "pass through" the Configuration Address Register and HI onto the PCI_A bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended.

Bit	Descriptions
31	Configuration Enable (CFGE). 1 = Enable 0 = Disable
30:24	Reserved
	Bus Number. When the Bus Number is programmed to 00h, the target of the configuration cycle is a HI agent (MCH, ICH5, etc.). The configuration cycle is forwarded to HI if the Bus Number is programmed to 00h and the MCH is not the target (i.e., device number is not equal to 0, 1, 2, 3, 6).
	If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number Register of Device 1, a Type 0 PCI configuration cycle will be generated on AGP/PCI_B.
23:16	If the Bus Number is non-zero, greater than the value in the Secondary Bus Number Register of Device 1 and less than or equal to the value programmed into the Subordinate Bus Number Register of Device 1, a Type 1 PCI configuration cycle will be generated on AGP/PCI_B.
	If the Bus Number is non-zero and does not fall within the ranges enumerated by Device 1's Secondary Bus Number or Subordinate Bus Number Register, a HI Type 1 configuration cycle is generated.
	Device Number. This field selects one agent on the PCI bus selected by the Bus Number. When the Bus Number field is 00, the MCH decodes the Device Number field. The MCH is always Device Number 0 for the Host-HI bridge entity, Device Number 1 for the Host-PCI_B/AGP entity. Therefore, when the Bus Number =0 and the Device Number equals 0, 1, 2, 3, 6, the internal MCH devices are selected.
15:11	If the Bus Number is non-zero and matches the value programmed into the Device1 Secondary Bus Number Register, a Type 0 PCI configuration cycle will be generated on AGP/PCI_B. The Device Number field is decoded and the MCH asserts one, and only one, GADxx signal as an IDSEL. GAD16 is asserted to access Device 0, GAD17 for Device 1, and so forth up to Device 15 for which will assert AD31. All device numbers higher than 15 cause a type 0 configuration access with no IDSEL asserted, which will result in a Master Abort reported in the MCH's "virtual" PCI-to-PCI bridge registers.
	For Bus Numbers resulting in HI configuration cycles, the MCH propagates the Device Number field as A[15:11]. For Bus Numbers resulting in AGP/PCI_B Type 1 configuration cycles, the Device Number is propagated as GAD[15:11].
10:8	Function Number. This field is mapped to GAD[10:8] during AGP/PCI_B Configuration cycles and A[10:8] during HI configuration cycles. This allows the configuration registers of a particular function in a multi-function device to be accessed. The MCH ignores configuration cycles to its internal Devices if the function number is not equal to 0.
7:2	Register Number. This field selects one register within a particular Bus, Device, and Function as specified by the other fields in the Configuration Address Register. This field is mapped to GAD[7:2] during AGP/PCI_B configuration cycles and A[7:2] during HI configuration cycles.
1:0	Reserved

3.4.2 CONFIG_DATA—Configuration Data Register

I/O Address: 0CFCh
Default Value: 00000000h
Access: R/W
Size: 32 bits

CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.

Bit	Descriptions
31:0	Configuration Data Window (CDW). If bit 31 of CONFIG_ADDRESS is 1, any I/O access to the CONFIG_DATA register will be mapped to configuration space using the contents of CONFIG_ADDRESS.

3.5 DRAM Controller/Host-Hub Interface Device Registers (Device 0)

This section contains the DRAM Controller and Host-Hub Interface PCI configuration registers listed in order of ascending offset address. The register address map is shown in Table 6.

Table 6. DRAM Controller/Host-Hub Interface Device Register Address Map (Device 0)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2578h	RO
04–05h	PCICMD	PCI Command	0006h	RO, R/W
06–07h	PCISTS	PCI Status	0090h	RO, R/WC
08h	RID	Revision Identification	see register description	RO
09h	_	Intel Reserved	_	_
0Ah	SUBC	Sub-Class Code	00h	RO
0Bh	BCC	Base Class Code	06h	RO
0C	_	Intel Reserved	_	_
0Dh	MLT	Master Latency Timer	00h	RO
0Eh	HDR	Header Type	00h	RO
0Fh	_	Intel Reserved	_	_
10–13h	APBASE	Aperture Base Configuration	00000008h	RO, R/W
14–2Bh	_	Intel Reserved	_	_
2C-2Dh	SVID	Subsystem Vendor Identification	0000h	R/WO
2E-2Fh	SID	Subsystem Identification	0000h	R/WO
30–33h	_	Intel Reserved	_	_
34h	CAPPTR	Capabilities Pointer	E4h	RO
35–50h	_	Intel Reserved	_	RO
51h	AGPM	AGP Miscellaneous Configuration	00h	R/W
52h	GC	Graphics Control	0000_1000b	R/W
53h	CSABCONT	CSA Basic Control	0000_000sb	RO, R/W
54–57h		Intel Reserved		
58–5Bh	EAP	DRAM Error Data Register	undefined	RO
5Ch	DERRSYN	DRAM Error Syndrome	undefined	RO
5Dh	DES	DRAM Error Status	undefined	RO
5E-5Fh	_	Intel Reserved	_	_
60h	FPLLCONT	FPLL Clock Control	00h	R/W, RO
61–89h	_	Intel Reserved	_	_
90h	PAM0	Programmable Attribute Map 0	00h	RO, R/W
91h	PAM1	Programmable Attribute Map 1	00h	RO, R/W
92h	PAM2	Programmable Attribute Map 2	00h	RO, R/W
93h	PAM3	Programmable Attribute Map 3	00h	RO, R/W

Table 6. DRAM Controller/Host-Hub Interface Device Register Address Map (Device 0)

Address Offset	Register Symbol	Register Name	Default Value	Access
94h	PAM4	Programmable Attribute Map 4	00h	RO, R/W
95h	PAM5	Programmable Attribute Map 5	00h	RO, R/W
96h	PAM6	Programmable Attribute Map 6	00h	RO, R/W
97h	FDHC	Fixed DRAM Hole Control	00h	RO, R/W
98-9Ch	_	Intel Reserved		
9Dh	SMRAM	System Management RAM Control	02h	RO, R/W, L
9Eh	ESMRAMC	Extended System Management RAM Control	38h	RO, R/W, RWC, L
9Fh	_	Intel Reserved	_	_
A0-A3h	ACAPID	AGP Capability Identifier	00350002h	RO
A4–A7h	AGPSTAT	AGP Status	see register description	RO
A8–ABh	AGPCMD	AGP Command	see register description	RO, R/W
AC-AFh	_	Intel Reserved	_	_
B0-B3h	AGPCTRL	AGP Control	0000 0000h	RO, R/W
B4h	APSIZE	Aperture Size	00h	RO, R/W
B5–B7h	_	Intel Reserved	_	_
B8–BBh	ATTBASE	Aperture Translation Table	00000000h	R/W
BCh	AMTT	AGP MTT Control Register	10h	RO, R/W
BDh	LPTT	AGP Low Priority Transaction Timer	10h	R/W
BE-C3h	_	Intel Reserved	_	_
C4-C5h	TOUD	Top of Used DRAM	0400h	RO, R/W
C6-C7h	MCHCFG	MCH Configuration	0000h	R/WO, RO, R/W
C8-C9h	ERRSTS	Error Status	0000h	R/WC
CA-CBh	ERRCMD	Error Command	0000h	RO, R/W
CC-CDh	SMICMD	SMI Command	0000h	RO, R/W
CE-CFh	SCICMD	SCI Command	0000h	RO, R/W
D0-DDh	_	Intel Reserved	_	_
DE-DFh	SKPD	Scratchpad Data	0000h	R/W
E0-E3h	_	Intel Reserved	_	_
E4-E9h	CAPREG	Capability Identification	00_0106_A009h	RO
EA-FFh		Intel Reserved	_	_

3.5.1 VID—Vendor Identification Register (Device 0)

Address Offset: 00–01h Default Value: 8086h Access: RO Size: 16 bits

The VID Register contains the vendor identification number. This 16-bit register, combined with the Device Identification Register, uniquely identify any PCI device.

Bit	Descriptions
15:0	Vendor Identification (VID)—RO. This register field contains the PCI standard identification for Intel, 8086h.

3.5.2 DID—Device Identification Register (Device 0)

Address Offset: 02–03h Default Value: 2578h Access: RO Size: 16 bits

This 16-bit register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Descriptions
15:0	Device Identification Number (DID)—RO. This is a 16-bit value assigned to the MCH Host-HI bridge Function 0.

3.5.3 PCICMD—PCI Command Register (Device 0)

Address Offset: 04–05h
Default Value: 0006h
Access: RO, R/W
Size: 16 bits

Since MCH Device 0 does not physically reside on PCI_A, many of the bits are not implemented.

Bit	Descriptions
15:10	Reserved
9	Fast Back-to-Back Enable (FB2B)—RO. Hardwired to 0. This bit controls whether or not the master can do fast back-to-back write. Since Device 0 is strictly a target this bit is not implemented and hardwired to 0.
	SERR Enable (SERRE)—R/W. This bit is a global enable bit for Device 0 SERR messaging. The MCH does not have an SERR signal. The MCH communicates the SERR condition by sending an SERR message over HI to the Intel [®] ICH5.
8	1 = MCH is enabled to generate SERR messages over HI for specific Device 0 error conditions that are individually enabled in the ERRCMD register. The error status is reported in the ERRSTS and PCISTS registers.
	0 = The SERR message is not generated by the MCH for Device 0. Note that this bit only controls SERR messaging for the Device 0. Device 1has its own SERRE bits to control error reporting for error conditions occurring on their respective devices. The control bits are used in a logical OR manner to enable the SERR HI message mechanism.
7	Address/Data Stepping Enable (ADSTEP)—RO. Hardwired to 0.
6	Parity Error Enable (PERRE)—RO. Hardwired to 0. PERR# is not implemented by the MCH.
5	VGA Palette Snoop Enable (VGASNOOP)—RO. Hardwired to 0.
4	Memory Write and Invalidate Enable (MWIE)—RO. Hardwired to 0. The MCH will never issue memory write and invalidate commands.
3	Special Cycle Enable (SCE)—RO. Hardwired to 0.
2	Bus Master Enable (BME)—RO. Hardwired to 1. The MCH is always enabled as a master on HI.
1	Memory Access Enable (MAE)—RO. Hardwired to 1. The MCH always allows access to main memory.
0	I/O Access Enable (IOAE)—RO. Hardwired to 0.

3.5.4 PCISTS—PCI Status Register (Device 0)

Address Offset: 06–07h
Default Value: 0090h
Access: RO, R/WC
Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of error events on Device 0's PCI interface. Since MCH Device 0 does not physically reside on PCI_A many of the bits are not implemented.

Bit	Descriptions
15	Detected Parity Error (DPE)—RO. Hardwired to 0. Writes to this bit position have no effect.
14	Signaled System Error (SSE)—R/WC. 0 = Software sets this bit to 0 by writing a 1 to this bit. 1 = MCH Device 0 generated an SERR message over HI for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD and ERRCMD registers. Device 0 error flags are read/reset from the PCISTS or ERRSTS registers.
13	Received Master Abort Status (RMAS)—R/WC. 0 = Software sets this bit to 0 by writing a 1 to this bit. 1 = MCH generated a HI request that receives a Master Abort completion packet or Master Abort Special Cycle.
12	Received Target Abort Status (RTAS)—R/WC. 0 = Software sets this bit to 0 by writing a 1 to this bit. 1 = MCH generated a HI request that receives a Target Abort completion packet or Target Abort Special Cycle.
11	Signaled Target Abort Status (STAS)—RO. Hardwired to 0. The MCH will not generate a Target Abort HI completion packet or Special Cycle.
10:9	DEVSEL Timing (DEVT)—RO. Hardwired to 00. Device 0 does not physically connect to PCI_A. These bits are set to 00 (fast decode) so that optimum DEVSEL timing for PCI_A is not limited by the MCH.
8	Master Data Parity Error Detected (DPD)—RO. Hardwired to 0. PERR signaling and messaging are not implemented by the MCH.
7	Fast Back-to-Back (FB2B)—RO. Hardwired to 1. Device 0 does not physically connect to PCI_A. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for PCI_A is not limited by the MCH.
6:5	Reserved
4	Capability List (CLIST)—RO. Hardwired to 1 to indicate to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is accessed via register CAPPTR at configuration address offset 34h. Register CAPPTR contains an offset pointing to the start address within configuration space of this device where the AGP capability standard register resides.
3:0	Reserved

3.5.5 RID—Revision Identification Register (Device 0)

Address Offset: 08h

Default Value: See following table

Access: RO Size: 8 bits

This register contains the revision number of the MCH Device 0.

Bit	Descriptions
7:0	Revision Identification Number (RID)—RO. This is an 8-bit value that indicates the revision identification number for the MCH Device 0. 02h = A-2 Stepping

3.5.6 SUBC—Sub-Class Code Register (Device 0)

Address Offset: 0Ah
Default Value: 00h
Access: RO
Size: 8 bits

This register contains the Sub-Class Code for the MCH Device 0.

Bit	Descriptions
7:0	Sub-Class Code (SUBC)—RO. This is an 8-bit value that indicates the category of bridge for the MCH Device 0. 00h = Host bridge.

3.5.7 BCC—Base Class Code Register (Device 0)

Address Offset: 0Bh
Default Value: 06h
Access: RO
Size: 8 bits

This register contains the Base Class Code of the MCH Device 0.

Bit	Descriptions
7:0	Base Class Code (BASEC)—RO. This is an 8-bit value that indicates the Base Class Code for the MCH Device 0.
	06h = Bridge device.

3.5.8 MLT—Master Latency Timer Register (Device 0)

Address Offset: 0Dh Default Value: 00h Access: RO Size: 8 bits

Device 0 in the MCH is not a PCI master. Therefore, this register is not implemented.

Bit	Descriptions
7:0	Reserved

3.5.9 HDR—Header Type Register (Device 0)

Address Offset: 0Eh
Default Value: 00h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Descriptions
7:0	PCI Header (HDR)—RO. This field always returns 0 to indicate that the MCH is a single-function device with standard header layout.

3.5.10 APBASE—Aperture Base Configuration Register (Device 0)

Address Offset: 10–13h
Default Value: 00000008h
Access: RO, R/W
Size: 32 bits

The APBASE is a standard PCI base address register that is used to set the base of the graphics aperture. The standard PCI configuration mechanism defines the base address configuration register such that only a fixed amount of space can be requested (dependent on which bits are hardwired to 0 or behave as hardwired to 0). To allow for flexibility (of the aperture) an additional register called APSIZE is used as a "back-end" register to control which bits of the APBASE will behave as hardwired to 0. This register will be programmed by the MCH specific BIOS code that will run before any of the generic configuration software is run.

Note:

Bit 1 of the AGPM register is used to prevent accesses to the aperture range before this register is initialized by the configuration software and the appropriate translation table structure has been established in the main memory.

Bit	Descriptions
31:28	Upper Programmable Base Address (UPBITS)—R/W. These bits are part of the aperture base set by configuration software to locate the base address of the graphics aperture. They correspond to bits [31:28] of the base address in the processor's address space that will cause a graphics aperture translation to be inserted into the path of any memory read or write.
27:22	Middle Hardwired/Programmable Base Address (MIDBITS)—R/W. These bits are part of the aperture base set by configuration software to locate the base address of the graphics aperture. They correspond to bits [27:4] of the base address in the processor's address space that will cause a graphics aperture translation to be inserted into the path of any memory read or write. These bits can behave as though they were hardwired to 0 if programmed to do so by the APSIZE bits of the APSIZE register. This will cause configuration software to understand that the granularity of the graphics aperture base address is either finer or more coarse, depending upon the bits set by MCH-specific configuration software in APSIZE.
21:4	Lower Bits (LOWBITS)—RO. Hardwired to 0's. This forces the minimum aperture size selectable by this register to be 4 MB, without regard to the aperture size definition enforced by the APSIZE register.
3	Prefetchable (PF)—RO. Hardwired to 1 to identify the graphics aperture range as a prefetchable as per the PCI specification for base address registers. This implies that there are no side effects on reads, the device returns all bytes on reads regardless of the byte enables, and the MCH may merge processor writes into this range without causing errors.
2:1	Addressing Type (TYPE)—RO. Hardwired to 00 to indicate that address range defined by the upper bits of this register can be located anywhere in the 32-bit address space as per the PCI specification for base address registers.
0	Memory Space Indicator (MSPACE)—RO. Hardwired to 0 to identify the aperture range as a memory range as per the specification for PCI base address registers.

3.5.11 SVID—Subsystem Vendor Identification Register (Device 0)

Address Offset: 2C-2Dh Default Value: 0000h Access: R/WO Size: 16 bits

This value is used to identify the vendor of the subsystem.

Bit	Descriptions
15:0	Subsystem Vendor ID (SUBVID)—R/WO. This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

3.5.12 SID—Subsystem Identification Register (Device 0)

Address Offset: 2E–2Fh
Default Value: 0000h
Access: R/WO
Size: 16 bits

This value is used to identify a particular subsystem.

Bit	Descriptions
15:0	Subsystem ID (SUBID)—R/WO. This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

3.5.13 CAPPTR—Capabilities Pointer Register (Device 0)

Address Offset: 34h
Default Value: E4h
Access: RO
Size: 8 bits

The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list.

Bit	Descriptions
7:0	Capabilities Pointer Address—RO. This field contains the pointer to the offset of the first capability ID register block. In this case the first capability is the Product-Specific Capability, which is located at offset E4h.

3.5.14 AGPM—AGP Miscellaneous Configuration Register (Device 0)

Address Offset: 51h
Default Value: 00h
Access: R/W
Size: 8 bits

Bit	Descriptions
7:2	Reserved
1	Aperture Access Global Enable (APEN)—R/W. This bit is used to prevent access to the graphics aperture from any port (processor, HI, or AGP/PCI_B) before the aperture range is established by the configuration software and the appropriate translation table in the main DRAM has been initialized.
	 0 = Disable. The default value is 0, so this field must be set after system is fully configured in order to enable aperture accesses. 1 = Enable.
0	Reserved

3.5.15 GC—Graphics Control Register (Device 0)

Address Offset: 52h

Default Value: 0000_1000h Access: R/W, R/W/L Size: 8 bits

Bit	Descriptions
7:2	Reserved. Default = 0
3	Reserved. Default =1
1:0	Reserved. Default = 0

3.5.16 CSABCONT—CSA Basic Control Register (Device 0)

Address Offset: 53h

Default: 0000_000sb (s=Strap value)

Access: R/W, RO Size: 8 bits

Bit	Description
7:1	Reserved
0	Device Not Present bit—R/W. The default is set by the power on strap. The strap is on Cl9 of the CSA port and the strap value is latched onPWROK assertion. This bit is read/write so software can completely disable the CSA device, even if it is present. 0 = Device Not Enabled 1 = Device Enabled

3.5.17 EAP—DRAM Error Data Register (Device 0)

Address Offset: 58–5Bh
Default: Undefined
Access: RO
Size: 32 bits
Sticky: No

This register contains the access on which a DRAM ECC error was detected. This register will have an undefined value when no ECC errors have been logged.

Bit	Description
31:12	Error Address Pointer (EAP)—RO. This field is used to store the address block of main memory of which an error (single bit or multi-bit error) has occurred. Note that the value of this bit field represents the address of the first single or the first multiple bit error occurrence after the error flag bits in the ERRSTS register have been cleared by software. A multiple bit error will overwrite a single bit error. Once the error flag bits are set as a result of an error, this bit field is locked and does not change as a result of a new error.
11:0	Reserved (RO.

3.5.18 DERRSYN—DRAM Error Syndrome Register (Device 0)

Address Offset: 5Ch
Default: Undefined
Access: RO
Size: 8 bits
Sticky: No

This register will be updated with bit 7 having the highest priority and Bit 0 having the lowest priority. Like EAP, the value in this register represents information about the first single or multibit error that has occurred. A multi-bit error will overwrite a single bit error. Below is the priority ordering.

- Multi-Bit ECC Error on QW0 RO
- Multi-Bit ECC Error on QW1 RO
- Multi-Bit ECC Error on QW2 RO
- Multi-Bit ECC Error on QW3 RO
- Correctable Single-Bit ECC Error on QW0 RO
- Correctable Single-Bit ECC Error on QW1 RO
- Correctable Single-Bit ECC Error on QW2 RO
- Correctable Single-Bit ECC Error on QW3 RO

This register will have an undefined value when no ECC errors have been logged.

Bit	Description
7:0	DRAM ECC Syndrome (DECCSYN)—RO. After a DRAM ECC error on any quadword of the 32-B aligned data chunk, hardware loads this field with a syndrome that describes the set of bits associated with first failing quadword. Note that this field is locked from the time that it is loaded up to the time when the error flag is cleared by software. However, if the first error was a single bit, correctable error, then a subsequent multiple bit error will cause the field to be re-recorded. An error that occurs after the first error and before the error flag has been cleared by software will escape recording.

3.5.19 DES—DRAM Error Status Register (Device 0)

Address Offset: 5Dh
Default: Undefined
Access: RO
Size: 8 bits
Sticky: No

This register will have an undefined value when no ECC errors have been logged.

Bit	Description		
7:1	Reserved		
	Error Channel—RO.		
0	0 = Error Detected on Channel A.		
	1 = Error Detected on Channel B.		

3.5.20 FPLLCONT— Front Side Bus PLL Clock Control Register (Device 0)

Address Offset: 60h Default Value: 00h Access: R/W, RO Size: 8 bits

These register bits are used for changing DDR frequency, initializing MCH memory and I/O clocks' WIO DLL delays.

Bit	Descriptions					
7:5	Reserved					
	Memory and Memory I/O DLL Clock Gate (DLLCKGATE)—R/W. Note that this bit should always be written to before writing to the FPLLSYNC bit.					
4	0 = Writing a 0 cleanly re-enables the memory and memory I/O clocks from the DLL outputs. (default)					
	1 = Writing a 1 cleanly disables the memory and memory I/O clocks of the chipset core and DDR interface from the DLL outputs.					
3:2	Intel Reserved (Default=00)					
	FSB PLL Sync (FPLLSYNC)—R/W.					
1	0 = After writing a 1, writing a 0 causes the FSB PLL to synchronize the memory to the processor clock.					
	1 = Writing a 1 resets the memory clock dividers in the FSB FPLL. This also enables the output of the system memory frequency bits to propagate to the chip and the FPLL.					
	Memory Clock Gate (GMCLKGATE)—R/W. Note that this bit should always be written to before writing to the FPLLSYNC bit.					
0	0 = Writing a 0 restarts (enables) the clocks.					
	1 = Writing a 1 cleanly disables the memory clocks while still enabling the core clocks. The memory clocks can then be programmed with new speed information.					

3.5.21 PAM[0:6]—Programmable Attribute Map Registers (Device 0)

Address Offset: 90-96h (PAM0-PAM6)

Default Value: 00h Attribute: R/W, RO Size: 8 bits

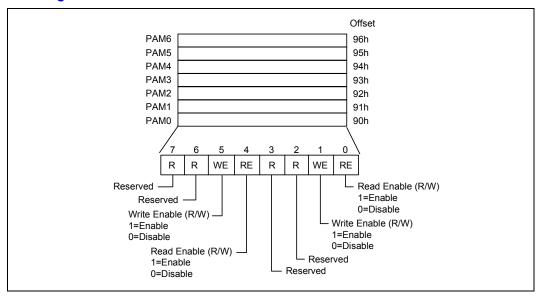
The MCH allows programmable memory attributes on 13 Legacy memory segments of various sizes in the 768-KB to 1-MB address range. Seven Programmable Attribute Map (PAM) Registers are used to support these features. Cacheability of these areas is controlled via the MTRR registers in the processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to host initiator only access to the PAM areas. MCH will forward to main memory for any AGP, PCI, or HI initiated accesses to the PAM areas. These attributes are:

RE Read Enable. When RE = 1, the host read accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when RE = 0, the host read accesses are directed to PCI A.

WE Write Enable. When WE = 1, the host write accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when WE = 0, the host write accesses are directed to PCI A.

The RE and WE attributes permit a memory segment to be read only, write only, read/write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is read only.

Each PAM register controls two regions, typically 16 KB in size. Each of these regions has a 4-bit field. The four bits that control each region have the same encoding defined in the following table.


Bits [7, 3] Reserved	Bits [6, 2] Reserved	Bits [5, 1] WE	Bits [4, 0] RE	Description	
Х	Х	0	Disabled DRAM is disabled and all accesses are directed the hub interface. The MCH does not respond as a PC target for any read or write access to this area.		
Х	Х	0	1	Read Only. Reads are forwarded to DRAM and writes are forwarded to the hub interface for termination. This write protects the corresponding memory segment. The MCH will respond as an AGP or the hub interface target for read accesses but not for any write accesses.	
х	×	1	0	Write Only. Writes are forwarded to DRAM and reads are forwarded to the hub interface for termination. The MCH will respond as an AGP or hub interface target for write accesses but not for any read accesses.	
Х	х	1	1	Read/Write. This is the normal operating mode of main memory. Both read and write cycles from the host are claimed by the MCH and forwarded to DRAM. The MCH will respond as an AGP or hub interface target for both read and write accesses.	

At the time that a HI or AGP access to the PAM region occurs, the targeted PAM segment must be programmed to be both readable and writable.

As an example, consider BIOS that is implemented on the expansion bus. During the initialization process, the BIOS can be shadowed in main memory to increase the system performance. When BIOS is shadowed in main memory, it should be copied to the same address location. To shadow the BIOS, the attributes for that address range should be set to write only. The BIOS is shadowed by first doing a read of that address. This read is forwarded to the expansion bus. The host then does a write of the same address, which is directed to main memory. After the BIOS is shadowed, the attributes for that memory area are set to read only so that all writes are forwarded to the expansion bus. Figure 8 and Table 7 show the PAM registers and the associated attribute bits.

Figure 8. PAM Register Attributes

Table 7. PAM Register Attributes

PAM Reg	Attribute Bits				Memory Segment	Comments	Offset
PAM0[3:0]	Reserved				_	_	90h
PAM0[7:6]		Res	served		_	_	90h
PAM0[5:4]	R	R	WE	RE	0F0000h-0FFFFh	BIOS Area	90h
PAM1[1:0]	R	R	WE	RE	0C0000h-0C3FFFh	ISA Add-on BIOS	91h
PAM1[7:4]	R	R	WE	RE	0C4000h-0C7FFFh	ISA Add-on BIOS	91h
PAM2[1:0]	R	R	WE	RE	0C8000h-0CBFFFh	ISA Add-on BIOS	92h
PAM2[7:4]	R	R	WE	RE	0CC000h-0CFFFh	ISA Add-on BIOS	92h
PAM3[1:0]	R	R	WE	RE	0D0000h-0D3FFFh	ISA Add-on BIOS	93h
PAM3[7:4]	R	R	WE	RE	0D4000h-0D7FFFh	ISA Add-on BIOS	93h
PAM4[1:0]	R	R	WE	RE	0D8000h-0DBFFFh	ISA Add-on BIOS	94h
PAM4[7:4]	R	R	WE	RE	0DC000h-0DFFFFh	ISA Add-on BIOS	94h
PAM5[1:0]	R	R	WE	RE	0E0000h-0E3FFFh	BIOS Extension	95h
PAM5[7:4]	R	R	WE	RE	0E4000h-0E7FFFh	BIOS Extension	95h
PAM6[1:0]	R	R	WE	RE	0E8000h-0EBFFFh	BIOS Extension	96h
PAM6[7:4]	R	R	WE	RE	0EC000h-0EFFFFh	BIOS Extension	96h

For details on overall system address mapping scheme see Chapter 4.

DOS Application Area (00000h-9FFFh)

The DOS area is 640 KB in size and it is further divided into two parts. The 512-KB area at 0 to 7FFFFh is always mapped to the main memory controlled by the MCH, while the 128-KB address range from 080000 to 09FFFFh can be mapped to PCI_A or to main memory. By default this range is mapped to main memory and can be declared as a main memory hole (accesses forwarded to PCI_A) via the MCH FDHC configuration register.

Video Buffer Area (A0000h-BFFFFh)

Attribute bits do not control this 128-KB area. The host-initiated cycles in this region are always forwarded to either PCI_A or AGP unless this range is accessed in SMM mode. Routing of accesses is controlled by the Legacy VGA control mechanism of the "virtual" PCI-to-PCI bridge device in the MCH.

This area can be programmed as SMM area via the SMRAM register. When used as SMM space, this range cannot be accessed from the HI or AGP.

Expansion Area (C0000h-DFFFFh)

This 128-KB area is divided into eight, 16-KB segments, that can be assigned with different attributes via the PAM control register as defined by Table 7.

Extended System BIOS Area (E0000h-EFFFFh)

This 64-KB area is divided into four, 16-KB segments that can be assigned with different attributes via the PAM control register as defined by Table 7.

System BIOS Area (F0000h-FFFFFh)

This area is a single, 64-KB segment that can be assigned with different attributes via the PAM control register as defined by Table 7.

3.5.22 FDHC—Fixed Memory(ISA) Hole Control Register (Device 0)

Address Offset: 97h
Default Value: 00h
Access: R/W, RO
Size: 8 bits

This 8-bit register controls a fixed DRAM hole from 15 MB-16 MB.

Bit	Descriptions
7	Hole Enable (HEN)—R/W. This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped.
_ ′	0 = Disable. No memory hole.
	1 = Enable. Memory hole from 15 MB to 16 MB.
6:0	Reserved

3.5.23 SMRAM—System Management RAM Control Register (Device 0)

Address Offset: 9Dh Default Value: 02h

Access: R/W, RO, Lock

Size: 8 bits

The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are treated. The open, close, and lock bits function only when the G_SMRAME bit is set to 1. Also, the open bit must be reset before the lock bit is set.

Bit	Descriptions
7	Reserved
6	SMM Space Open (D_OPEN)—R/W. When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
5	SMM Space Closed (D_CLS)—R/W. When D_CLS = 1, SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display, even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. Note that the D_CLS bit only applies to Compatible SMM space.
4	SMM Space Locked (D_LCK)—R/W. When D_LCK is set to 1, then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function.
3	Global SMRAM Enable (G_SMRARE)— R/W/L. If set to 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADS# with SMM decode). To enable Extended SMRAM function this bit has to be set to 1. Refer to the section on SMM for more details. Once D_LCK is set, this bit becomes read only.
2:0	Compatible SMM Space Base Segment (C_BASE_SEG)—RO. This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space, otherwise the access is forwarded to HI. Since the MCH supports only the SMM space between A0000h and BFFFFh, this field is hardwired to 010.

3.5.24 ESMRAMC—Extended System Management RAM Control Register (Device 0)

Address Offset: 9Eh Default Value: 38h

Access: R/W, R/WC, RO, Lock

Size: 8 bits

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB.

Bit	Descriptions
7	Enable High SMRAM (H_SMRAME)— R/W/L. This bit controls the SMM memory space location (i.e., above 1 MB or below 1 MB). When G_SMRAME is 1 and H_SMRAME (this bit) is set to 1, the high SMRAM memory space is enabled. SMRAM accesses within the range 0FEDA0000h to 0FEDBFFFFh are remapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only.
6	Invalid SMRAM Access (E_SMERR)—R/WC. This bit is set when the processor has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0. It is software's responsibility to clear this bit. NOTE: Software must write a 1 to this bit to clear it.
5	SMRAM Cacheable (SM CACHE)—RO. Hardwired to 1.
4	L1 Cache Enable for SMRAM (SM_L1)—RO. Hardwired to 1.
3	L2 Cache Enable for SMRAM (SM_L2)—RO. Hardwired to 1.
2:1	TSEG Size (TSEG_SZ)—R/W. This field selects the size of the TSEG memory block if enabled. Memory from the top of DRAM space (TOUD +TSEG_SZ) to TOUD is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit is set in the request packet. Non-SMM accesses to this memory region are sent to the hub interface when the TSEG memory block is enabled.
2.1	00 =Reserved
	01 =Reserved
	10=(TOUD + 512 KB) to TOUD
	11 =(TOUD + 1 MB) to TOUD
0	TSEG Enable (T_EN)— R/W/L. This bit is for enabling of SMRAM memory for Extended SMRAM space only. When G_SMRAME =1 and TSEG_EN = 1, the TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes read only.

3.5.25 ACAPID—AGP Capability Identifier Register (Device 0)

Address Offset: A0h–A3h Default Value: 00300002h

Access: RO Size: 32 bits

This register provides standard identifier for AGP capability.

Bit	Descriptions
31:24	Reserved
23:20	Major AGP Revision Number (MAJREV)—RO. These bits provide a major revision number of AGP specification to which this version of MCH conforms. This field is hardwired to value of 0011b (i.e., implying Rev 3.x).
19:16	Minor AGP Revision Number (MINREV)—RO. These bits provide a minor revision number of AGP specification to which this version of MCH conforms. This number is hardwired to a value of 0000 which implies that the revision is x.0. Together with major revision number this field identifies the MCH as an AGP REV 3.0 compliant device.
15:8	Next Capability Pointer (NCAPTR)—RO. AGP capability is the first and the last capability described via the capability pointer mechanism and therefore these bits are hardwired to 00h to indicate the end of the capability linked list.
7:0	AGP Capability ID (CAPID)—RO. This field identifies the linked list item as containing AGP registers. This field has a value of 0000_0010b assigned by the PCI SIG.

3.5.26 AGPSTAT—AGP Status Register (Device 0)

Address Offset: A4-A7h

Default Value: 1F000217h in AGP 2.0; 1F004A13h in AGP 3.0 mode

Access: RO Size: 32 bits

This register reports AGP device capability/status.

Bit	Descriptions				
31:24	Request Queue (RQ)—RO. Hardwired to 1Fh to indicate a maximum of 32 outstanding AGP command requests can be handled by the MCH. This field contains the maximum number of AGP command requests the MCH is configured to manage.				
23:16	Reserved				
15:13	ARQSZ—RO. LOG2 of the optimum asynchronous request size in bytes minus 4 to be used with the target. The Master should attempt to issue a group of sequential back-to-back asynchronous requests that total to this size and for which the group is naturally aligned.				
	Optimum_request_size = 2 ^ (ARQSZ+4).				
	Hardwired to 010 to indicate 64 B.				
12:10	CAL_Cycle—RO. This field specifies the required period for MCH-initiated bus cycle for calibrating I/O buffers.				
	Hardwired to 010 to indicate 64 ms.				
9	Side Band Addressing Support (SBA)—RO. Hardwired to 1 indicating that the MCH supports side band addressing.				
8:6	Reserved				
5	Greater Than Four Gigabyte Support (GT4GIG)—RO. Hardwired to 0 indicating that the MCH does not support addresses greater than 4 GB.				

Bit	Descriptions						
4	Fast Write Support (FW)—RO. Hardwired to 1 indicating that the MCH supports fast writes from the processor to the AGP master.						
3	AGP 3.0 mode (AGP 30_MOD)—RO. This bit is set by the hardware on the assertion of PWROK based on the AGP 3.0 detection via the Vref comparator on the GVREF pin. In AGP 2.0 mode, GVREF is driven to 0.75 V, while in AGP 3.0 mode, GVREF is driven to 0.35 V. Note that the output of the Vref comparator is used "live" prior to the assertion of PWROK and used to select the appropriate pull-up, pull-down, or termination on the I/O buffer depending on the mode selected. 0 = AGP 2.0 (1.5 V signaling) mode. 1 = AGP 3.0 signaling mode.						
2:0	 Data Rate Support (RATE)—RO. After reset, the MCH reports its data transfer rate capability. AGP 2.0 Mode Bit 0 identifies if AGP device supports 1X data transfer mode Bit 1 identifies if AGP device supports 2X data transfer mode (unsupported) Bit 2 identifies if AGP device supports 4X data transfer AGP 3.0 Mode Bit 0 identifies if AGP device supports 4X data transfer mode Bit 1 identifies if AGP device supports 8X data transfer mode Bit 2 is reserved NOTES: In AGP 3.0 mode (AGP_MODE=1) these bits are 011 indicating that both 4X and 8X modes are supported. In AGP 2.0 mode these bits are 111 indicating that 4X, 2X, and 1X modes are supported; however, in the 82875P MCH 2X is not supported. 						

3.5.27 AGPCMD—AGP Command Register (Device 0)

Address Offset: A8-ABh

Default Value: 00000000h in AGP 2.0 mode

00000A00h in AGP 3.0 mode

Access: RO, R/W Size: 32 bits

This register provides control of the AGP operational parameters.

Bit	Descriptions					
31:13	Reserved					
	PCAL_Cycle—R/W. Programmed with period for MCH-initiated bus cycle for calibrating I/O buffers for both master and target. This value is updated with the smaller of the value in CAL_CYCLE from Master's and Target's AGPSTAT.CAL_CYCLE. PCAL_CYCLE is set to 111 by software only if both Target and Master have AGPSTAT.CAL_CYCLE = 111.					
	000 = 4 ms					
12:10	001 = 16 ms					
	010 = 64 ms (default)					
	011 = 256 ms					
	100–110 = Reserved					
	111 = Calibration Cycle Not Needed					
9	Side Band Addressing Enable (SBAEN)—R/W. This bit is ignored in AGP 3.0 mode to allow legacy 2.0 software to work. (When AGP 3.0 is detected, sideband addressing mechanism is automatically enabled by the hardware.) 0 = Disable.					
	1 = Enable. Side band addressing mechanism is enabled.					
	AGP Enable (AGPEN)—R/W.					
8	0 = Disable. MCH ignores all AGP operations, including the sync cycle. Any AGP operations received while this bit is set to 1 will be serviced, even if this bit is reset to 0. If this bit transitions from 1 to 0 on a clock edge in the middle of an SBA command being delivered in 1X mode, the command will be issued.					
	1 = Enable. MCH responds to AGP operations delivered via PIPE#, or to operations delivered via SBA if the AGP Side Band Enable bit is also set to 1.					
7:6	Reserved					
5	Greater Than Four Gigabyte Enable (GT4GIGE)—RO. Hardwired to 0 indicating that the MCH, as an AGP target, does not support addressing greater than 4 GB.					
	Fast Write Enable (FWEN)—R/W.					
4	0 = Disable. When this bit is cleared, or when the data rate bits are set to 1X mode, the memory write transactions from the MCH to the AGP master use standard PCI protocol.					
	1 = Enable. When this bit is set, the MCH will use the fast write protocol for memory write transactions from the MCH to the AGP master. Fast writes will occur at the data transfer rate selected by the data rate bits (2:0) in this register.					
3	Reserved					
	Data Rate Enable (DRATE)—R/W. The setting of these bits determines the AGP data transfer rate. One (and only one) bit in this field must be set to indicate the desired data transfer rate. The same bit must be set on both master and target.					
	AGP 2.0					
	001= 1X transfer mode (for AGP 2.0 signaling)					
2:0	010= 2X transfer mode (NOT SUPPORTED)					
	100= 4X transfer mode (for AGP 2.0 signaling)					
	AGP 3.0					
	001= 4X transfer mode (for AGP 3.0 signaling)					
	010= 8X transfer mode (for AGP 3.0 signaling)					
	100= Reserved					

3.5.28 AGPCTRL—AGP Control Register (Device 0)

Address Offset: B0–B3h
Default Value: 00000000h
Access: RO, R/W
Size: 32 bits

This register provides for additional control of the AGP interface.

Bit	Descriptions					
31:8	Reserved					
7	 GTLB Enable (GTLBEN)—R/W. Disable (default). The GTLB is flushed by clearing the valid bits associated with each entry. In this mode of operation: All accesses that require translation bypass the GTLB All requests that are positively decoded to the graphics aperture force the MCH to access the translation table in main memory before completing the request Valid translation table entry fetches will not be cached in the GTLB Invalid translation table entry fetches will still be cached in the GTLB (ejecting the least recently used entry). Enable. Normal operations of the Graphics Translation Lookaside Buffer are enabled. NOTE: This bit can be changed dynamically (i.e., while an access to GTLB occurs); however, the completion of the configuration write that asserts or deasserts this bit will be delayed pending a complete flush of all dirty entries from the write buffer. This delay will be incurred because this bit is used as a mechanism to signal the chipset that the graphics aperture translation table is about to be modified or has completed modifications. In the first case, all dirty entries need to be flushed before the translation table is changed. In the second case, all dirty entries need to be flushed because one of them is likely to be a translation table entry which must be made visible to the GTLB by flushing it to memory. 					
6:1	Reserved					
0	4X Override (OVER4X)—R/W. This back-door register bit allows the BIOS to force 1X mode for AGP 2.0 and 4X mode for AGP 3.0. Note that this bit must be set by the BIOS before AGP configuration. 0 = No override 1 = The RATE[2:0] bit in the AGPSTS register will be read as a 001.					

3.5.29 APSIZE—Aperture Size Register (Device 0)

Address Offset: B4h
Default Value: 00h
Access: RO, R/W
Size: 8 bits

This register determines the effective size of the graphics aperture used for a particular MCH configuration. This register can be updated by the MCH-specific BIOS configuration sequence before the PCI standard bus enumeration sequence takes place. If the register is not updated, then a default value will select an aperture of maximum size (i.e., 256 MB). The size of the table that will correspond to a 256-MB aperture is not practical for most applications; therefore, these bits must be programmed to a smaller practical value that will force adequate address range to be requested via APBASE register from the PCI configuration software.

Bit	Descriptions				
7:6	Reserved				
	Graphics Aperture Size (APSIZE)—R/W. Each bit in APSIZE[5:0] operates on similarly ordered bits in APBASE[27:22] of the Aperture Base configuration register. When a particular bit of this field is 0, it forces the similarly ordered bit in APBASE[27:22] to behave as hardwired to 0. When a particular bit of this field is set to 1, it allows corresponding bit of the APBASE[27:22] to be read/write accessible. The default value (APSIZE[5:0]=000000b) forces the default APBASE[27:22] to read as 000000b (i.e., all bits respond as hardwired to 0). This provides the maximum aperture size of 256 MB. As another example, programming APSIZE[5:0] to 111000b hardwires APBASE[24:22] to 000b and enables APBASE[27:25] to be read/write programmable.				
5:0	000000 = 256 MB aperture size				
	100000 = 128 MB aperture size				
	110000 = 64 MB aperture size				
	111000 = 32 MB aperture size				
	111100 = 16 MB aperture size				
	111110 = 8 MB aperture size				
	111111 = 4 MB aperture size				

3.5.30 ATTBASE—Aperture Translation Table Register (Device 0)

Address Offset: B8–BBh
Default Value: 00000000h
Access: RO, R/W
Size: 32 bits

This register provides the starting address of the Graphics Aperture Translation Table Base located in the main memory. This value is used by the MCH's Graphics Aperture address translation logic (including the GTLB logic) to obtain the appropriate address translation entry required during the translation of the aperture address into a corresponding physical main memory address. The ATTBASE register may be dynamically changed.

Bit	Descriptions
31:12	Aperture Translation Table Base (TTABLE)—R/W. This field contains a pointer to the base of the translation table used to map memory space addresses in the aperture range to addresses in main memory. Note that it should be modified only when the GTLB has been disabled.
11:0	Reserved

3.5.31 AMTT—AGP MTT Control Register (Device 0)

Address Offset: BCh
Default Value: 10h
Access: RO, R/W
Size: 8 bits

AMTT is an 8-bit register that controls the amount of time that the MCH's arbiter allows AGP/PCI master to perform multiple back-to-back transactions. The MCH's AMTT mechanism is used to optimize the performance of the AGP master (using PCI semantics) that performs multiple back-to-back transactions to fragmented memory ranges (and as a consequence it can not use long burst transfers). The AMTT mechanism applies to the processor-AGP/PCI transactions as well and it assures the processor of a fair share of the AGP/PCI interface bandwidth.

The number of clocks programmed in the AMTT represents the guaranteed time slice (measured in 66-MHz clocks) allotted to the current agent (either AGP/PCI master or Host bridge) after which the AGP arbiter will grant the bus to another agent. The default value of AMTT is 00h and disables this function. The AMTT value can be programmed with 8-clock granularity. For example, if the AMTT is programmed to 18h, the selected value corresponds to the time period of 24 AGP (66-MHz) clocks. Set by BIOS.

Bit	Descriptions				
7:3	Multi-Transaction Timer Count Value (MTTC)—R/W. The number programmed into these bits represents the time slice (measured in eight, 66-MHz clock granularity) allotted to the current agent (either AGP/PCI master or Host bridge) after which the AGP arbiter will grant the bus to another agent.				
2:0	Reserved				

3.5.32 LPTT—AGP Low Priority Transaction Timer Register (Device 0)

Address Offset: BDh
Default Value: 10h
Access: RO, R/W
Size: 8 bits

LPTT is an 8-bit register similar in function to AMTT. This register is used to control the minimum tenure on the AGP for low priority data transaction (both reads and writes) issued using PIPE# or SB mechanisms.

The number of clocks programmed in the LPTT represents the guaranteed time slice (measured in 66-MHz clocks) allotted to the current low priority AGP transaction data transfer state. This does not necessarily apply to a single transaction but it can span over multiple low-priority transactions of the same type. After this time expires, the AGP arbiter may grant the bus to another agent if there is a pending request. The LPTT does not apply in the case of high-priority request where ownership is transferred directly to high-priority requesting queue. The default value of LPTT is 00h and disables this function. The LPTT value can be programmed with 8-clock granularity. For example, if the LPTT is programmed to 10h, the selected value corresponds to the time period of 16 AGP (66-MHz) clocks.

Bit	Descriptions
7:3	Low Priority Transaction Timer Count Value (LPTTC)—R/W. The number of clocks programmed in these bits represents the time slice (measured in eight, 66-MHz clock granularity) allotted to the current low priority AGP transaction data transfer state).
2:0	Reserved

3.5.33 TOUD—Top of Used DRAM Register (Device 0)

Address Offset: C4–C5h Default Value: 0400h Access: RO, R/W Size: 16 bits

Bit	Descriptions				
	Top of Usable DRAM (TOUD)—R/W. This register contains bits 31:19 of the maximum system memory address that is usable by the operating system. Address bits 31:19 imply a memory granularity of 512 KB. Configuration software should set this value to either the maximum amount of usable memory (minus tseg) in the system or to the minimum address allocated for PCI memory or the graphics aperture (minus tseg), whichever is smaller. Address bits 18:0 are assumed to be 0000h for the purposes of address comparison.				
	This register must be set to at least 0400h for a minimum of 64 MB of system memory.				
15:3	To calculate the value of TOUD, configuration software should set this value to the smaller of the following tow cases:				
	The maximum amount of usable memory in the system minus optional tseg.				
	The address allocated for PCI memory or the graphics aperture minus optional tseg.				
	NOTE: Even if the OS does not need any PCI space, TOUD should never be programmed above FEC0_0000h. If TOUD is programmed above this, address ranges that are reserved will become accessible to applications.				
2:0	Reserved				

3.5.34 MCHCFG—MCH Configuration Register (Device 0)

Address Offset: C6–C7h
Default Value: 0000h
Access: R/W, RO
Size: 16 bits

Number of Stop Grant Cycles (NSG)—R/W. This field represents the number of Stop Grant transactions expected on the FSB bus before a Stop Grant Acknowledge packet is sent to the ICH5. This field is programmed by the BIOS after it has enabled Stop Clock generation in the ICH5. Once this field has been set, it should not be modified. Note that each enabled thread within each processor will generate Stop Grant Acknowledge transactions. 000 = HI Stop Grant sent after 1 FSB Stop Grant 001 = HI Stop Grant sent after 2 FSB Stop Grants 010—111= Reserved 12 Reserved System Memory Frequency Select (SMFREQ)—RW. The reset value of these bits is 00. The DDR memory frequency is determined by the following table, and partly determined by the FSB frequency. FSBFREQ[1:0] = 01 SMFREQ[11:0]=01 System Memory DDR set to 333 MHz FSBFREQ[1:0] = 10 SMFREQ[11:10]=01 System Memory DDR set to 333 (320) MHz FSBFREQ[1:0] = 10 SMFREQ[11:10]=10 System Memory DDR set to 400 MHz All other combinations are Intel Reserved Note that Memory I/O Clock always runs at 2X the frequency of the memory clock NOTE: When writing a new value to this register, software must perform a clock synchronization sequence to apply the new timings. The new value does not get applied until this is completed. 9:6 Reserved MDA Present (MDAP)—R/W. This bit works with the VGA Enable bits in the BCTRL1 register of Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if Device 1's VGA Enable bit is not set. the Poecice 1's VGA enable bit is not set, then accesses to I/O address range x3BCh-3Fh are forwarded to HI. If the VGA enable bit is not set, then accesses to I/O address range x3BCh-3Fh are forwarded to HI. MDA resources are defined as the following: Memory: 080000h-087FFFh I/O: 384h, 385h, 388h, 388h, 388h, 38h, 38h, 38h (including ISA address aliasses, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their alia	Bit	Descriptions					
System Memory Frequency Select (SMFREQ)—RW. The reset value of these bits is 00. The DDR memory frequency is determined by the following table, and partly determined by the FSB frequency. FSBFREQ[1:0] =01 SMFREQ[11:10]=01 System Memory DDR set to 333 MHz FSBFREQ[1:0] =10 SMFREQ[11:10]=10 System Memory DDR set to 333 (320) MHz FSBFREQ[1:0] =10 SMFREQ[11:10]=10 System Memory DDR set to 400 MHz All other combinations are Intel Reserved Note that Memory I/O Clock always runs at 2X the frequency of the memory clock NOTE: When writing a new value to this register, software must perform a clock synchronization sequence to apply the new timings. The new value does not get applied until this is completed. 9:6 Reserved MDA Present (MDAP)—RW. This bit works with the VGA Enable bits in the BCTRL1 register of Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if Device 1's VGA Enable bit is not set. If Device 1's VGA enable bit is not set, then accesses to I/O address range x3BCh—x3BFh are forwarded to HI. If the VGA enable bit is not set, then accesses to I/O address range x3BCh—x3BFh are forwarded to HI. If the VGA enable bit is not set, then accesses to I/O address range x3BCh—x3BFh are forwarded to HI. MDA resources are defined as the following: Memory: 0B0000h—0B7FFFh I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh (including ISA address aliases, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the hub interface, even if the reference includes I/O locations not listed above. The following table shows the behavior for all combinations of MDA and VGA: VGA MDA Behavior 0 All references to VGA go to Device 1. MDA-only references to VGA go to Device 1. MDA-only references (I/O address 3BFh and aliases) will go to HI.	15:13	Number of Stop Grant Cycles (NSG)—R/W. This field represents the number of Stop Grant transactions expected on the FSB bus before a Stop Grant Acknowledge packet is sent to the ICH5. This field is programmed by the BIOS after it has enumerated the processors and before it has enabled Stop Clock generation in the ICH5. Once this field has been set, it should not be modified. Note that each enabled thread within each processor will generate Stop Grant Acknowledge transactions. 000 = HI Stop Grant sent after 1 FSB Stop Grant 001 = HI Stop Grant sent after 2 FSB Stop Grants					
DDR memory frequency is determined by the following table, and partly determined by the FSB frequency. FSBFREQ[1:0] =01 SMFREQ[11:10]=01 System Memory DDR set to 333 MHz FSBFREQ[1:0] =10 SMFREQ[11:10]=10 System Memory DDR set to 333 (320) MHz FSBFREQ[1:0] =10 SMFREQ[11:10]=10 System Memory DDR set to 400 MHz All other combinations are Intel Reserved Note that Memory I/O Clock always runs at 2X the frequency of the memory clock NOTE: When writing a new value to this register, software must perform a clock synchronization sequence to apply the new timings. The new value does not get applied until this is completed. 9:6 Reserved MDA Present (MDAP)—RW. This bit works with the VGA Enable bits in the BCTRL1 register of Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if Device 1's VGA Enable bit is not set. If Device 1's VGA enable bit is not set, then accesses to I/O address range x3BCh—x3BFh are forwarded to HI. If the VGA enable bit is not set, then accesses to I/O address range x3BCh—x3BFh are treated just like any other I/O accesses. That is, the cycles are forwarded to AGP if the address is within the corresponding IOBASE and IOLIMIT and ISA enable bit is not set; otherwise, they are forwarded to HI. MDA resources are defined as the following: Memory: 0B0000h–0B7FFFh I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh (including ISA address aliases, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the hub interface, even if the reference includes I/O locations not listed above. The following table shows the behavior for all combinations of MDA and VGA: VGA MDA Behavior 0 0 All references to MDA and VGA go to HI. 0 1 Illegal combination (DO NOT USE). 1 0 All references to VGA go to Device 1. MDA-only references go to AGPI/PCI; MDA references go to HI.	12	Reserve	ed				
MDA Present (MDAP)—R/W. This bit works with the VGA Enable bits in the BCTRL1 register of Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if Device 1's VGA Enable bit is not set. If Device 1's VGA enable bit is not set, then accesses to I/O address range x3BCh—x3BFh are forwarded to HI. If the VGA enable bit is not set, then accesses to I/O address range x3BCh—x3BFh are treated just like any other I/O accesses. That is, the cycles are forwarded to AGP if the address is within the corresponding IOBASE and IOLIMIT and ISA enable bit is not set; otherwise, they are forwarded to HI. MDA resources are defined as the following: Memory: 0B0000h–0B7FFFh 1/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh (including ISA address aliases, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the hub interface, even if the reference includes I/O locations not listed above. The following table shows the behavior for all combinations of MDA and VGA: VGA MDA Behavior 0	11:10	DDR memory frequency is determined by the following table, and partly determined by the FSB frequency. FSBFREQ[1:0] =01 SMFREQ[11:10]=01 System Memory DDR set to 333 MHz FSBFREQ[1:0] =10 SMFREQ[11:10]=01 System Memory DDR set to 333 (320) MHz FSBFREQ[1:0] =10 SMFREQ[11:10]=10 System Memory DDR set to 400 MHz All other combinations are Intel Reserved Note that Memory I/O Clock always runs at 2X the frequency of the memory clock NOTE: When writing a new value to this register, software must perform a clock synchronization sequence to apply the new timings. The new value does not get applied until this is					
Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if Device 1's VGA Enable bit is not set. If Device 1's VGA enable bit is not set, then accesses to I/O address range x3BCh–x3BFh are forwarded to HI. If the VGA enable bit is not set, then accesses to I/O address range x3BCh–x3BFh are treated just like any other I/O accesses. That is, the cycles are forwarded to AGP if the address is within the corresponding IOBASE and IOLIMIT and ISA enable bit is not set; otherwise, they are forwarded to HI. MDA resources are defined as the following: Memory: 0B0000h–0B7FFFh I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh (including ISA address aliases, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the hub interface, even if the reference includes I/O locations not listed above. The following table shows the behavior for all combinations of MDA and VGA: VGA MDA Behavior 0 0 All references to MDA and VGA go to HI. 0 1 Illegal combination (DO NOT USE). 1 0 All references to VGA go to Device 1. MDA-only references (I/O address 3BFh and aliases) will go to HI. 1 1 VGA references go to AGP/PCI; MDA references go to HI.	9:6	Reserve	ed				
, , , , , , , , , , , , , , , , , , ,	5	MDA Present (MDAP)—R/W. This bit works with the VGA Enable bits in the BCTRL1 register of Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if Device 1's VGA Enable bit is not set. If Device 1's VGA enable bit is not set, then accesses to I/O address range x3BCh–x3BFh are forwarded to HI. If the VGA enable bit is not set, then accesses to I/O address range x3BCh–x3BFh are treated just like any other I/O accesses. That is, the cycles are forwarded to AGP if the address is within the corresponding IOBASE and IOLIMIT and ISA enable bit is not set; otherwise, they are forwarded to HI. MDA resources are defined as the following: Memory: 0B0000h–0B7FFFh I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh (including ISA address aliases, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the hub interface, even if the reference includes I/O locations not listed above. The following table shows the behavior for all combinations of MDA and VGA: VGA MDA Behavior 0					
	4	Ţ Ţ					

Bit	Descriptions				
3	AGP Mode (AGP)—RO. This bit reflects the GPAR strap value. Note that the strap value is ampled on the assertion of PWROK. = Reserved = AGP				
2	FSB IOQ Depth (IOQD)—RO. This bit is RO and reflects the HA7# strap value. It indicates the depth of the FSB IOQ. When the strap is sampled low, this bit will be a 0 and the FSB IOQ depth is set to 1. When the strap is sampled high, this bit will be a 1 and the FSB IOQ depth is set to the maximum (12 on the bus, 12 on the MCH). 0 = 1 deep 1 = 12 on the bus, 12 on the MCH				
1:0	FSB Frequency Select (FSBFREQ)—RO. The default value of this bit is set by the strap assigned to the BSEL[1:0] pins and is latched at the rising edge of PWROK. 00 = Core Frequency is 100 MHz and the FSB frequency is 400 MHz 01 = Core Frequency is 133 MHz and the FSB frequency is 533 MHz 10 = Core Frequency is 200 MHz and the FSB frequency is 800 MHz 11 = Reserved				

3.5.35 ERRSTS—Error Status Register (Device 0)

Address Offset: C8–C9h
Default Value: 0000h
Access: R/WC
Size: 16 bits

This register is used to report various error conditions via the SERR HI messaging mechanism. An SERR HI message is generated on a 0-to-1 transition of any of these flags (if enabled by the ERRCMD and PCICMD registers). These bits are set regardless of whether or not the SERR is enabled and generated.

Note: Software must write a 1 to clear bits that are set.

Bit	Descriptions	
15:10	Intel Reserved	
	Non-DRAM Lock Error (NDLOCK)—R/WC.	
9	0 = No Lock operation detected.	
	1 = MCH has detected a lock operation to memory space that did not map into DRAM. This bit is cleared when software writes a 1 to it.	
	Software Generated SMI Flag—R/WC.	
8	0 = Source of an SMI was NOT the Device 2 Software SMI Trigger	
	1 = Source of an SMI was the Device 2 Software SMI Trigger.	
	Multiple-bit DRAM ECC Error Flag (DMERR)—R/WC.	
	0 = No non-correctable multiple-bit error for a memory read data transfer.	
7	1 = If this bit is set to 1, a memory read data transfer had a non-correctable multiple-bit error. When this bit is set the address, channel number, and device number that caused the error are logged in the EAP register. Once this bit is set the EAP fields are locked until the processor clears this bit by writing a 1. Software uses bits [7,0] to detect whether the logged error address is for Single or Multiple-bit error. Once software completes the error processing, a value of 1 is written to this bit field to clear the value (back to 0) and unlock the error logging mechanism.	
6	Intel Reserved	
	MCH Detects Unimplemented HI Special Cycle (HIAUSC)—R/WC.	
5	0 = No unimplemented Special Cycle on HI detected.	
	1 = MCH detects an Unimplemented Special Cycle on HI.	
	AGP Access Outside of Graphics Aperture Flag (OOGF)—R/WC.	
4	0 = No AGP access to an address that is outside of the graphics aperture range.	
	1 = AGP access occurred to an address that is outside of the graphics aperture range.	
	Invalid AGP Access Flag (IAAF)—R/WC.	
3	0 = No invalid AGP access.	
	1 = AGP access was attempted outside of the graphics aperture and either to the 640 KB – 1 MB range or above the top of memory.	

Bit	Descriptions	
	Invalid Graphics Aperture Translation Table Entry (ITTEF)—R/WC.	
2	0 = No invalid graphics aperture translation table entry.	
	1 = Invalid translation table entry was returned in response to an AGP access to the graphics aperture.	
	MCH Detects Unsupported AGP Command—R/WC.	
1	0 = No unsupported AGP command detected.	
	1 = Bogus or unsupported command is received by the AGP target in the MCH.	
	Single-bit DRAM ECC Error Flag (DSERR)—R/WC.	
	0 = No single-bit correctable DRAM ECC error detected for a memory read data transfer.	
0	1 = A memory read data transfer had a single-bit correctable error and the corrected data was sent for the access. When this bit is set, the address, channel number, and device number that caused the error are logged in the EAP register. Once this bit is set, the EAP fields are locked to further single bit error updates until the processor clears this bit by writing a 1 to it. A multiple bit error that occurs after this bit is set will overwrite the EAP fields with the multiple bit error signature and the MEF bit will also be set. Software must write a 1 to clear this bit and unlock the error logging mechanism.	

3.5.36 ERRCMD—Error Command Register (Device 0)

Address Offset: CA-CBh
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

This register controls the MCH responses to various system errors. Since the MCH does not have a SERR# signal, SERR messages are passed from the MCH to the ICH5 over the hub interface. When a bit in this register is set, a SERR message will be generated on the hub interface when the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 via the PCI Command register.

Bit	Descriptions	
15:10	Intel Reserved	
	SERR on Non-DRAM Lock (LCKERR)—R/W.	
9	Disable Enable. The MCH will generate a HI SERR special cycle when a processor lock cycle is detected that does not hit system memory.	
	SERR Multiple-Bit DRAM ECC Error (DMERR)—R/W.	
8	 0 = Disable. 1 = Enable. The MCH generates a SERR message over HI when it detects a multiple-bit error reported by the DRAM controller. For systems not supporting ECC, this bit must be disabled. 	
	SERR on Single-bit ECC Error (DSERR)—R/W.	
7	 0 = Disable. 1 = Enable. The MCH generates a SERR special cycle over HI when the DRAM controller detects a single bit error. For systems that do not support ECC this bit must be disabled. 	
	SERR on Target Abort on HI Exception (TAHLA)—R/W.	
6	 0 = Disable. Reporting of this condition is disabled. 1 = Enable. MCH generates a SERR special cycle over HI when an MCH originated HI cycle is completed with a Target Abort completion packet or special cycle. 	
	SERR on Detecting HI Unimplemented Special Cycle (HIAUSCERR)—R/W.	
5	 0 = Disable. MCH does not generate an SERR message for this event. SERR messaging for Device 0 is globally enabled in the PCICMD register. 1 = Enable. MCH generates a SERR message over HI when an Unimplemented Special Cycle is received on the HI. 	
	SERR on AGP Access Outside of Graphics Aperture (OOGF)—R/W.	
4	 0 = Disable. Reporting of this condition is disabled. 1 = Enable. MCH generates a SERR special cycle over HI when an AGP access occurs to an address outside of the graphics aperture. 	
	SERR on Invalid AGP Access (IAAF)—R/W.	
3	 0 = Disable. Invalid AGP Access condition is not reported. 1 = Enable. MCH generates a SERR special cycle over HI when an AGP access occurs to an address outside of the graphics aperture and either to the 640 KB – 1 MB range or above the top of memory. 	
	SERR on Invalid Translation Table Entry (ITTEF)—R/W.	
2	 0 = Disable.Reporting of this condition is disabled. 1 = Enable. MCH generates a SERR special cycle over HI when an invalid translation table entry was returned in response to an AGP access to the graphics aperture. 	
	SERR on MCH Detects Unsupported AGP Command—R/W.	
1	 0 = Disable. MCH Detects Unsupported AGP command will not generate and SERR 1 = Enable. MCH generates a SERR special cycle over HI when an Unsupported AGP command is detected. 	
0	Intel Reserved	

3.5.37 SMICMD—SMI Command Register (Device 0)

Address Offset: CC-CDh
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

This register enables various errors to generate an SMI HI special cycle. When an error flag is set in the ERRSTS register, it can generate an SCI HI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one, and only one, message type can be enabled.

Bit	Descriptions	
15:9	Reserved	
8	SMI on Multiple-Bit DRAM ECC Error—R/W. 0 = Disable. 1 = Enable. The MCH generates an SMI HI message when it detects a multiple-bit error reported by the DRAM controller. For systems not supporting ECC, this bit must be disabled.	
7	SMI on Single-bit ECC Error—R/W. 0 = Disable. 1 = Enable. The MCH generates an SMI HI special cycle when the DRAM controller detects a single-bit error. For systems that do not support ECC, this bit must be disabled.	
6:0	Reserved	

3.5.38 SCICMD—SCI Command Register (Device 0)

Address Offset: CE-CFh
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

This register enables various errors to generate an SCI HI special cycle. When an error flag is set in the ERRSTS register, it can generate an SCI HI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one, and only one, message type can be enabled.

Bit	Descriptions	
15:9	Reserved	
8	SCI on Multiple-Bit DRAM ECC Error—R/W. 0 = Disable. 1 = Enable. The MCH generates an SCI HI message when it detects a multiple-bit error reported by the DRAM controller. For systems not supporting ECC, this bit must be disabled.	
7	SCI on Single-bit ECC Error—R/W. 0 = Disable. 1 = Enable. The MCH generates an SCI HI special cycle when the DRAM controller detects a single bit error. For systems that do not support ECC, this bit must be disabled.	
6:0	Reserved	

3.5.39 SKPD—Scratchpad Data Register (Device 0)

Address Offset: DE-DFh
Default Value: 0000h
Access: R/W
Size: 16 bits

Bit	Descriptions
15:0	Scratchpad (SCRTCH)—R/W. These bits are R/W storage bits that have no effect on the MCH functionality.

3.5.40 CAPREG—Capability Identification Register (Device 0)

Address Offset: E4h-E9h

Default: 00000106A009h

Access: RO Size 40 bits

The Capability Identification Register uniquely identifies chipset capabilities as defined in the following table.

Bit	Descriptions	
47:28	Reserved	
27:24	CAPREG Version—RO. This field has the value 0001b to identify the first revision of the CAPREG definition.	
23:16	Cap_length—RO. This field has the value 06h indicating the structure length.	
15:8	Next_Pointer—RO. This field has the value A0h pointing to the next capabilities register, AGP Capability Identifier register (ACAPID). If AGP is disabled, this field has the value 00h signifying the end of the capabilities linked list.	
7:0	CAP_ID—RO. This field has the value 09h to identify the CAP_ID assigned by the PCI SIG for Vendor Dependent CAP_PTR.	

3.6 PCI-to-AGP Bridge Registers (Device 1)

Device 1 is the virtual PCI-to-AGP bridge. Table 8 provides the register address map. The register descriptions in this section are arranged by ascending offset address.

Table 8. PCI-to-AGP Bridge Register Address Map (Device 1)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID1	Vendor Identification	8086h	RO
02–03h	DID1	Device Identification	2579h	RO
04–05h	PCICMD1	PCI Command	0000h	RO R/W
06–07h	PCISTS1	PCI Status	00A0h	RO R/WC
08h	RID1	Revision Identification	see register description	RO
09h	_	Reserved	_	_
0Ah	SUBC1	Sub-Class Code	04h	RO
0Bh	BCC1	Base Class Code	06h	RO
0Ch	_	Reserved	_	_
0Dh	MLT1	Master Latency Timer	00h	RO R/W
0Eh	HDR1	Header Type	01h	RO
0F-17h	_	Reserved	_	
18h	PBUSN1	Primary Bus Number	00h	RO
19h	SBUSN1	Secondary Bus Number	00h	R/W
1Ah	SUBUSN1	Subordinate Bus Number	00h	R/W
1Bh	SMLT1	Secondary Bus Master Latency Timer	00h	RO R/W
1Ch	IOBASE1	I/O Base Address	F0h	RO R/W
1Dh	IOLIMIT1	I/O Limit Address	00h	RO R/W
1E-1Fh	SSTS1	Secondary Status	02A0h	RO R/WC
20–21h	MBASE1	Memory Base Address	FFF0h	RO R/W
22–23h	MLIMIT1	Memory Limit Address	0000h	RO R/W
24–25h	PMBASE1	Prefetchable Memory Base Address	FFF0h	RO R/W
26–27h	PMLIMIT1	Prefetchable Memory Limit Address	0000h	RO R/W
28–3Dh	_	Reserved	_	_
3Eh	BCTRL1	Bridge Control	00h	RO R/W
3Fh	_	Reserved	_	_
40h	ERRCMD1	Error Command	00h	RO R/W
41–FFh	_	Reserved	_	_

3.6.1 VID1—Vendor Identification Register (Device 1)

Address Offset: 00–01h Default Value: 8086h Access: RO Size: 16 bits

The VID Register contains the vendor identification number. This 16-bit register, combined with the Device Identification Register, uniquely identify any PCI device.

Bit	Descriptions
15:0	Vendor Identification Device 1 (VID1)—RO. This register field contains the PCI standard identification for Intel, 8086h.

3.6.2 DID1—Device Identification Register (Device 1)

Address Offset: 02–03h Default Value: 2579h Access: RO Size: 16 bits

This 16-bit register, combined with the Vendor Identification register, uniquely identifies any PCI device.

	Bit	Descriptions
Ī	15:0	Device Identification Number (DID)—RO. A 16-bit value assigned to the MCH Device 1.

3.6.3 PCICMD1—PCI Command Register (Device 1)

Address Offset: 04–05h Default Value: 0000h Access: RO, R/W Size: 16 bits

Bit	Descriptions		
15:10	Reserved		
9	Fast Back-to-Back Enable (FB2B)—RO. Hardwired to 0.		
	SERR Message Enable (SERRE)—R/W. This bit is a global enable bit for Device 1 SERR messaging. The MCH communicates the SERR# condition by sending a SERR message to the Intel® ICH5.		
8	0 = Disable. SERR message is not generated by the MCH for Device 1.		
	1 = Enable. MCH is enabled to generate SERR messages over HI for specific Device 1 error conditions that are individually enabled in the BCTRL1 register. The error status is reported in the PCISTS1 register.		
7	Address/Data Stepping (ADSTEP)—RO. Hardwired to 0.		
6	Parity Error Enable (PERRE)—RO. Hardwired to 0. Parity checking is not supported on the primary side of this device.		
5	Reserved		
4	Memory Write and Invalidate Enable (MWIE)—RO. This bit is implemented as read only and returns a value of 0 when read.		
3	Special Cycle Enable (SCE)—RO. Hardwired to 0.		
	Bus Master Enable (BME)—R/W.		
2	0 = Disable. AGP Master initiated Frame# cycles will be ignored by the MCH. The result is a master abort. Ignoring incoming cycles on the secondary side of the PCI-to-PCI bridge effectively disabled the bus master on the primary side. (default)		
	1 = Enable. AGP master initiated Frame# cycles will be accepted by the MCH if they hit a valid address decode range. This bit has no effect on AGP Master originated SBA or PIPE# cycles.		
	Memory Access Enable (MAE)—R/W.		
1	0 = Disable. All of Device 1's memory space is disabled.		
	1 = Enable. Enables the Memory and Pre-fetchable memory address ranges defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.		
	IO Access Enable (IOAE)—R/W.		
0	0 = Disable. All of Device 1's I/O space is disabled.		
	1 = Enable. This bit must be set to1 to enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers.		

3.6.4 PCISTS1—PCI Status Register (Device 1)

Address Offset: 06–07h
Default Value: 00A0h
Access: RO, R/WC
Size: 16 bits

PCISTS1 is a 16-bit status register that reports the occurrence of error conditions associated with primary side of the "virtual" PCI-to-PCI bridge embedded within the MCH.

Bit	Descriptions	
15	Detected Parity Error (DPE)—RO. Hardwired to 0. Parity is not supported on the primary side of this device.	
	Signaled System Error (SSE)—R/WC.	
	0 = Software clears this bit by writing a 1 to it.	
14	1 = MCH Device 1 generated an SERR message over HI for any enabled Device 1 error condition. Device 1 error conditions are enabled in the ERRCMD, PCICMD1 and BCTRL1 registers. Device 1 error flags are read/reset from the ERRSTS and SSTS1 register.	
13	Received Master Abort Status (RMAS)—RO. Hardwired to 0. The concept of a master abort does not exist on the primary side of this device.	
12	Received Target Abort Status (RTAS)—RO. Hardwired to 0. The concept of a target abort does not exist on the primary side of this device.	
11	Signaled Target Abort Status (STAS)—RO. Hardwired to 0. The concept of a target abort does not exist on the primary side of this device.	
10:9	DEVSEL# Timing (DEVT)—RO. The MCH does not support subtractive decoding devices on bus 0. This bit field is therefore hardwired to 00 to indicate that Device 1 uses the fastest possible decode.	
8	Data Parity Detected (DPD)—RO. Hardwired to 0. Parity is not supported on the primary side of this device.	
7	Fast Back-to-Back (FB2B)—RO. Hardwired to 1. The AGP/PCI_B interface always supports fast back to back writes.	
6	Reserved	
5	66/60 MHz Capability (CAP66)—RO. Hardwired to 1. The AGP/PCI bus is 66 MHz capable.	
4:0	Reserved	

3.6.5 RID1—Revision Identification Register (Device 1)

Address Offset: 08h

Default Value: See following table

Access: RO Size: 8 bits

This register contains the revision number of the MCH Device 1.

Bit	Descriptions
7:0	Revision Identification Number (RID)—RO. This is an 8-bit value that indicates the revision identification number for the MCH Device 1. It is always the same as the value in RID. 02h = A-2 Stepping

3.6.6 SUBC1—Sub-Class Code Register (Device 1)

Address Offset: 0Ah
Default Value: 04h
Access: RO
Size: 8 bits

This register contains the Sub-Class Code for the MCH Device 1.

Bit	Descriptions
7:0	Sub-Class Code (SUBC)—RO. This is an 8-bit value that indicates the category of bridge into which the Device 1 of the MCH falls. 04h = PCI-to-PCI bridge.

3.6.7 BCC1—Base Class Code Register (Device 1)

Address Offset: 0Bh
Default Value: 06h
Access: RO
Size: 8 bits

This register contains the Base Class Code of the MCH Device 1.

Bit	Descriptions
7:0	Base Class Code (BASEC)—RO. This is an 8-bit value that indicates the Base Class Code for the MCH Device 1.
	06h = Bridge device.

3.6.8 MLT1—Master Latency Timer Register (Device 1)

Address Offset: 0Dh
Default Value: 00h
Access: RO, R/W
Size: 8 bits

This functionality is not applicable. It is described here since these bits should be implemented as read/write to prevent standard PCI-to-PCI bridge configuration software from getting "confused."

Bit	Descriptions
7:3	Scratchpad MLT (NA7.3)—R/W. These bits return the value with which they are written; however, they have no internal function and are implemented as a scratchpad merely to avoid confusing software.
2:0	Reserved

3.6.9 HDR1—Header Type Register (Device 1)

Address Offset: 0Eh
Default Value: 01h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Descriptions
7:0	Header Type Register (HDR)—RO. This read only field always returns 01 to indicate that MCH Device 1 is a single function device with bridge header layout.

3.6.10 PBUSN1—Primary Bus Number Register (Device 1)

Address Offset: 18h Default Value: 00h Access: RO Size: 8 bits

This register identifies that "virtual" PCI-to-PCI bridge is connected to bus 0.

Bit	Descriptions
7:0	Primary Bus Number (PBUSN—RO. Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since Device 1 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

3.6.11 SBUSN1—Secondary Bus Number Register (Device 1)

Address Offset: 19h Default Value: 00h Access: R/W Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" PCI-to-PCI bridge i.e. to PCI_B/AGP. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI_B/AGP.

	Bit	Descriptions
-	7:0	Secondary Bus Number (SBUSN)—RO. This field is programmed by configuration software with the bus number assigned to PCI_B.

3.6.12 SUBUSN1—Subordinate Bus Number Register (Device 1)

Address Offset: 1Ah
Default Value: 00h
Access: R/W
Size: 8 bits

This register identifies the subordinate bus (if any) that resides at the level below PCI_B/AGP. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI_B/AGP.

Bit	Descriptions
7:0	Subordinate Bus Number (BUSN)—R/W. This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the Device 1 bridge. When only a single PCI device resides on the AGP/PCI_B segment, this register will contain the same value as the SBUSN1 register.

3.6.13 SMLT1—Secondary Bus Master Latency Timer Register (Device 1)

Address Offset: 1Bh
Default Value: 00h
Access: RO, R/W
Size: 8 bits

This register controls the bus tenure of the MCH on AGP/PCI the same way Device 0 MLT controls the access to the PCI_A bus.

Bit	Descriptions
7:3	Secondary MLT Counter Value (MLT)—R/W. Programmable, default = 0 (SMLT disabled)
2:0	Reserved

3.6.14 IOBASE1—I/O Base Address Register (Device 1)

Address Offset: 1Ch
Default Value: F0h
Access: RO, R/W
Size: 8 bits

This register controls the processor-to-PCI_B/AGP I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only the upper four bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB boundary.

Bit	Descriptions
7:4	I/O Address Base (IOBASE)—R/W. This field corresponds to A[15:12] of the I/O addresses passed by bridge 1 to AGP/PCI_B.
3:0	Reserved

3.6.15 IOLIMIT1—I/O Limit Address Register (Device 1)

Address Offset: 1Dh
Default Value: 00h
Access: RO, R/W
Size: 8 bits

This register controls the processor-to-PCI_B/AGP I/O access routing based on the following formula:

IO BASE \leq address \leq IO LIMIT

Only the upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-KB aligned address block.

Bit	Descriptions
7:4	I/O Address Limit (IOLIMIT)—R/W. This field corresponds to A[15:12] of the I/O address limit of Device 1. Devices between this upper limit and IOBASE1 will be passed to AGP/PCI_B.
3:0	Reserved

3.6.16 SSTS1—Secondary Status Register (Device 1)

Address Offset: 1E-1Fh
Default Value: 02A0h
Access: RO, R/WC
Size: 16 bits

SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (i.e., PCI_B/AGP side) of the "virtual" PCI-to-PCI bridge in the MCH.

Bit	Descriptions
	Detected Parity Error (DPE)—R/WC.
	0 = No parity error detected.
15	1 = MCH detected of a parity error in the address or data phase of PCI_B/AGP bus transactions.
	NOTE: Software clears this bit by writing a 1 to it.
14	Received System Error (RSE)—RO. Hardwired to 0. The MCH does not have an SERR# signal pin on the AGP interface.
	Received Master Abort Status (RMAS)—R/WC.
	0 = MCH did Not terminate a Host-to-PCI_B/AGP with an unexpected master abort.
13	1 = MCH terminated a Host-to-PCI_B/AGP with an unexpected master abort.
	NOTE: Software clears this bit by writing a 1 to it.
	Received Target Abort Status (RTAS)—R/WC.
	0 = No target abort termination for a MCH-initiated transaction on PCI_B/AGP.
12	1 = MCH-initiated transaction on PCI_B/AGP was terminated with a target abort.
	NOTE: Software clears this bit by writing a 1 to it.
11	Signaled Target Abort Status (STAS)—RO. Hardwired to 0. The MCH does not generate target abort on PCI_B/AGP.
10:9	DEVSEL# Timing (DEVT)—RO. This 2-bit field indicates the timing of the DEVSEL# signal when the MCH responds as a target on PCI_B/AGP, and is hard-wired to the value 01b (medium) to indicate the time when a valid DEVSEL# can be sampled by the initiator of the PCI cycle.
8	Master Data Parity Error Detected (DPD)—RO. Hardwired to 0. MCH does not implement GPERR# signal on PCI_B.
7	Fast Back-to-Back (FB2B)—RO. Hardwired to 1. The MCH, as a target, supports fast back-to-back transactions on PCI_B/AGP.
6	Reserved
5	66/60 MHz capability (CAP66)—RO. Hardwired to 1. The AGP/PCI_B bus is capable of 66 MHz operation.
4:0	Reserved

3.6.17 MBASE1—Memory Base Address Register (Device 1)

Address Offset: 20–21h
Default Value: FFF0h
Access: RO, R/W
Size: 16 bits

This register controls the processor-to-PCI_B non-prefetchable memory access routing based on the following formula:

MEMORY BASE \leq address \leq MEMORY LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Descriptions
15:4	Memory Address Base (MBASE)—R/W. This field corresponds to A[31:20] of the lower limit of the memory range that will be passed by the Device 1 bridge to AGP/PCI_B.
3:0	Reserved

3.6.18 MLIMIT1—Memory Limit Address Register (Device 1)

Address Offset: 22–23h
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

This register controls the processor-to-PCI_B non-prefetchable memory access routing based on the following formula:

 ${\sf MEMORY_BASE} \leq {\sf address} \leq {\sf MEMORY_LIMIT}$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Note: Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable PCI_B/AGP address ranges (typically, where control/status memory-mapped I/O data structures of the graphics controller will reside); PMBASE and PMLIMIT are used to map prefetchable address ranges (typically, graphics local memory). This segregation allows the application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor-AGP memory access performance.

Note: Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with values that provide exclusive address ranges (i.e., prevent overlap with each other and/or with the ranges covered with main memory). There is no provision in the MCH to enforce prevention of overlap and operations of the system in case of overlap are not guaranteed.

Bit	Descriptions
15:4	Memory Address Limit (MLIMIT)—R/W. This field corresponds to A[31:20] of the memory address that corresponds to the upper limit of the range of memory accesses that will be passed by the Device 1 bridge to AGP/PCI_B.
3:0	Reserved

3.6.19 PMBASE1—Prefetchable Memory Base Address Register (Device 1)

Address Offset: 24–25h
Default Value: FFF0h
Access: RO, R/W
Size: 16 bits

This register controls the processor-to-PCI_B prefetchable memory accesses routing based on the following formula:

 ${\sf PREFETCHABLe_MEMORY_BASE} \leq {\sf address} \leq {\sf PREFETCHABLe_MEMORY_LIMIT}$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Descriptions
15:4	Prefetchable Memory Address Base (PMBASE)—R/W. This field corresponds to A[31:20] of the lower limit of the address range passed by bridge Device 1 across AGP/PCI_B.
3:0	Reserved

3.6.20 PMLIMIT1—Prefetchable Memory Limit Address Register (Device 1)

Address Offset: 26–27h
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

This register controls the processor-to-PCI_B prefetchable memory accesses routing based on the following formula:

 $PREFETCHABLE_MEMORY_BASE \leq address \leq PREFETCHABLE_MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Descriptions
15:4	Prefetchable Memory Address Limit (PMLIMIT)—R/W. This field corresponds to A[31:20] of the upper limit of the address range passed by bridge Device 1 across AGP/PCI_B.
3:0	Reserved

3.6.21 BCTRL1—Bridge Control Register (Device 1)

Address Offset: 3Eh
Default Value: 00h
Access: RO, R/W
Size: 8 bits

This register provides extensions to the PCICMD1 register that are specific to PCI-to-PCI bridges. The BCTRL1 provides additional control for the secondary interface (i.e., PCI_B/AGP) as well as some bits that affect the overall behavior of the "virtual" PCI-to-PCI bridge in the MCH (e.g., VGA compatible address ranges mapping).

Bit	Descriptions		
7	Fast Back-to-Back Enable (FB2BEN)—RO. Hardwired to 0. The MCH does not generate fast back-to-back cycles as a master on AGP.		
6	Secondary Bus Reset (SRESET)—RO. Hardwired to 0. The MCH does not support the generation of reset via this bit on the AGP.		
5	Master Abort Mode (MAMODE)—RO. Hardwired to 0. Thus, when acting as a master on AGP/PCI_B, the MCH will discard writes and return all 1's during reads when a master abort occurs.		
4	Reserved		
3	VGA Enable (VGAEN)—R/W. This bit controls the routing of processor-initiated transactions targeting VGA compatible I/O and memory address ranges. This bit works in conjunction with the MCHCFG[MDAP] bit (offset C6h) as described in Table 9.		
	0 = Disable		
	1 = Enable		
	ISA Enable (ISAEN)—R/W. This bit modifies the response by the MCH to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.		
2	0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions are mapped to PCI_B/AGP. (default)		
	1 = The MCH will not forward to PCI_B/AGP any I/O transactions addressing the last 768 bytes in each 1-KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. Instead of going to PCI_B/AGP, these cycles are forwarded to HI where they can be subtractively or positively claimed by the ISA bridge.		
1	SERR Enable (SERREN)—RO. Hardwired to 0. This bit normally controls forwarding SERR# of the secondary interface to the primary interface. The MCH does not support the SERR# signal the AGP/PCI_B bus.		
	Parity Error Response Enable (PEREN)—R/W. This bit controls the MCH's response to data phase parity errors on PCI_B/AGP. GPERR# is not implemented by the MCH.		
0	0 = Address and data parity errors on PCI_B/AGP are not reported via the MCH HI SERR messaging mechanism. Other types of error conditions can still be signaled via SERR messaging independent of this bit's state.		
	1 = Address and data parity errors detected on PCI_B are reported via the HI SERR messaging mechanism, if further enabled by SERRE1.		

The bit field definitions for VGAEN and MDAP are detailed in Table 9.

Table 9. VGAEN and MDAP Field Definitions

VGAEN	MDAP	Description
0	0	All references to MDA and VGA space are routed to HI.
0	1	Illegal combination.
1	0	All VGA references are routed to this bus. MDA references are routed to HI.
1	1	All VGA references are routed to this bus. MDA references are routed to HI.

3.6.22 ERRCMD1—Error Command Register (Device 1)

Address Offset: 40h
Default Value: 00h
Access: RO, R/W
Size: 8 bits

Bit	Descriptions	
7:1	Reserved	
0	SERR on Receiving Target Abort (SERTA)—R/W. 0 = The MCH does not assert an SERR message upon receipt of a target abort on PCI_B. SERR messaging for Device 1 is globally enabled in the PCICMD1 register. 1 = The MCH generates an SERR message over HI upon receiving a target abort on PCI_B.	

3.7 PCI-to-CSA Bridge Registers (Device 3)

This device is the virtual PCI-to-CSA bridge. This section contains the PCI configuration registers listed in order of ascending offset address.

Table 10. PCI-to-CSA Bridge Configuration Register Address Map (Device 3)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID3	Vendor Identification	8086h	RO
02–03h	DID3	Device Identification	257Bh	RO
04–05h	PCICMD3	PCI Command	0000h	RO,R/W
06–07h	PCISTS3	PCI Status	00A0h	RO,R/WC
08h	RID3	Revision Identification	see register description	RO
09	_	Reserved	_	_
0Ah	SUBC3	Sub-Class Code	04h	RO
0Bh	BCC3	Base Class Code	06h	RO
0Ch	_	Reserved	_	_
0Dh	MLT3	Master Latency Timer	00h	RO,R/W
0Eh	HDR3	Header Type	01h	RO
0F-17h	_	Reserved	_	_
18h	PBUSN3	Primary Bus Number	00h	R/W
19h	SBUSN3	Secondary Bus Number	00h	R/W
1Ah	SUBUSN3	Subordinate Bus Number	00h	R/W
1Bh	SMLT3	Secondary Bus Master Latency Timer	00h	RO,R/W
1Ch	IOBASE3	I/O Base Address	F0h	RO,R/W
1Dh	IOLIMIT3	I/O Limit Address	00h	RO,R/W
1E–1Fh	SSTS3	Secondary Status	02A0h	RO,R/WC
20–21h	MBASE3	Memory Base Address	FFF0h	RO,R/W
22-23h	MLIMIT3	Memory Limit Address	0000h	RO,R/W
24–25h	PMBASE3	Prefetchable Memory Base Limit Address	FFF0h	RO,R/W
26–27h	PMLIMIT3	Prefetchable Memory Limit Address	0000h	RO,R/W
28–3Dh	_	Reserved	_	_
3Eh	BCTRL3	Bridge Control	00h	RO,R/W
3Fh	_	Reserved	_	_
40h	ERRCMD3	Error Command	00h	RO,R/W
41–4Fh	_	Reserved	_	_
50–53h	CSACNTRL	CSA Control	0E04 2802h	RO,R/W
54–FFh	_	Reserved	_	_

3.7.1 VID3—Vendor Identification Register (Device 3)

Address Offset: 00h-01h Default Value: 8086h Access Attributes: RO Size: 16 bits

The VID Register contains the vendor identification number. This 16-bit register, combined with the Device Identification Register, uniquely identify any PCI device.

Bit	Description
15:0	Vendor Identification Number—RO. This is a 16-bit value assigned to Intel.

3.7.2 DID3—Device Identification Register (Device 3)

Address Offset: 02h–03h
Default Value: 257Bh
Access Attributes: RO
Size: 16 bits

This 16-bit register, combined with the Vendor Identification register, uniquely identifies any PCI device.

Bit	Description
15:0	Device Identification Number—RO. This is a 16-bit value assigned to the MCH Device 3.

3.7.3 PCICMD3—PCI Command Register (Device 3)

Address Offset: 04h–05h
Default: 0000h
Access: RO, R/W
Size: 16 bits

Bit	Description	
15:10	Reserved	
9	Fast Back-to-Back (FB2B)—RO. Hardwired to 0.	
	SERR# Enable (SERRE)—R/W. This bit is a global enable bit for Device 3 SERR messaging. The MCH communicates the SERR# condition by sending a SERR message to the Intel® ICH5.	
8	 0 = Disable. The SERR message is not generated by the MCH for Device 3. 1 = Enable. The MCH is enabled to generate SERR messages over the hub interface for specific Device 3 error conditions that are individually enabled in the BCTRL3 register. The error status is reported in the PCISTS3 register. 	
7	Address/Data Stepping (ADSTEP)—RO. Hardwired to 0.	
6	Parity Error Enable (PERRE)—RO. Hardwired to 0. Parity checking is not supported on the primary side of this device.	
5	Reserved	
4	Memory Write and Invalidate Enable (MWIE)—RO. Hardwired to 0.	
3	Special Cycle Enable (SCE)—RO. Hardwired to 0.	
2	Bus Master Enable (BME)—R/W. This bit is not functional. It is a R/W bit for compatibility with compliance testing software.	
1	Memory Access Enable (MAE)—R/W. This bit must be set to 1 to enable the memory and prefetchable memory address ranges defined in the MBASE3, MLIMIT3, PMBASE3, and PMLIMIT3 registers. 0 = Disable (default). 1 = Enable.	
0	I/O Access Enable (IOAE)—R/W. This bit must be set to 1 to enable the I/O address range defined in the IOBASE3 and IOLIMIT3 registers. 0 = Disable (default). 1 = Enable.	

3.7.4 PCISTS3—PCI Status Register (Device 3)

Address Offset: 06h–07h
Default Value: 00A0h
Access: RO, R/WC
Size: 16 bits

PCISTS3 is a 16-bit status register that reports the occurrence of error conditions associated with primary side of the "virtual" PCI-to-CSA bridge in the MCH.

Bit	Description
15	Detected Parity Error (DPE)—RO. Hardwired to 0. Parity is not supported on the primary side of this device.
14	Signaled System Error (SSE)—R/WC. Software clears this bit by writing a 1 to it. 0 = No SERR message generated by Device 3 over HI. 1 = MCH Device 3 generated a SERR message over HI for an enabled Device 3 error condition. Device 3 error conditions are enabled in the ERRCMD, PCICMD3, and BCTRL3 registers. Device 3 error flags are read/reset from the ERRSTS and SSTS3 register.
13	Received Master Abort Status (RMAS)—RO. Hardwired to 0. The concept of a master abort does not exist on the primary side of this device.
12	Received Target Abort Status (RTAS)—R/WC. Hardwired to 0. The concept of a target abort does not exist on the primary side of this device.
11	Signaled Target Abort Status (STAS)—RO. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
10:9	DEVSEL# Timing (DEVT)—RO. Hardwired to 00b. MCH does not support subtractive decoding devices on bus 0. The value 00b indicates that Device 3 uses the fastest possible decode.
8	Data Parity Detected (DPD)—R/WC. Hardwired to 0. Since Parity Error Response is hardwired to disabled (and the MCH does not support any parity detection on the primary side of this device), this bit is hardwired to 0.
7	Fast Back-to-Back (FB2B)—RO. Hardwired to 1. The interface always supports fast back to back writes.
6	Reserved
5	66/60 MHz PCI Capable (CAP66)—RO. Hardwired to 1. CSA is 66 MHz capable.
4:0	Reserved

3.7.5 RID3—Revision Identification Register (Device 3)

Address Offset: 08h

Default Value: See following table

Access: RO Size: 8 bits

This register contains the revision number of the MCH Device 3.

Bit	Description
7:0	Revision Identification Number—RO. This is an 8-bit value that indicates the revision identification number for the MCH Device 3. It is always the same as the value in RID. 02h = A-2 Stepping

3.7.6 SUBC3—Class Code Register (Device 3)

Address Offset: 0Ah
Default Value: 04h
Access: RO
Size: 8 bits

This register contains the Sub-Class Code for the MCH device 3.

Bit	Description
7:0	Sub-Class Code (SUBC)—RO. This is an 8-bit value that indicates the category of bridge into which the Device 3 of the MCH falls. 04h = PCI-to-PCI bridge.

3.7.7 BCC3—Base Class Code Register (Device 3)

Address Offset: 0Bh
Default Value: 06h
Access: RO
Size: 8 bits

This register contains the Base Class Code of the MCH Device 3.

Bit	Description
7:0	Base Class Code (BASEC)—RO. This is an 8-bit value that indicates the Base Class Code for the MCH Device 3. 06h = Bridge device.

3.7.8 MLT3—Master Latency Timer Register (Device 3)

Address Offset: 0Dh
Default Value: 00h
Access: RO, RW
Size: 8 bits

This functionality is not applicable. It is described here since these bits should be implemented as a read/write to prevent standard PCI-to-PCI bridge configuration software from getting "confused."

Bit	Description
7:3	Scratchpad MLT (NA7:3)—R/W. These bits return the value with which they are written; however, they have no internal function and are implemented as a scratchpad merely to avoid confusing software.
2:0	Reserved

3.7.9 HDR3—Header Type Register (Device 3)

Address Offset: 0Eh
Default Value: 01h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space.

Bit	Description
7:0	Header Type Register (HDR)—RO.
7.0	01h = MCH Device 3 is a single function device with bridge header layout.

3.7.10 PBUSN3—Primary Bus Number Register (Device 3)

Address Offset: 18h
Default Value: 00h
Access: RO
Size: 8 bits

This register identifies that "virtual" PCI-to-PCI bridge is connected to bus 0.

Bit	Description
7:0	Primary Bus Number (BUSN)—RO. Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since Device 3 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 00h.

3.7.11 SBUSN3—Secondary Bus Number Register (Device 3)

Address Offset: 19h Default Value: 00h Access: R/W Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" PCI-to-PCI bridge (i.e., to CSA). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to CSA.

Bit	Description
7:0	Secondary Bus Number (BUSN)—R/W. This field is programmed by configuration software with the bus number assigned to CSA.

3.7.12 SMLT3—Secondary Bus Master Latency Timer Register (Device 3)

Address Offset: 1Bh Default Value: 00h Access: RO Size: 8 bits.

ſ	Bit	Description
Ī	7:0	Reserved

3.7.13 IOBASE3—I/O Base Address Register (Device 3)

Address Offset: 1Ch
Default Value: F0h
Access: RO, R/W
Size: 8 bits

This register controls the processor-to-CSA I/O access routing based on the following formula:

$$IO_BASE \le address \le IO_LIMIT$$

Only the upper four bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB boundary.

Bit	Description
7:4	I/O Address Base (IOBASE)—R/W. This field corresponds to A[15:12] of the I/O addresses passed by bridge 1 to CSA.
3:0	Reserved

3.7.14 IOLIMIT3—I/O Limit Address Register (Device 3)

Address Offset: 1Dh
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the processor-to-CSA I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only the upper four bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-KB aligned address block.

Bit	Description
7:4	I/O Address Limit (IOLIMIT)—R/W. This field corresponds to A[15:12] of the I/O address limit of Device 3. Devices between this upper limit and IOBASE3 will be passed to CSA.
3:0	Reserved

3.7.15 SSTS3—Secondary Status Register (Device 3)

Address Offset: 1E-1Fh
Default Value: 02A0h
Access: RO, RWC
Size: 16 bits

SSTS3 is a 16-bit status register that reports the occurrence of error conditions associated with the secondary side (i.e., CSA side) of the "virtual" PCI-to-PCI bridge in the MCH.

Note: For R/WC bits, software must write a 1 to clear bits that are set.

Bit	Description
15	Detected Parity Error (DPE)— RO. Hardwired to 0. Parity is not supported on the CSA interface.
	Received System Error (RSE)—R/WC.
14	0 = No system error from the CSA device to the MCH.
	1 = CSA device signals a system error to the MCH.
	Received Master Abort Status (RMAS)—R/WC.
13	0 = No MCH master abort by the MCH to terminate a Host-to-CSA transfer.
	1 = MCH terminated a Host-to-CSA transfer with an unexpected master abort.
	Received Target Abort Status (RTAS)—R/WC.
12	0 = No target abort for MCH-initiated transaction on CSA.
	1 = MCH-initiated transaction on CSA is terminated with a target abort.
11	Signaled Target Abort Status (STAS)—RO. Hardwired to 0. The MCH does not generate target abort on CSA.
10:9	DEVSEL# Timing (DEVT)—RO. Hardwired to 01b. This 2-bit field indicates the timing of the DEVSEL# signal when the MCH responds as a target on CSA. The value 01b (medium) indicates the time when a valid DEVSEL# can be sampled by initiator of the PCI cycle.
8	Master Data Parity Detected (DPD)—RO. Hardwired to 0. MCH does not implement GPERR# signal on CSA.
7	Fast Back-to-Back (FB2B)—RO. Hardwired to 1. MCH, as a target, supports fast back-to-back transactions on CSA.
6	Reserved
5	66/60 MHz PCI Capable (CAP66)—RO. Hardwired to 1. CSA is 66 MHz capable.
4:0	Reserved

3.7.16 MBASE3—Memory Base Address Register (Device 3)

Address Offset: 20–21h
Default Value: FFF0h
Access: RO, RW
Size: 16 bits

This register controls the processor-to-CSA non-prefetchable memory access routing based on the following formula:

 $\mathsf{MEMORY_BASE} \leq \mathsf{address} \leq \mathsf{MEMORY_LIMIT}$

The Upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to 1-MB boundary.

Bit	Description
15:4	Memory Address Limit (MLIMIT)—R/W. This field corresponds to A[31:20] of the lower limit of the memory range that will be passed by Device 3 bridge to CSA.
3:0	Reserved

3.7.17 MLIMIT3—Memory Limit Address Register (Device 3)

Address Offset: 22–23h
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

This register controls the processor-to-CSA non-prefetchable memory access routing based on the following formula:

MEMORY BASE ≤ address ≤ MEMORY LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Note: Memory ranges covered by MBASE and MLIMIT registers are used to map non-prefetchable CSA address ranges (typically, where control/status memory-mapped I/O data structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically, graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor-CSA memory access performance.

Note: Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges (i.e., prevent overlap with each other and/or with the ranges covered with the main memory). There is no provision in the MCH hardware to enforce prevention of overlap and operations of the system in the case of overlap are not guaranteed.

Bit	Description	
15:4	Memory Address Limit (MLIMIT)—R/W. This field corresponds to A[31:20] of the memory address that corresponds to the upper limit of the range of memory accesses that will be passed by the Device 3 bridge to CSA.	
3:0	Reserved	

3.7.18 PMBASE3—Prefetchable Memory Base Address Register (Device 3)

Address Offset: 24–25h
Default Value: FFF0h
Access: R/W, RO
Size: 16 bits

This register controls the processor-to-CSA prefetchable memory access routing based on the following formula:

 ${\sf PREFETCHABLe_MEMORY_BASE} \leq {\sf address} \leq {\sf PREFETCHABLe_MEMORY_LIMIT}$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Description
15:4	Prefetchable Memory Address Base (PMBASE)—R/W. This field corresponds to A[31:20] of the lower limit of the address range passed by bridge Device 3 across CSA.
3:0	Reserved

3.7.19 PMLIMIT3—Prefetchable Memory Limit Address Register (Device 3)

Address Offset: 26–27h
Default Value: 0000h
Access: R/W, RO
Size: 16 bits

This register controls the processor-to-CSA prefetchable memory access routing based on the following formula:

PREFETCHABLE MEMORY BASE ≤ address ≤ PREFETCHABLE MEMORY LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read only and return 0's when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block. Note that the prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Description
15:4	Prefetchable Memory Address Limit (PMLIMIT)—R/W. This field corresponds to A[31:20] of the upper limit of the address range passed by bridge Device 3 across CSA.
3:0	Reserved

3.7.20 BCTRL3—Bridge Control Register (Device 3)

Address Offset: 3Eh
Default Value: 00h
Access: R/W, RO
Size: 8 bits

Bit	Description	
7	Fast Back-to-Back Enable (FB2BEN)—RO. Hardwired to 0. The MCH does not generate fast back-to-back cycles as a master on AGP.	
6	Secondary Bus reset (SREST)—RO. Hardwired to 0. The MCH does not support the generation of reset via this bit on the AGP.	
5	Master Abort Mode (MAMODE)—RO. Hardwired to 0. This means that, when acting as a master on CSA, the MCH will discard writes and return all 1's during reads when a master abort occurs.	
4	Reserved	
3	VGA Enable (VGAEN)—R/W. This bit controls the routing of processor-initiated transactions targeting VGA compatible I/O and memory address ranges. This bit works in conjunction with the MCHCFG[MDAP] bit (Device 0, offset C6h) as described in Table 11.	
	ISA Enable (ISAEN)—R/W. This bit modifies the response by the MCH to an I/O access issued by the processor that targets ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.	
2	0 = Disable (default). All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to CSA.	
	1 = Enable. The MCH will not forward to CSA any I/O transactions addressing the last 768 bytes in each 1-KB block, even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. Instead of going to CSA, these cycles will be forwarded to the hub interface where they can be subtractively or positively claimed by the ISA bridge.	
1	SERR Enable (SERREN)—RO. Hardwired to 0. This bit normally controls forwarding SERR# on the secondary interface to the primary interface. The MCH does not support the SERR# signal on the CSA bus.	
0	Parity Error Response Enable (PEREN)—RO. Hardwired to 0	

Table 11. VGAEN and MDAP Definitions

VGAEN	MDAP	Description
0	0	All References to MDA and VGA space are routed to HI.
0	1	Illegal combination.
1	0	All VGA references are routed to this bus. MDA references are routed to HI.
1	1	All VGA references are routed to this bus. MDA references are routed to HI.

3.7.21 ERRCMD3—Error Command Register (Device 3)

Address Offset: 40h Default Value: 00h Access: R/W, RO Size: 8 bits

Bit	Description	
7:1	Reserved	
	SERR on Receiving Target Abort (SERTA)—R/W.	
0	0 = The MCH does not assert a SERR message upon receipt of a target abort on CSA.	
	1 = The MCH generates a SERR message over CSA upon receiving a target abort on CSA. SERR messaging for Device 3 is globally enabled in the PCICMD3 register.	

3.7.22 CSACNTRL—CSA Control Register (Device 3)

Address Offset: 50–53h
Default Value: 0E042802h
Access: R/W, RO
Size: 32 bits

Bit	Description	
31:29	First Subordinate CSA (CSA_SUB_FIRST)—R/W. This field stores the lowest subordinate CI hub number.	
28	Reserved	
27:25	Last Subordinate CSA (CSA_SUB_LAST)—R/W. This field stores the highest subordinate CSA hub number.	
24:16	Reserved	
	CSA Width (CSA_WIDTH)—R/W. This field describes the used width of the data bus.	
	00 = 8 bit	
15:14	01 = Reserved	
	10 = Reserved	
	11 = Reserved	
13:0	Intel Reserved	

3.8 Overflow Configuration Registers (Device 6)

Device 6 is the Overflow Device for Device 0. The registers in this section are arranged in ascending order of the address offset. Table 12 provides the configuration register address map.

Table 12. Overflow Device Configuration Register Address Map (Device 6)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID6	Vendor Identification	8086h	RO
02–03h	DID6	Device Identification	257Eh	RO
04–05h	PCICMD6	PCI Command Register	0000h	RO, R/W
06–07h	PCISTS6	PCI Status Register	0080h	RO
08h	RID6	Revision Identification	see register description	RO
09h	_	Reserved	_	_
0Ah	SUBC6	Sub-Class Code	80h	RO
0Bh	BCC6	Base Class Code	08h	RO
0Ch-0Dh	_	Reserved	_	_
0Eh	HDR6	Header Type	00h	RO
0Fh	_	Reserved	_	_
10–13h	BAR6	Base Address	0000000h	RO
14–2Bh	_	Reserved	_	_
2C-2Dh	SVID6	Subsystem Vendor Identification	0000h	R/WO
2E-2Fh	SID6	Subsystem Identification	0000h	R/WO
30–3Fh	_	Reserved	_	_
40–FFh	_	Intel Reserved	_	_

3.8.1 VID6—Vendor Identification Register (Device 6)

Address Offset: 00–01h Default Value: 8086h Access: RO Size: 16 bits

The VID Register contains the vendor identification number. This 16-bit register, combined with the Device Identification Register, uniquely identifies any PCI device.

Bit	Descriptions	
15:0	Vendor Identification (VID)—RO. This register field contains the PCI standard identification for Intel.	

3.8.2 DID6—Device Identification Register (Device 6)

Address Offset: 02–03h Default Value: 257Eh Access: RO Size: 16 bits

This 16-bit register, combined with the Vendor Identification register, uniquely identifies any PCI device.

Bit	Descriptions	
15:0	Device Identification Number (DID)—RO. This is a 16-bit value assigned to the MCH Host-HI bridge Function 0.	

3.8.3 PCICMD6—PCI Command Register (Device 6)

Address Offset: 04–05h
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

Since MCH Device 0 does not physically reside on PCI_A, many of the bits are not implemented.

Bit	Descriptions	
15:10	Reserved	
9	Fast Back-to-Back Enable (FB2B)—RO. Hardwired to 0.	
8	SERR Enable (SERRE)—RO. Hardwired to 0.	
7	Address/Data Stepping Enable (ADSTEP)—RO. Hardwired to 0.	
6	Parity Error Enable (PERRE)—RO. Hardwired to 0.	
5	VGA Palette Snoop Enable (VGASNOOP)—RO. Hardwired to 0.	
4	Memory Write and Invalidate Enable (MWIE)—RO. Hardwired to 0. Special Cycle Enable (SCE)—RO. Hardwired to 0.	
3		
2	Bus Master Enable (BME)—RO. Hardwired to 0.	
1	Memory Access Enable (MAE)—R/W. Set this bit to 1 to enable Device 6 memory space accesses. 0 = Disable (default). 1 = Enable.	
0	I/O Access Enable (IOAE)—R/W. This bit must be set to 1 to enable the I/O address range defined in the IOBASE3 and IOLIMIT3 registers. 0 = Disable (default). 1 = Enable.	

3.8.4 PCISTS6—PCI Status Register (Device 6)

Address Offset: 06–07h
Default Value: 0080h
Access: RO
Size: 16 bits

PCISTS6 is a 16-bit status register that reports the occurrence of error events on Device 6, Function 0's PCI interface. Since MCH Device 6 does not physically reside on PCI_0, many of the bits are not implemented.

Bit	Descriptions	
15	Detected Parity Error (DPE)—RO. Hardwired to 0.	
14	Signaled System Error (SSE)—RO. Hardwired to 0.	
13	Received Master Abort Status (RMAS)—RO. Hardwired to 0.	
12	Received Target Abort Status (RTAS)—RO. Hardwired to 0.	
11	Signaled Target Abort Status (STAS)—RO. Hardwired to 0.	
10:9	DEVSEL Timing (DEVT)—RO. Hardwired to 00. Device 6 does not physically connect to PCI_A. These bits are set to 00 (fast decode) so that optimum DEVSEL timing for PCI_A is not limited by the MCH.	
8	Master Data Parity Error Detected (DPD)—RO. Hardwired to 0.	
7	Fast Back-to-Back (FB2B)—RO. Hardwired to 1. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for PCI_A is not limited by the MCH.	
6:0	Reserved	

3.8.5 RID6—Revision Identification Register (Device 6)

Address Offset: 08h

Default Value: See following table

Access: RO Size: 8 bits

This register contains the revision number of the MCH Device 0.

Bit	Descriptions
7:0	Revision Identification Number (RID)—RO. This is an 8-bit value that indicates the revision identification number for the MCH Device 6. 02h = A-2 Stepping

3.8.6 SUBC6—Sub-Class Code Register (Device 6)

Address Offset: 0Ah
Default Value: 80h
Access: RO
Size: 8 bits

This register contains the Sub-Class Code for the MCH Device 0.

Bit	Descriptions
7:0	Sub-Class Code (SUBC)—RO. This is an 8-bit value that indicates the category of device for the MCH Device 6.
	80h = Other system peripheral.

3.8.7 BCC6—Base Class Code Register (Device 6)

Address Offset: 0Bh
Default Value: 08h
Access: RO
Size: 8 bits

This register contains the Base Class Code for the MCH Device 0.

Bit	Descriptions
7:0	Base Class Code (BASEC)—RO. This is an 8-bit value that indicates the category of Device for the MCH Device 6. 08h = Other system peripherals.

3.8.8 HDR6—Header Type Register (Device 6)

Address Offset: 0Eh
Default Value: 00h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space.

3.8.9 BAR6—Memory Delays Base Address Register (Device 6)

Address Offset: 10–13h
Default Value: 00000000h
Access: RO, R/W
Size: 32 bits

This register is a standard PCI scheme to claim a memory-mapped address range. This memory-mapped address range can be enabled once the relevant enable bit in the PCI command register is set to 1.

Bit	Descriptions			
31:12	Memory base Address—R/W. Set by the OS, these bits correspond to address signals [31:13].			
11:4	Address Mask—RO. Hardwired to 00h to indicate 4-KB address range. This reserves 4 KB of memory-mapped address space.			
	Prefetchable—RO. This bit indicates the prefetchability of the requested memory address range.			
	0 = Not prefetchable. The memory range is not prefetchable and may have read side effects.			
3	1 = Prefetchable. The memory address range is prefetchable (i.e., has no read side effects and returns all bytes on reads regardless of byte enables) and byte merging of write transactions is allowed.			
2:1	Memory Type (TYPE)—RO. Hardwired to 00 to indicate that the address range defined by the upper bits of this register can be located anywhere in the 32-bit address space as per the PCI specification for base address registers.			
0	Memory Space Indicator (MSPACE)—RO. Hardwired to 0 to identify memory space.			

3.8.10 SVID6—Subsystem Vendor Identification Register (Device 6)

Address Offset: 2C-2Dh Default Value: 0000h Access: R/WO Size: 16 bits

This value is used to identify the vendor of the subsystem.

Bit	Descriptions
15:0	Subsystem Vendor ID (SUBVID)—R/WO. This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

3.8.11 SID6—Subsystem Identification Register (Device 6)

Address Offset: 2E–2Fh
Default Value: 0000h
Access: R/WO
Size: 16 bits

This value is used to identify a particular subsystem.

Bit	Descriptions
15:0	Subsystem ID (SUBID)—R/WO. This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

3.9 Device 6 Memory-Mapped I/O Register Space

The DRAM timing and delay registers are located in the memory-mapped register (MMR) space of Device 6. Table 13 provides the register address map for this set of registers.

Note: All accesses to these memory-mapped registers must be made as a single DWord (4 bytes) or less. Access must be aligned on a natural boundary.

Table 13. Device 6 Memory-Mapped I/O Register Address Map

Address Offset	Register Symbol	Register Name Default Value Acces		Access
0000h	DRB0	DRAM Row 0 Boundary	DRAM Row 0 Boundary 01h RO, RV	
0001h	DRB1	DRAM Row 1 Boundary	01h	RO, RW
0002h	DRB2	DRAM Row 2 Boundary	01h	RO, RW
0003h	DRB3	DRAM Row 3 Boundary	01h	RO, RW
0004h	DRB4	DRAM Row 4 Boundary	01h	RO, RW
0005h	DRB5	DRAM Row 5 Boundary	01h	RO, RW
0006h	DRB6	DRAM Row 6 Boundary	01h	RO, RW
0007h	DRB7	DRAM Row 7 Boundary	01h	RO, RW
0008-000Bh	_	Intel Reserved	_	_
0010h	DRA0,1	DRAM Row 0,1 Attribute	00h	RO, RW
0011h	DRA2,3	DRAM Row 2,3 Attribute	00h	RO, RW
0012h	DRA4,5	DRAM Row 4,5 Attribute	00h	RO, RW
0013h	DRA6,7	DRAM Row 6,7 Attribute	00h	RO, RW
0014–005Fh	_	Intel Reserved	_	_
0060-0063h	DRT	DRAM Timing	0000 0000h	RW
0064–0067h	_	Intel Reserved		_
0068-006Bh	DRC	DRAM Controller Mode	0001 0001h	RW, RO
006C-FFFFh	_	Intel Reserved		

3.9.1 DRB[0:7]—DRAM Row Boundary Registers (Device 6, MMR)

Address Offset: 0000h-0007h (DRB0-DRB7)

Default Value: 00h Access: RO, R/W

Size: 8 bits each register

The DRAM row Boundary registers define the upper boundary address of each DRAM row. Each row has its own single-byte DRB register. The granularity of these registers is 64 MB. For example, a value of 1 in DRB0 indicates that 64 MB of DRAM has been populated in the first row. When in either of the two dual-channel modes, the granularity of these registers is still 64 MB. In this case, the lowest order bit in each register is always programmed to 0 yielding a minimum granularity of 128 MB. Bit 7 of each of these registers is reserved and must be programmed to 0. The remaining 7 bits of each of these registers are compared against address lines 31:26 to determine which row is being addressed by the current cycle. In either of the dual-channel modes, the MCH supports a total of 4 rows of memory (only DRB0-3 are used). When in either of the dual-

channel modes and four rows populated with 512-Mb technology, x8 devices, the largest memory size of 4 GB is supported. In this case, DRB3 is programmed to 40h. In the dual channel modes, DRB[7:4] must be programmed to the same value as DRB3. When in single-channel mode, all eight DRB registers are used. In this case, DRB[3:0] are used for the rows in channel A and DRB[7:4] are used for rows populated in channel B. If only channel A is populated, then only DRB[3:0] are used. DRB[7:4] are programmed to the same value as DBR3. If only channel B is populated, then DRB[7:4] are used and DRB[3:0] are programmed to 00h. When both channels are populated but not identically, then all of the DRB registers are used. This configuration is referred to as "virtual single-channel mode."

```
Row0:
         0000h
         0001h
Row1:
Row2:
         0002h
Row3:
         0003h
         0004h
Row4:
Row5:
         0005h
Row6:
         0006h
Row7:
         0007h
         0008h, reserved
         0009h, reserved
         000Ah, reserved
         000Bh. reserved
         000Ch, reserved
         000Dh, reserved
         000Eh, reserved
         000Fh, reserved
DRB0 = Total memory in Row0 (in 64-MB increments)
DRB1 = Total memory in Row0 + Row1 (in 64-MB increments)
DRB2 = Total memory in Row0 + Row1 + Row2 (in 64-MB increments)
DRB3 =
        Total memory in Row0 + Row1 + Row2 + Row3 (in 64-MB increments)
         Total memory in Row0 + Row1 + Row2 + Row3 + Row4 (in 64-MB increments)
DRB4 =
DRB5 =
         Total memory in Row0 + Row1 + Row2 + Row3 + Row4 + Row5
         (in 64-MB increments)
DRB6 =
         Total memory in Row0 + Row1 + Row2 + Row3 + Row4 + Row5 + Row6
         (in 64-MB increments)
DRB7 =
        Total memory in Row0 + Row1 + Row2 + Row3 + Row4 + Row5 + Row6 + Row7
         (in 64-MB increments)
```

Each row is represented by a byte. Each byte has the following format.

Bit	Description
7	Reserved
6:0	DRAM Row Boundary Address—R/W. This 7-bit value defines the upper and lower addresses for each DRAM row. This 7-bit value is compared against address lines 0, 31:26 (0 is concatenated with the address bits 31:26) to determine which row the incoming address is directed. Default= 0000001b

3.9.2 DRA— DRAM Row Attribute Register (Device 6, MMR)

Address Offset: 0010h-0013h

Default Value: 00h Access: RO, R/W

Size: 8 bits each register

The DRAM Row Attribute registers define the page sizes to be used when accessing different rows or pairs of rows. The minimum page size of 4 KB occurs when in single-channel mode and either 128-Mb, x16 devices are populated or 256-Mb, x16 devices are populated. The maximum page size of 32 KB occurs when in dual-channel mode and 512 MB, x8 devices are populated. Each nibble of information in the DRA registers describes the page size of a row or pair of rows: When in either of the dual-channel modes, only registers 10h and 11h are used. The page size programmed reflects the page size for the pair of DIMMS installed. When in single-channel mode, registers 10h and 11h are used to specify page sizes for channel A and registers 12h and 13h are used to specify page sizes for channel B. If the associated row is not populated, the field must be left at the default value.

Row0, 1: 0010h Row2, 3: 0011h Row4, 5: 0012h Row6, 7: 0013h

_	_				_		_
7	6		4	3	2		0
Rsvd		Row Attribute for Row 1		Rsvd		Row Attribute for Row 0	
7	6		4	3	2		0
Rsvd		Row Attribute for Row 3		Rsvd		Row Attribute for Row 2	
7	6		4	3	2		0
Rsvd		Row Attribute for Row 5		Rsvd		Row Attribute for Row 4	
7	6		4	3	2		0
Rsvd		Row Attribute for Row 7		Rsvd		Row Attribute for Row 6	

Bit	Description
7	Reserved
6:4	Row Attribute for Odd-Numbered Row—R/W. This field defines the page size of the corresponding row. If the associated row is not populated, this field must be left at the default value. 000 = 4 KB 001 = 8 KB 010 = 16 KB 011 = 32 KB Others = Reserved
3	Reserved
2:0	Row Attribute for Even-Numbered Row—R/W. This field defines the page size of the corresponding row. If the associated row is not populated, this field must be left at the default value. 000 = 4 KB 001 = 8 KB 010 = 16 KB 011 = 32 KB Others = Reserved

3.9.3 DRT—DRAM Timing Register (Device 6, MMR)

Address Offset: 0060h—0063h
Default Value: 00000000h
Access: R/W
Size: 32 bits

This register controls the timing of micro-commands. When in virtual single-channel mode, the timing fields specified here apply even if two back-to-back cycles are to different physical channels. That is, the controller acts as if the two cycles are to the same physical channel.

Bit	Description
31:11	Intel Reserved
10	Activate to Precharge delay (t_{RAS}), Max—R/W. These bits control the number of DRAM clocks for t_{RAS} maximum. $0 = 120 \ \mu s$ $1 = 70 \ \mu s$ NOTE: DDR333 DRAM requires a shorter T_{RAS} (max) of 70 μs
9:7	Activate to Precharge delay (t _{RAS}), Min—R/W. These bits control the number of DRAM clocks for t _{RAS} minimum. 000 = 10 DRAM clocks 001 = 9 DRAM clocks 010 = 8 DRAM clocks 011 = 7 DRAM clocks 100 = 6 DRAM clocks 101 = 5 DRAM clocks others = Reserved
6:5	CAS# Latency (t _{CL})—R/W. 00 = 2.5 DRAM clocks 01 = 2 DRAM clocks 10 = 3 DRAM clocks 11 = Reserved
4	Intel Reserved
3:2	DRAM RAS# to CAS# Delay (t _{RCD})—R/W. This bit controls the number of clocks inserted between an active command and a read or write command to that bank. 00 = 4 DRAM clocks 01 = 3 DRAM clocks 10 = 2 DRAM clocks 11 = Reserved
1:0	DRAM RAS# Precharge (t _{RP})—R/W. This bit controls the number of clocks that are inserted between a precharge command and an active command to the same bank. 00 = 4 DRAM clocks (DDR333) 01 = 3 DRAM clocks 10 = 2 DRAM clocks 11 = Reserved

3.9.4 DRC—DRAM Controller Mode Register (Device 6, MMR)

Address Offset: 0068h—006Bh
Default Value: 00000001h
Access: R/W, RO
Size: 32 bits

Bit	Description					
31:30	Reserved					
29	Initialization Complete (IC)—R/W. This bit is used for communication of the software state between the memory controller and the BIOS.					
	1 = BIOS sets this bit to 1 after initialization of the DRAM memory array is complete.					
28	Reserved					
27:23	Intel Reserved					
	Number of Channels (CHAN)—RO. This field reflects that the MCH controller supports two modes of operation.					
22:21	00 = Single-channel or virtual single-channel					
22.21	01 = Dual-channel					
	10 = Reserved					
	11 = Reserved					
20	Reserved					
	DRAM Data Integrity Mode (DDIM)—R/W. These bits select data integrity mode.					
19:18	00 = Non-ECC mode					
19.10	01 = ECC enabled					
	Other = Reserved					
17:11	Reserved					
	Refresh Mode Select (RMS)—R/W. This field determines whether refresh is enabled and, if so, at what rate refreshes will be executed.					
	000 = Reserved					
40.0	001 = Refresh enabled. Refresh interval is 15.6 μsec					
10:8	010 = Refresh enabled. Refresh interval is 7.8 μsec					
	011 = Refresh enabled. Refresh interval is 64 μsec					
	111 = Refresh enabled. Refresh interval is 64 clocks (fast refresh mode)					
	Other = Reserved					
	Carlot Model Voc					

Bit	Description
	Mode Select (SMS)—R/W. These bits select the special operational mode of the DRAM interface. The special modes are intended for initialization at power up. Note that FCSEN (fast CS#) must be set to 0 while SMS cycles are performed. It is expected that BIOS may program FCSEN to possible 1 only after initialization.
	000 = Post Reset state – When the MCH exits reset (power-up or otherwise), the mode select field is cleared to 000.
	During any reset sequence, while power is applied and reset is active, the MCH de-asserts all CKE signals. After internal reset is de-asserted, CKE signals remain de-asserted until this field is written to a value different than 000. On this event, all CKE signals are asserted.
	During suspend (S3, S4), the MCH internal signal triggers the DRAM controller to flush pending commands and enter all rows into Self-Refresh mode. As part of the resume sequence, the MCH will be reset, which will clear this bit field to 000 and maintain CKE signals de-asserted. After internal reset is de-asserted, CKE signals remain de-asserted until this field is written to a value different than 000. On this event, all CKE signals are asserted.
6:4	001 = NOP Command Enable – All processor cycles to DRAM result in a NOP command on the DRAM interface.
	010 = All Banks Pre-charge Enable – All processor cycles to DRAM result in an "all banks precharge" command on the DRAM interface.
	011 = Mode Register Set Enable – All processor cycles to DRAM result in a "mode register" set command on the DRAM interface. Host address lines are mapped to DRAM address lines to specify the command sent. Host address HA[13:3] are mapped to memory address SMA[5:1].
	100 = Extended Mode Register Set Enable – All processor cycles to DRAM result in an "extended mode register set" command on the DRAM interface. Host address lines are mapped to DRAM address lines to specify the command sent. Host address lines are mapped to DRAM address lines to specify the command sent. Host address HA[13:3] are mapped to memory address SMA[5:1].
	101 = Reserved
	110 = CBR Refresh Enable – In this mode all processor cycles to DRAM result in a CBR cycle on the DRAM interface
	111 = Normal operation
3:2	Intel Reserved
	DRAM Type (DT)—RO. This field is used to select between supported DRAM types.
1:0	00 = Reserved
1.0	01 = Dual data rate DRAM
	Other = Reserved

intel® System Address Map

The processor in an 875P chipset system supports 4 GB of addressable memory space and 64 KB+3 of addressable I/O space. There is a programmable memory address space under the 1-MB region that is divided into regions that can be individually controlled with programmable attributes (e.g., disable, read/write, write only, or read only). Attribute programming is described in the Chapter 3. This section focuses on how the memory space is partitioned and the use of the separate memory regions.

The Pentium 4 processor family supports addressing of memory ranges larger than 4 GB. The MCH claims any processor access over 4 GB and terminates the transaction without forwarding it to the hub interface or AGP (discarding the data terminates writes). For reads, the MCH returns all 0's on the host bus. Note that the 875P chipset platform does not support the PCI Dual Address Cycle Mechanism and, therefore, does not allow addressing of greater than 4 GB on either the hub interface or AGP interface.

In the following sections, it is assumed that all of the compatibility memory ranges reside on the hub interface/PCI. The exception to this rule is VGA ranges that may be mapped to AGP. In the absence of more specific references, cycle descriptions referencing PCI should be interpreted as the Hub Interface/PCI, while cycle descriptions referencing AGP are related to the AGP bus.

The 875P chipset memory map includes a number of programmable ranges

All of these ranges must be unique and non-overlapping. There are no hardware interlocks to prevent problems in the case of overlapping ranges. Accesses to overlapped ranges may produce indeterminate results.

System Memory Address Ranges 4.1

The MCH provides a maximum system memory address decode space of 4 GB. The MCH does not remap APIC memory space. The MCH does not limit system memory space in hardware. It is the BIOS or system designers responsibility to limit memory population so that adequate PCI, AGP, High BIOS, and APIC memory space can be allocated. Figure 9 provides a simplified system memory address map. Figure 10 provides additional details on mapping specific memory regions as defined and supported by the MCH.

Figure 9. Memory System Address Map

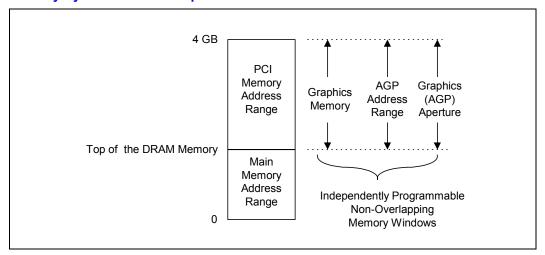
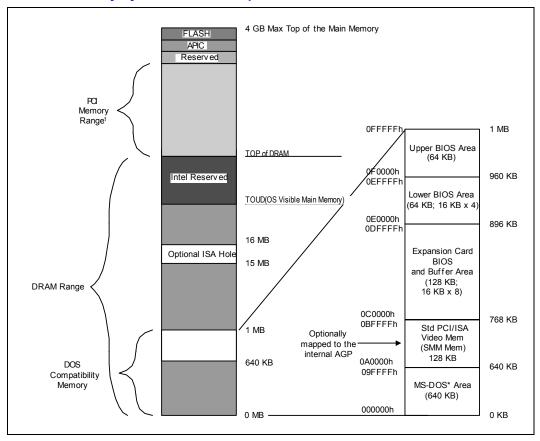



Figure 10. Detailed Memory System Address Map

NOTE:

1. Contains AGP Window, GFX Aperture, PCI, and ICH5 ranges.

4.2 Compatibility Area

This area is divided into the following address regions:

- 0-640 KB MS-DOS Area.
- 640–768 KB Video Buffer Area.
- 768–896 KB in 16-KB sections (total of eight sections) Expansion Area.
- 896 -960 KB in 16-KB sections (total of four sections) Extended System BIOS Area.
- 960-KB-1-MB memory (BIOS Area) System BIOS Area.

There are fifteen memory segments in the compatibility area (see Table 14). Thirteen of the memory ranges can be enabled or disabled independently for both read and write cycles.

Table 14. Memory Segments and Their Attributes

Memory Segments	Attributes	Comments
000000h-09FFFFh	Fixed: always mapped to main DRAM	0 to 640 KB – DOS Region
0A0000h-0BFFFFh	Mapped to Hub Interface, AGP	Video Buffer (physical DRAM configurable as SMM space)
0C0000h-0C3FFFh	WE RE	Add-on BIOS
0C4000h-0C7FFFh	WE RE	Add-on BIOS
0C8000h-0CBFFFh	WE RE	Add-on BIOS
0CC000h-0CFFFFh	WE RE	Add-on BIOS
0D0000h-0D3FFFh	WE RE	Add-on BIOS
0D4000h-0D7FFFh	WE RE	Add-on BIOS
0D8000h-0DBFFFh	WE RE	Add-on BIOS
0DC000h-0DFFFFh	WE RE	Add-on BIOS
0E0000h-0E3FFFh	WE RE	BIOS Extension
0E4000h-0E7FFFh	WE RE	BIOS Extension
0E8000h-0EBFFFh	WE RE	BIOS Extension
0EC000h-0EFFFFh	WE RE	BIOS Extension
0F0000h-0FFFFh	WE RE	BIOS Area

MS-DOS Area (00000h-9FFFFh)

The MS-DOS area is 640 KB in size and is always mapped to the main memory controlled by the MCH.

Legacy VGA Ranges (A0000h-BFFFFh)

The legacy 128-KB VGA memory range A0000h–BFFFFh (Frame Buffer) can be mapped to AGP/PCI_B (Device 1), and/or to the hub interface depending on the programming of the VGA steering bits. Priority for VGA mapping is constant in that the MCH always decodes internally mapped devices first. The MCH always positively decodes internally mapped devices, namely AGP/PCI_B. Subsequent decoding of regions mapped to AGP/PCI_Both the Hub Interface depends on the Legacy VGA configurations bits (VGA Enable & MDAP). This region is also the default for SMM space.

Compatible SMRAM Address Range (A0000h–BFFFFh)

When compatible SMM space is enabled, SMM-mode processor accesses to this range are routed to physical system DRAM at this address. Non-SMM-mode processor accesses to this range are considered to be to the video buffer area as described above. AGP and HI originated cycles to enabled SMM space are not allowed and are considered to be to the Video Buffer Area.

Monochrome Adapter (MDA) Range (B0000h-B7FFFh)

Legacy support requires the ability to have a second graphics controller (monochrome) in the system. Accesses in the standard VGA range are forwarded to AGP/PCI_B, and the hub interface (depending on configuration bits). Since the monochrome adapter may be mapped to anyone of these devices, the MCH must decode cycles in the MDA range and forward them either to AGP/PCI_B, or to the hub interface. This capability is controlled by VGA steering bits and the legacy configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the MCH decodes IO cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh and forwards them to AGP/PCI_B, and/or the hub interface.

Expansion Area (C0000h-DFFFFh)

This 128-KB ISA expansion region is divided into eight, 16-KB segments. Each segment can be assigned one of four read/write states: read only, write only, read/write, or disabled. Typically, these blocks are mapped through the MCH and are subtractively decoded to ISA space. Memory that is disabled is not remapped.

Extended System BIOS Area (E0000h–EFFFFh)

This 64-KB area is divided into four, 16-KB segments. Each segment can be assigned independent read and write attributes so it can be mapped either to main system memory or to the hub interface. Typically, this area is used for RAM or ROM. Memory segments that are disabled are not remapped elsewhere.

System BIOS Area (F0000h-FFFFFh)

This area is a single, 64-KB segment. This segment can be assigned read and write attributes. It is by default (after reset) read/write disabled and cycles are forwarded to hub interface. By manipulating the read/write attributes, the MCH can "shadow" BIOS into the main system memory. When disabled, this segment is not remapped.

4.3 Extended Memory Area

This memory area covers 100000h (1 MB) to FFFFFFFh (4 GB-1) address range and it is divided into the following regions:

- Main System Memory from 1 MB to the Top of Memory; maximum of 4-GB system memory.
- AGP or PCI Memory space from the Top of Memory to 4 GB with two specific ranges:
 - APIC Configuration Space from FEC0_0000h (4 GB-20 MB) to FECF_FFFFh and FEE0_0000h to FEEF_FFFFh
 - High BIOS area from 4 GB to 4 GB–2 MB

Main System DRAM Address Range (0010_0000h to Top of System Memory)

The address range from 1 MB to the top of system memory is mapped to system memory address range controlled by the MCH. The Top of Main Memory (TOMM) is limited to 4-GB DRAM. All accesses to addresses within this range will be forwarded by the MCH to the system memory unless a hole in this range is created using the fixed hole as controlled by the FDHC register. Accesses within this hole are forwarded to hub interface.

The MCH provides a maximum system memory address decode space of 4 GB. The MCH does not remap APIC memory space. The MCH does not limit system memory address space in hardware.

4.3.1 15-MB-16-MB Window

A hole can be created at 15 MB–16 MB as controlled by the fixed hole enable (FDHC register) in Device 0 space. Accesses within this hole are forwarded to the hub interface. The range of physical system memory disabled by opening the hole is not remapped to the Top of the memory – that physical system memory space is not accessible. This 15-MB–16-MB hole is an optionally enabled ISA hole. Video accelerators originally used this hole. There is no inherent BIOS request for the 15-MB–16-MB hole.

4.3.2 Pre-Allocated Memory

Voids of physical addresses that are not accessible as general system memory and reside within the system memory address range (< TOSM) are created for SMM-mode and legacy VGA graphics compatibility. For VGA graphics compatibility, pre-allocated memory is only required in non-local memory configurations. It is the responsibility of BIOS to properly initialize these regions. Table 15 details the location and attributes of the regions. Enabling/Disabling these ranges are described in the MCH Control Register Device 0 (GC).

Table 15. Pre-Allocated Memory

Memory Segments	Attributes	Comments
00000000h-03E7FFFh	R/W	Available System Memory 62.5 MB
03E80000h-03EFFFFh	SMM Mode Only - processor Reads	TSEG Address Range
03E80000h-03EFFFFFh	SMM Mode Only - processor Reads	TSEG Pre-allocated Memory

Extended SMRAM Address Range (HSEG and TSEG)

The HSEG and TSEG SMM transaction address spaces reside in this extended memory area.

HSEG

SMM-mode processor accesses to enabled HSEG are remapped to 000A0000h–000BFFFFh. Non-SMM-mode processor accesses to enabled HSEG are considered invalid are terminated immediately on the FSB. The exceptions to this rule are Non-SMM-mode Write Back cycles that are remapped to SMM space to maintain cache coherency. AGP and HI originated cycles to enabled SMM space are not allowed. Physical DRAM behind the HSEG transaction address is not remapped and is not accessible.

TSEG

TSEG can be up to 1 MB in size and is the first block after the top of usable physical memory. SMM-mode processor accesses to enabled TSEG access the physical DRAM at the same address. Non-SMM-mode processor accesses to enabled TSEG are considered invalid and are terminated immediately on the FSB. The exceptions to this rule are Non-SMM-mode Write Back cycles that are directed to the physical SMM space to maintain cache coherency. AGP and HI originated cycles to enabled SMM space are not allowed.

The size of the SMRAM space is determined by the USMM value in the SMRAM register. When the extended SMRAM space is enabled, non-SMM processor accesses and all other accesses in this range are forwarded to the hub interface. When SMM is enabled, the amount of memory available to the system is equal to the amount of physical DRAM minus the value in the TSEG register.

PCI Memory Address Range (Top of Main Memory to 4 GB)

The address range from the top of main system memory to 4 GB (top of physical memory space supported by the MCH) is normally mapped via the hub interface to PCI.

As a memory controller hub, there is one exception to this rule.

• Addresses decoded to MMIO for DRAM RCOMP configuration registers.

APIC Configuration Space (FEC0_0000h-FECF_FFFFh, FEE0_0000h-FEEF_FFFFh)

This range is reserved for APIC configuration space which includes the default I/O APIC configuration space. The default Local APIC configuration space is FEE0_0000h to FEEF_0FFFh.

Processor accesses to the Local APIC configuration space do not result in external bus activity since the Local APIC configuration space is internal to the processor. However, an MTRR must be programmed to make the Local APIC range uncacheable (UC). The Local APIC base address in each processor should be relocated to the FECO_0000h (4 GB-20 MB) to FECF_FFFFh range so that one MTRR can be programmed to 64 KB for the Local and I/O APICs. The I/O APIC(s) usually reside in the ICH5 portion of the chipset or as a stand-alone component(s).

I/O APIC units will be located beginning at the default address FEC0_0000h. The first I/O APIC will be located at FEC0_0000h. Each I/O APIC unit is located at FEC0_x000h where x is I/O APIC unit number 0 through F(hex). This address range will be normally mapped to the hub interface.

Note: There is no provision to support an I/O APIC device on AGP.

The address range between the APIC configuration space and the High BIOS (FED0_0000h to FFDF_FFFFh) is always mapped to the Hub Interface.

High BIOS Area (FFE0_0000h -FFFF_FFFFh)

The top 2 MB of the Extended Memory Region is reserved for System BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The processor begins execution from the High BIOS after reset. This region is mapped to hub interface so that the upper subset of this region aliases to 16 MB–256 KB range. The actual address space required for the BIOS is less than 2 MB but the minimum processor MTRR range for this region is 2 MB so that full 2 MB must be considered.

4.4 AGP Memory Address Ranges

The MCH can be programmed to direct memory accesses to the AGP bus interface when addresses are within either of two ranges specified via registers in MCH's Device 1 configuration space. The first range is controlled via the Memory Base Register (MBASE) and Memory Limit Register (MLIMIT) registers. The second range is controlled via the Prefetchable Memory Base (PMBASE) and Prefetchable Memory Limit (PMLIMIT) registers

Conceptually, address decoding for each range follows the same basic concept. The top 12 bits of the respective Memory Base and Memory Limit registers correspond to address bits A[31:20] of a memory address. For the purpose of address decoding, the MCH assumes that address bits A[19:0] of the memory base are 0 and that address bits A[19:0] of the memory limit address are FFFFFh. This forces each memory address range to be aligned to a 1 MB boundary and to have a size granularity of 1 MB.

The MCH positively decodes memory accesses to AGP memory address space as defined by the following equations:

Memory_Base_Address ≤ Address ≤ Memory_Limit_Address

Prefetchable_Memory_Base_Address ≤ Address ≤ Prefetchable_Memory_Limit_Address

The window size is programmed by the plug-and-play configuration software. The window size depends on the size of memory claimed by the AGP device. Normally, these ranges reside above the Top-of-Main-DRAM and below High BIOS and APIC address ranges. They normally reside above the top of memory (TOUD) so they do not steal any physical DRAM memory space.

It is essential to support a separate prefetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

Note that the MCH Device 1 memory range registers described above are used to allocate memory address space for any devices sitting on AGP that require such a window. These devices would include the AGP device, PCI-66 MHz/3.3 V agents, and multifunctional AGP devices where one or more functions are implemented as PCI devices.

The PCICMD1 register can override the routing of memory accesses to AGP. In other words, the memory access enable bit must be set in the Device 1 PCICMD1 register to enable the memory base/limit and prefetchable base/limit windows.

Functional Description

5

This chapter describes the MCH interfaces and functional units including the processor system bus interface, the AGP interface, system memory controller, power management, and clocking.

5.1 Processor System Bus

The MCH supports a single Pentium 4 processor on 0.13 micron process or Pentium 4 processor on 90 nm process. The MCH supports FSB frequencies of 400 MHz, 533 MHz, and 800 MHz using a scalable FSB VTT voltage and on-die termination. The MCH supports 32-bit host addressing, decoding up to 4 GB of the processor's memory address space. Host-initiated I/O cycles are decoded to AGP/PCI_B, hub interface or MCH configuration space. Host-initiated memory cycles are decoded to AGP/PCI_B, hub interface or system memory. All memory accesses from the host interface that hit the graphics aperture are translated using an AGP address translation table. AGP/PCI_B device accesses to non-cacheable system memory are not snooped on the host bus. Memory accesses initiated from AGP/PCI_B using PCI semantics and from the hub interface to system memory will be snooped on the host bus.

5.1.1 FSB Overview

The MCH supports the Intel[®] processor subset of the Enhanced Mode Scalable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals. At 100 MHz, 133 MHz, or 200 MHz bus clock, the address signals are double pumped to run at 200 MHz, 266 MHz, or 400 MHz and a new address can be generated every other bus clock. At 100 MHz, 133 MHz, or 200 MHz bus clock, the data signals are quad pumped to run at 400 MHz, 533 MHz, or 800 MHz and an entire 64-B cache line can be transferred in two bus clocks.

The MCH integrates AGTL+ termination resistors on die. The MCH has an IOQ depth of 12. The MCH supports one outstanding deferred transaction on the FSB.

5.1.2 FSB Dynamic Bus Inversion

The MCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from the processor. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data phase. This decreases the worst-case power consumption of the MCH. DINV[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad pumped data phase.

DINV[3:0]#	Data Bits
DINV0#	HD[15:0]#
DINV1#	HD[31:16]#
DINV2#	HD[47:32]#
DINV3#	HD[63:48]#

When the processor or the MCH drives data, each 16-bit segment is analyzed. If more than 8 of the 16 signals would normally be driven low on the bus, the corresponding DINV# signal will be asserted and the data will be inverted prior to being driven on the bus. When the processor or the MCH receives data, it monitors DINV[3:0]# to determine if the corresponding data segment should be inverted.

5.1.3 FSB Interrupt Overview

Intel processors support FSB interrupt delivery. They do **not** support the APIC serial bus interrupt delivery mechanism. Interrupt-related messages are encoded on the FSB as "Interrupt Message Transactions." In the 875P chipset platform, FSB interrupts may originate from the processor on the system bus, or from a downstream device on the hub interface or AGP. In the later case, the MCH drives the Interrupt Message Transaction onto the system bus.

In the 875P chipset the ICH5 contains IOxAPICs, and its interrupts are generated as upstream HI memory writes. Furthermore, PCI 2.3 defines MSI's (Message Signaled Interrupts) that are also in the form of memory writes. A PCI 2.3 device may generate an interrupt as an MSI cycle on its PCI bus instead of asserting a hardware signal to the IOxAPIC. The MSI may be directed to the IOxAPIC which in turn generates an interrupt as an upstream hub interface memory write. Alternatively, the MSI may be directed directly to the FSB. The target of an MSI is dependent on the address of the interrupt memory write. The MCH forwards inbound HI and AGP/PCI (PCI semantic only) memory writes to address 0FEEx_xxxxh to the FSB as Interrupt Message Transactions.

5.1.3.1 Upstream Interrupt Messages

The MCH accepts message-based interrupts from PCI (**PCI semantics only**) or its hub interface and forwards them to the FSB as Interrupt Message Transactions. The interrupt messages presented to the MCH are in the form of memory writes to address 0FEEx_xxxxh. At the HI or PCI interface, the memory write interrupt message is treated like any other memory write; it is either posted into the inbound data buffer (if space is available) or retried (if data buffer space is not immediately available). Once posted, the memory write from PCI or hub interface to address 0FEEx_xxxxh is decoded as a cycle that needs to be propagated by the MCH to the FSB as an Interrupt Message Transaction.

5.2 System Memory Controller

The MCH can be configured to support DDR266, DDR333, or DDR400 MHz memory in single or dual-channel mode. This includes support for:

- Up to 4 GB of DDR266, DDR333, or DDR400 MHz DDR DRAM
- DDR266, DDR333, or DDR400 unbuffered 184-pin DDR DRAM DIMMs
- Up to 2 DIMMs per-channel, single-sided and/or double-sided
- Byte masking on writes through data masking.

Table 16. System Memory Capacity

DRAM Technology	Smallest Increments	Largest Increments	Maximum Capacity (4 DS DIMMs)
128 Mb	64 MB	256 MB	1024 MB
256 Mb	128 MB	512 MB	2048 MB
512 Mb	256 MB	1024 MB	4096 MB

NOTE: The Smallest Increments column also represents the smallest possible single DIMM capacity.

ECC

The MCH supports single-bit Error Correcting Code (or Error Checking and Correcting) on the system memory interface. The MCH generates an 8-bit code word for each 64-bit QWord of memory. Since the code word covers a full QWord, writes of less than a QWord require a read-merge-write operation. Consider a DWord write to memory. In this case, when in ECC mode, the MCH will read the QWord where the addressed DWord will be written, merge in the new DWord, generate a code covering the new QWord and finally write the entire QWord and code back to memory. Any correctable (single-bit) errors detected during the initial QWord read are corrected before merging the new DWord.

DIMM Population Guidelines

DIMM population guidelines are shown in Figure 11 and Figure 12.

Figure 11. Single-Channel Mode Operation

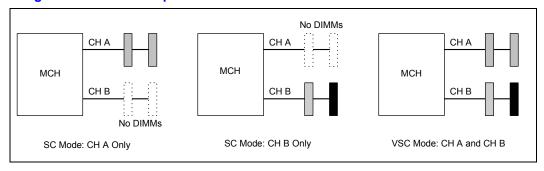
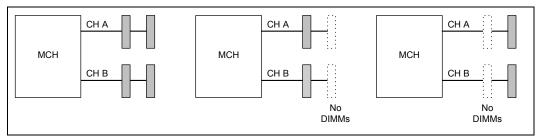



Figure 12. Dual-Channel Mode Operation

5.2.1 DRAM Technologies and Organization

- All standard 128-Mb, 256-Mb and 512-Mb technologies and addressing are supported for x16 and x8 devices.
- All supported devices have four banks.
- The MCH supports page sizes. Page size is individually selected for every row
 - 4 KB, 8 KB, and 16 KB for single-channel mode.
 - 8 KB,16 KB, and 32 KB in dual-channel mode.
- The DRAM sub-system supports a single- or dual-channel, 64 or 72-b (SC) or 128 or 144(DC) wide per-channel
- There can be a maximum of four rows populated (two double-sided DIMMs) per-channel.
- ECC Support for single-bit error correction and multi-bit error detection
- Mixed mode DDR DS-DIMMs (x8 and x16 on same DIMM) are not supported
- By using 512-Mb technology, the largest memory capacity is 2 GB per-channel (64M x 8b x 8 devices x 4 rows = 2 GB)
- By using 128-Mb technology, the smallest memory capacity is 64 MB per-channel (8M x 16b x 4 devices x 1 rows = 64 MB)

Dynamic Addressing Multiplexing Mode

- Baseline addressing is left the same, as a default option
- Page-coloring addressing is modified, now called "Address-MUXING-dynamic mode," it is
 only enabled when the following population rules are met.
- Population rules Applicable to dynamic mode:
- Single-/dual-channel mode 1 pair, 2 pairs, or 4 pairs of identical ranks are populated

5.2.2 Memory Operating Modes

The MCH supports the following modes of operation:

- Single-channel mode (SC)
 - Populate channel A only
 - Populate channel B only
 - Populate both channel A and B.
- Dual-channel lock step mode (DS)
 - DS linear mode

The MCH supports a special mode of addressing – dynamic addressing mode. All the above-mentioned modes can be enabled with/without dynamic addressing mode enabled. Table 17 summarizes the different operating modes MCH memory controller can operate.

Table 17. MCH Memory Controller Operating Modes

Mode	е Туре	Dynamic Addressing Mode	Non-Dynamic Addressing Mode
	Channel A Only	Yes ¹	Yes
SC Mode	Channel B Only	Yes ¹	Yes
	Both Channel A & B	Yes ¹	Yes
DS Mode	Linear	Yes	Yes ¹

NOTES

5.2.2.1 Dynamic Addressing Mode

When the MCH is configured to operate in this mode, FSB-to-memory bus address mapping undergoes a significant change compared to that of a linear operating mode (normal operating mode). In non-dynamic mode, the row selection (row indicates the side of a DIMM) via chip select signals is accomplished based on the size of the row. For example, for a 512 Mb, 16Mx8x4b has a row size of 512 MB selected by CS0# and only four open pages can be maintained for the full 512 MB. This lowers the memory performance (increases read latencies) if most of the memory cycles are targeted to that single row, resulting in opening and closing of accessed pages in that row.

Dynamic addressing mode minimizes the overhead of opening/closing pages in memory banks allowing for row switching to be done less often.

^{1.} Special cases – need to meet requirements discussed in Section 5.2.2.1.

5.2.3 Single-Channel (SC) Mode

If either only channel A or only channel B is populated, then the MCH is set to operate in single-channel mode. Data is accessed in chunks of 64 bits (8B) from the memory channels. If both channels are populated with uneven memory (DIMMs), the MCH defaults to virtual single-channel (VSC) mode. VSC occurs when both channels are populated but the DIMMs are not identical or there is an odd number of identical DIMMs. The MCH behaves identical in both single-channel and virtual single-channel modes (hereafter referred to as single-channel (SC) mode).

In SC mode of operation, the populated DIMMs configuration can be identical or completely different. In addition, for SC mode, not all the slots need to be populated. For example, populating only one DIMM in channel A is a valid configuration for SC mode. Likewise, in VSC mode odd number of slots can be populated. For Dynamic Mode operation, the requirement is to have an even number or rows (side of the DIMM) populated. In SC, dynamic mode operation can be enabled with one single-sided (SS), two SS or two double-sided (DS). For VSC mode, both the channels need to have identical row structures.

5.2.3.1 Linear Mode

This mode is the normal mode of operation for the MCH.

5.2.4 Memory Address Translation and Decoding

The address translation and decoding for the GMCH is provided in Table 18 through Table 21. The supported DIMM configurations are listed in the following bullets. Refer to Section 5.2.5 for details about the configurations being double-sided versus single-sided.

- Technology 128 Mbit 16Mx8 page size of 8 KB row size of 128 MB
- Technology 128 Mbit 8Mx16 page size of 4 KB row size of 64 MB
- Technology 256 Mbit 32Mx8 page size of 8 KB row size of 256 MB
- Technology 256 Mbit 16Mx16 page size of 4 KB row size of 128 MB
- Technology 512 Mbit 32Mx16 page size of 8 KB row size of 256 MB
- Technology 512 Mbit 64Mx8 page size of 16 KB row size of 512 MB

Note: In Table 18 through Table 21 A0, A1, ... refers to memory address MA0, MA1, The table cell contents refers to host address signals HAx.

Table 18. DRAM Address Translation (Single-Channel Mode) (Non-Dynamic Mode)

Tech.	Config.	Row size Page size	Row / Co		Addr	BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1201/16	8Mx16	64 MB	12x9x2	Row	25	13	12		16	15	14	25	24	23	22	21	20	19	18	17
1201010	OIVIXIO	4 KB	123932	Col		13	12			AP		11	10	9	8	7	6	5	4	3
128Mb	16Mx8	128 MB	12x10x2	Row	26	14	13		16	15	26	25	24	23	22	21	20	19	18	17
120IVID	TOIVIXO	8 KB	1281082	Col		14	13			AP	12	11	10	9	8	7	6	5	4	3
256Mb	16Mx16	128 MB	13x9x2	Row	26	13	12	26	16	15	14	25	24	23	22	21	20	19	18	17
2301010	TOWN	4 KB	138982	Col		13	12			AP		11	10	9	8	7	6	5	4	3
256Mb	32Mx8	256 MB	13x10x2	Row	27	14	13	27	16	15	26	25	24	23	22	21	20	19	18	17
2301010	JZIVIXO	8 KB	1301002	Col		14	13			AP	12	11	10	9	8	7	6	5	4	3
E10Mb	2214446	256 MB	12,40,40	Row	27	14	13	27	16	15	26	25	24	23	22	21	20	19	18	17
O IZIVID	32Mx16	8 KB	13x10x2	Col		14	13			AP	12	11	10	9	8	7	6	5	4	3
E101/16	64Mx8	512 MB	13x11x2	Row	28	15	14	28	16	27	26	25	24	23	22	21	20	19	18	17
S IZIVID	04IVIXO	16 KB	IJXIIXZ	Col		15	14		13	AP	12	11	10	9	8	7	6	5	4	3

Table 19. DRAM Address Translation (Dual-Channel Mode, Discrete) (Non-Dynamic Mode)

Tech.	Config.	Row size Page size	Row / Co / Bar		Addr	BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	Α0
129Mb	8Mx16	64 MB	12x9x2	Row	25	14	13		16	15	26	25	24	23	22	21	20	19	18	17
IZOIVID	OIVIX 10	4 KB	123332	Col		14	13			AP		12	11	10	9	8	7	6	5	4
129Mb	16Mx8	128 MB	12x10x2	Row	26	14	15		16	27	26	25	24	23	22	21	20	19	18	17
IZOIVID	TOIVIXO	8 KB	1201002	Col		14	15			AP	13	12	11	10	9	8	7	6	5	4
256Mb	16Mx16	128 MB	13x9x2	Row	26	14	13	27	16	15	26	25	24	23	22	21	20	19	18	17
2301010	TOWN	4 KB	138982	Col		14	13			AP		12	11	10	9	8	7	6	5	4
256Mb	32Mx8	256 MB	13x10x2	Row	27	14	15	28	16	27	26	25	24	23	22	21	20	19	18	17
2301010	JZIVIXO	8 KB	1321022	Col		14	15			AP	13	12	11	10	9	8	7	6	5	4
512Mb	32Mx16	256 MB	13x10x2	Row	27	14	15	28	16	27	26	25	24	23	22	21	20	19	18	17
3 IZIVID	SZIVIX I O	8 KB	13X10X2	Col		14	15			AP	13	12	11	10	9	8	7	6	5	4
512Mb	64Mx8	512 MB	13x11x2	Row	28	16	15	28	29	27	26	25	24	23	22	21	20	19	18	17
JIZIVID	UHIVIXO	16 KB	IJXIIXZ	Col		16	15		14	AP	13	12	11	10	9	8	7	6	5	4

Table 20. DRAM Address Translation (Single-Channel Mode) (Dynamic Mode)

Tech.	Config.	Row size Page size	Row / Co / Bai		Addr	BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
128Mb	8Mx16	64 MB	12x9x2	Row	25	12	18		16	13	14	27	26	23	22	21	25	24	15	17
1201010	OIVIX IO	4 KB	123932	Col		12	18			AP		11	10	9	8	7	6	5	4	3
100Mb	16Mv0	128 MB	12x10x2	Row	26	18	13		16	14	26	28	27	23	22	21	25	24	15	17
128Mb	16Mx8	8 KB	12X10X2	Col		18	13			AP	12	11	10	9	8	7	6	5	4	3
OEGMb.	16Mx16	128 MB	13x9x2	Row	26	12	18	26	16	13	14	28	27	23	22	21	25	24	15	17
2501010	TOWN	4 KB	138982	Col		12	18			AP		11	10	9	8	7	6	5	4	3
OFCNAL	20140	256 MB	40400	Row	27	18	13	27	16	14	26	25	24	23	22	21	29	28	15	17
256Mb	32Mx8	8 KB	13x10x2	Col		18	13			AP	12	11	10	9	8	7	6	5	4	3
540N4h	2214-40	256 MB		Row	27	18	13	27	16	14	26	25	24	23	22	21	29	28	15	17
512Mb	32Mx16	8 KB	—13x10x2 3	Col		18	13			AP	12	11	10	9	8	7	6	5	4	3
E40NU:	CAMARO	512 MB		Row	28	14	18	28	16	27	26	25	24	23	22	21	30	29	15	17
512Mb	64Mx8	16 KB	13x11x2	Col		14	18		13	AP	12	11	10	9	8	7	6	5	4	3

Table 21. DRAM Address Translation (Dual-Channel Mode, Discrete) (Dynamic Mode)

Tech.	Config.	Row size Page size	Row / Co		Addr	BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A 1	A0
128Mb	8Mx16	64 MB	12x9x2	Row	25	18	13		16	14	26	28	27	23	22	21	25	24	15	17
IZOIVID	OIVIX IO	4 KB	128982	Col		18	13			AP		12	11	10	9	8	7	6	5	4
100Mb	16Mv0	128 MB	10,40,0	Row	26	14	18		16	27	26	25	24	23	22	21	29	28	15	17
128Mb	16Mx8	8 KB	12x10x2	Col		14	18			AP	13	12	11	10	9	8	7	6	5	4
			u					ı												
256Mb	16Mx16	128 MB	122022	Row	26	18	13	27	16	14	26	25	24	23	22	21	29	28	15	17
2301010	TOWN	4 KB	13x9x2	Col		18	13			AP		12	11	10	9	8	7	6	5	4
OCCNAL	22140	256 MB	40.40.0	Row	27	14	18	28	16	27	26	25	24	23	22	21	30	29	15	17
256Mb	32Mx8	8 KB	13x10x2	Col		14	18			AP	13	12	11	10	9	8	7	6	5	4
			III					ı												
540NAb	2214-46	256 MB		Row	27	14	18	28	16	27	26	25	24	23	22	21	30	29	15	17
512Mb	32Mx16	8 KB	13x10x2	Col		14	18			AP	13	12	11	10	9	8	7	6	5	4
EAONAL	CAMANO	512 MB	12,410	Row	28	18	15	28	29	27	26	31	30	23	22	21	25	24	15	17
512Mb	64Mx8	16 KB	IOXIIXZ	Col		18	15		14	AP	13	12	11	10	9	8	7	6	5	4

5.2.5 Memory Organization and Configuration

In the following discussion the term "row" refers to a set of memory devices that are simultaneously selected by a chip select signal. The MCH supports a maximum of four rows of memory. For the purposes of this discussion, a "side" of a DIMM is equivalent to a "row" of DRAM devices.

The memory bank address lines and the address lines allow the MCH to support 64-bit wide x8 and x16 DIMMs using 128-Mb, 256-Mb, and 512-Mb DRAM technology.

For the DDR DRAM interface, Table 22 lists the supported configurations. Note that the MCH supports configurations defined in the JEDEC DDR DIMM specification only (A,B,C). Non-JEDEC standard DIMMs (e.g., double-sided x16 DDR DRAM DIMMs) are not supported. More information on DIMM configurations can be found in the *JEDEC DDR DIMM specification*.

Table 22. Supported DDR DIMM Configurations

Density	128	Mbit	256	Mbit	512 Mbit				
Device Width	X8	X16	X8	X16	X8	X16			
Single / Double	SS/DS	SS/DS	SS/DS	SS/DS	SS/DS	SS/DS			
184 Pin DDR DIMMs	128/256 MB	64 MB/NA	256/512 MB	128 MB/NA	512/1024 MB	256 MB/NA			

5.2.6 Configuration Mechanism for DIMMS

Detection of the type of DRAM installed on the DIMM is supported via Serial Presence Detect (SPD) mechanism as defined in the JEDEC DIMM specification. This uses the SCL, SDA, and SA[2:0] pins on the DIMMs to detect the type and size of the installed DIMMs. No special programmable modes are provided on the MCH for detecting the size and type of memory installed. Type and size detection must be done via the serial presence detection pins and is required to configure the MCH.

5.2.6.1 Memory Detection and Initialization

Before any cycles to the memory interface can be supported, the MCH DRAM registers must be initialized. The MCH must be configured for operation with the installed memory types. Detection of memory type and size is accomplished via the System Management Bus (SMBus) interface on the ICH5. This two-wire bus is used to extract the DRAM type and size information from the Serial Presence Detect port on the DRAM DIMMs. DRAM DIMMs contain a 5-pin Serial Presence Detect interface, including SCL (serial clock), SDA (serial data), and SA[2:0]. Devices on the SMBus bus have a 7-bit address. For the DRAM DIMMs, the upper four bits are fixed at 1010. The lower three bits are strapped on the SA[2:0] pins. SCL and SDA are connected to the System Management Bus on the ICH5. Thus data is read from the Serial Presence Detect port on the DIMMs via a series of I/O cycles to the ICH5. BIOS needs to determine the size and type of memory used for each of the rows of memory to properly configure the MCH memory interface.

5.2.6.2 SMBus Configuration and Access of the Serial Presence Detect Ports

For more details, refer to the $Intel^{\circledR}$ 82801EB I/O Controller Hub 5 (ICH5) and $Intel^{\circledR}$ 82801ER I/O Controller Hub 5R (ICH5R) Datasheet.

5.2.6.3 Memory Register Programming

This section provides an overview of how the required information for programming the DRAM registers is obtained from the Serial Presence Detect ports on the DIMMs. The Serial Presence Detect ports are used to determine Refresh Rate, SMA and SMD Buffer Strength, Row Type (on a row-by-row basis), DRAM Timings, Row sizes, and Row Page sizes. Table 23 lists a subset of the data available through the on board Serial Presence Detect ROM on each DIMM.

Table 23. Data Bytes on DIMM Used for Programming DRAM Registers

Byte	Function
2	Memory type (DDR DRAM)
3	Number of row addresses, not counting bank addresses
4	Number of column addresses
5	Number of banks of DRAM (single- or double-sided DIMM)
11	ECC, non-ECC
12	Refresh rate
17	Number of banks on each device

Table 23 is only a subset of the defined SPD bytes on the DIMMs. These bytes collectively provide enough data for programming the MCH DRAM registers.

5.2.7 Memory Thermal Management

The MCH provides a thermal management method that selectively reduces reads and writes to DRAM when the access rate crosses the allowed thermal threshold.

Read and write thermal management operate independently, and have their own 64-bit register to control operation. Memory reads typically causes power dissipation in the DRAM chips while memory writes typically causes power dissipation in the MCH.

5.2.7.1 Determining When to Thermal Manage

Thermal management may be enabled by one of two mechanisms:

- Software forcing throttling via the SRT (SWT) bit.
- · Counter Mechanism.

5.3 Accelerated Graphics Port (AGP)

The MCH supports AGP 3.0 with limited AGP 2.0 compatibility. The electrical characteristics are supported for AGP 3.0 (0.8 V swing) and the AGP 2.0 (1.5 V swing). The MCH may be operated in 1X and 4X for AGP 2.0 modes at 1.5 V; 3.3 V electrical characteristics are not supported.

The MCH has a 32-deep AGP request queue. The MCH integrates two fully-associative 10 entry Translation Lookaside Buffers that are used for both reads and writes.

Refer to the AGP Specification, Revision 3.0 for additional details about the AGP interface.

5.3.1 MCH AGP Support

Table 24. AGP Support Matrix

Parameter	AGP 3.0	AGP 2.0	Comments
Data Rate	4X or 8X	4X, or 1X	MCH does not support AGP 2X
Electricals	0.8 V swing, parallel terminated	1.5 V swing serial terminated	
Signal Polarity	Most control signals active high	Most control signals active low	This change was necessary to eliminate current flow in the idle state. Parallel termination has a large current flow for a high level.
Hi / Low Priority Commands	Only low priority (renamed Async)	High and low priority commands supported.	High priority does not have a good usage model.
Strobe Protocol	Strobe First – Strobe Second Protocol	Strobe – Strobe# protocol.	
Long Transactions	Removed	Supported	
PIPE# Support	No	Yes	SBA required for AGP 3.0
Calibration Cycle	Required	No	New to AGP 3.0.
Dynamic Bus Inversion	Yes	No	New to AGP 3.0
Coherency	Required for AGP accesses outside of the aperture, and for FRAME-based accesses	Required only for FRAME- based accesses.	

5.3.2 Selecting between AGP 3.0 and AGP 2.0

The MCH supports both AGP 3.0 and limited AGP 2.0, allowing a "Universal AGP 3.0 motherboard" implementation. Whether AGP 2.0 or AGP 3.0 mode is used is determined by the graphics card installed. An AGP 2.0 card puts the system into AGP 2.0. An AGP 3.0 card puts the system into AGP 3.0 mode. The mode is selected during RESET by a hardware mechanism that is described in Section 5.3.3.1. The mode determines the electrical mode, and may not be dynamically changed once the system powers up.

5.3.3 AGP 3.0 Downshift (4X Data Rate) Mode

AGP 3.0 supports both an 8X data rate and a 4X data rate. The purpose of the 4X data rate is to allow a fallback mode when board routing or other reasons make the 8X data rate marginal. Some AGP4X graphics cards currently fall back to a 2X data rate when board layout or other issues arise. This is referred as "downshift" mode, since AGP 2X is not supported any card falling back to 2X will be running in a non supported mode. When in AGP 3.0 mode in the 4X data rate, all of the AGP 3.0 protocols are used.

Table 25. AGP 3.0 Downshift Mode Parameters

Parameter	AGP 2.0 Signaling (All Data Rates)	AGP 3.0 Signaling (4X Data Rate)	AGP 3.0 Signaling (8X Data Rate)
Data Rate	1X, 4X	4X	8X
VREF Level	0.75 V	0.35 V	0.35 V
Signaling	2.0 (1.5 V)	3.0 signaling (0.8 V swing)	3.0 signaling (0.8 V swing)
Polarity of GREQ, GGNT, GDEVSEL, GFRAME, GIRDT, GTRDY, GSTOP, RBF, WBF	Active low	Active high	Active high
Polarity of SBA	normal (111 = idle)	inverted (000 = idle)	inverted (000 = idle)
GCBE Polarity	GC/BE#	GC#/BE	GC#/BE
Strobe Definition	Strobe	StrobeFirst	StrobeFirst
Strobe Definition	Strobe#	StrobeSecond	StrobeSecond
DBI Used?	No	Disabled on xmit	Yes
PIPE# Allowed	Yes	No	No
Commands Supported	AGP 2.0 commands	AGP 3.0 commands	AGP 3.0 commands
Isoch Supported	No	(Not supported)	No
Calibration Cycles Included	No	Yes	Yes

5.3.3.1 Mechanism for Detecting AGP 2.0 and AGP 3.0

Two new signals are provided in the AGP 3.0 specification to allow for detection of an AGP 3.0 capable graphics card by the motherboard and an AGP 3.0 capable motherboard by the graphics card respectively.

The signals are:

- GC_DET#: Pulled low by an AGP 3.0 graphics card; left floating by an AGP 2.0 graphics card
- MB DET#: Pulled low by an AGP 3.0 motherboard; left floating by an AGP 2.0 motherboard.

The 3.0 capable motherboard uses GC_DET# to determine whether to generate VREF of 0.75 V (floating GC_DET# for 2.0 graphics card), or 0.35 V (GC_DET# low) to the graphics card. This is sent to the graphics card via the VREFCG pin on the AGP connector.

Similarly, the 3.0 capable graphics card uses MB_DET# to determine whether to generate VREF of 0.75 V (floating MB_DET# on 2.0 motherboard), or 0.35 V (MB_DET# low) to the motherboard. The card could also use this pin as a strap to determine 2.0 or 3.0 mode. Note, however, that VREFGC is not used by the MCH.

The MCH does not have a signal called GC_DET# or MB_DET#. The MCH uses the GVREF pin to detect whether the graphics card connected is AGP 2.0 or AGP 3.0. For AGP 3.0, the voltage level driven into the GVREF pin is 0.35 V (< 0.55 V). For AGP 2.0, the voltage level driven into the GVREF pin is 0.75 V (>0.55 V). GVREF is driven by VREFCG on the motherboard.

An AGP 2.0 card tri-states GPAR and leaves GC_DET# pin unconnected. GVREF = 0.75 V, and GPAR is weakly pulled high during assertion of PWROK, and the value 1 is latched into MCHCFG.3 strap bit to select AGP. AGP 3.0 detect value latched on assertion of PWROK = 0 indicating AGP 2.0 mode.

An AGP 3.0 card terminates GPAR low, and pulls GC_DET# low, causing the VREF generator to drive 0.35 V to GVREF. Note that during the assertion of PWROK, GPAR = 0 and AGP 3.0 detect = 1. To work correctly, when AGP 3.0 detect = 1, AGP must be selected (i.e., when AGP 3.0 detect = 1, AGP strap value must also be 1, regardless of the value on GPAR).

Table 26. Pin and Strap Values Selecting AGP 2.0 and AGP 3.0

Card Plugged into AGP Connector	Pull-up/ Termination on GPAR Pin Prior to Assertion of PWROK	GPAR Value on PWROK Assertion	AGP 3.0 Detect Value on PWROK Assertion	MCHCFG.3 Strap Bit (AGP)	AGPSTAT.3 Strap Bit (AGP 3.0 detect)
AGP 2.0 card	pull-up	1	0 (0.75 V)	1	0
AGP 3.0 card ⁽¹⁾	termination to ground	0	1 (0.35 V)	1	1

NOTES:

5.3.4 AGP Target Operations

As an initiator, the MCH does not initiate cycles using AGP enhanced protocols. The MCH supports AGP target interface to main memory only. The MCH supports interleaved AGP and PCI transactions. AGP 2.0 and AGP 3.0 support different command types, as indicated in Table 27.

Table 27. AGP 3.0 Commands Compared to AGP 2.0

C/BE[3:0]# (GC#/BE[3:0]) Encoding	APG 2.0 Command	AGP 3.0 Command
0000	Read (Low Priority)	Read (Asynchronous)
0001	Read (High Priority)	Reserved
0010	Reserved	Reserved
0011	Reserved	ISOCH Read (NOT SUPPORTED)
0100	Write (Low Priority)	Write (Asynchronous)
0101	Write (High Priority)	Reserved
0110	Reserved	ISOCH Write, Unfenced (NOT SUPPORTED)
0111	Reserved	ISOCH Write, Fenced (NOT SUPPORTED)
1000	Long Read (Low Priority)	Reserved
1001	Long Read (High Priority)	Reserved
1010	Flush (Low Priority)	Flush
1011	Reserved	Reserved)
1100	Fence (Low Priority)	Fence (for reads & writes)
1101	Reserved (was DAC cycle)	Reserved (was DAC cycle)
1110	Reserved	Isoch Align (NOT SUPPORTED)
1111	Reserved	Reserved

^{1.} Difference between GPAR and MCHCFG.3 value.

5.3.5 AGP Transaction Ordering

High priority reads and writes are not checked for conflicts between themselves or normal priority reads and writes. AGP commands (delivered via PIPE# or SBA, not FRAME#) snoop the global DRAM write buffer.

Table 28. Supported Data Rates

Data Rate	Signaling Level			
Data Nate	0.8	1.5 V	3.3 V	
PCI-66	Yes	Yes	No	
1X AGP	Yes	Yes	No	
2X AGP	No	See Note	No	
4X AGP	Yes	Yes	No	
8X AGP	Yes	No	No	

NOTE: AGP 2X is not supported on the MCH.

5.3.6 Support for PCI-66 Devices

The MCH's AGP interface may be used as a PCI-66 MHz interface with the following restrictions:

- 1. Support for 1.5 V operation only.
- 2. Support for only one device. The MCH will not provide arbitration or electrical support for more than one PCI-66 device.
- 3. The PCI-66 device must meet the AGP 2.0 electrical specification.
- 4. The MCH does not provide full PCI-to-PCI bridge support between AGP/PCI and the hub interface. Traffic between AGP and the hub interface is limited to hub interface-to-AGP memory writes.
- 5. LOCK# signal is not present. Neither inbound nor outbound locks are supported.
- 6. SERR# / PERR# signals are not present.
- 7. 16 clock Subsequent Data Latency timer (instead of 8).

5.3.7 8X AGP Protocol

The MCH supports 1X and 4X AGP operation in 2.0 mode and 4X and 8X in 3.0 mode. Bit 3 of the AGP status register is set to 0 in AGP 2.0 mode, and 1 in AGP 3.0 mode. The MCH indicates that it supports 8X data transfers in AGP 3.0 mode through RATE[1] of the AGP status register. When DATA_RATE[1] of the AGP Command Register is set to 1during system initialization, the MCH will perform AGP read and write data transactions using 8X protocol. This bit is set once during initialization, and the data transfer rate cannot be changed dynamically.

The 8X data transfer protocol provides 2.1 GB/s transfer rates. In 8X mode, 32 bytes of data are transferred during each 66 MHz clock period. The minimum throttleable block size remains four 66 MHz clocks which means 128 bytes of data is transferred per block.

5.3.7.1 Fast Writes

The fast write (FW) transaction is from the core logic to the AGP master acting as a PCI target. This type of access is required to pass data/control directly to the AGP master instead of placing the data into main memory and then having the AGP master read the data. For 1X transactions, the protocol simply follows the PCI bus specification. However, for higher speed transactions (4X or 8X), FW transactions will follow a combination for PCI and AGP bus protocols for data movement.

The MCH only supports the AGP 1.5 V connector, which permits a 1.5 V AGP add-in card to be supported by the system.

5.3.7.2 PCI Semantic Transactions on AGP

The MCH accepts and generates PCI semantic transactions on the AGP bus. The MCH guarantees that PCI semantic accesses to DRAM are kept coherent with the processor caches by generating snoops to the processor bus.

5.4 Power Management

The MCH power management support includes:

- ACPI supported
- System States: S0, S1 (desktop), S3, S4, S5, C0, C1, C2 (desktop)

5.4.0.1 Supported ACPI States

The MCH supports the following ACPI States:

- Processor
 - C0 Full On.
 - C1 Auto Halt.
 - C2-Desktop Stop Grant. Clock to processor still running. Clock stopped to processor core.
- System
 - G0/S0 Full On.
 - G1/S1 Stop Grant, Desktop S1, same as C2.
 - G1/S2 Not supported.
 - G1/S3 Suspend to RAM (STR). Power and context lost to chipset.
 - G1/S4 Suspend to Disk (STD). All power lost (except wakeup logic on ICH5).
 - G2/S5 Soft off. Requires total system reboot.
 - G3 Mechanical Off. All power lost (except real time clock).

5.5 Thermal Management

The MCH implements the following thermal management mechanisms. The mechanisms manage the reads and writes cycles of the system memory interface, thus, ensuring that the temperature can return to the normal operating range.

Hardware-based thermal management

The number of hexwords transferred over the DRAM interface are tracked per row. The tracking mechanism takes into account that the DRAM devices consume different levels of power based on cycle type (i.e., page hit/miss/empty). If the programmed threshold is exceeded during a monitoring window, the activity on the DRAM interface is reduced. This helps in lowering the power and temperature.

Software-based thermal management

This is used when the external thermal sensor in the system interrupts the processor to engage a software routine for thermal management.

5.5.1 External Thermal Sensor Interface Overview

An external thermal sensor with a serial interface (e.g., the National Semiconductor LM77, LM87, or other) may be placed next to DDR DIMM (or any other appropriate platform location), or a remote thermal diode may be placed next to the DIMM (or any other appropriate platform location) and connected to the external thermal sensor.

The external sensor can be connected to the ICH5 via the SMBus interface to allow programming and setup by BIOS software over the serial interface. The external sensor's output should include an active-low open-drain signal indicating an over-temp condition (e.g., LM77 T_CRIT# or INT# in comparator mode). The sensor's output remains asserted for as long as the over-temp condition exists and deasserts when the temperature has returned to within normal operating range. This external sensor output will be connected to the MCH input (EXTTS#) and will trigger a preset interrupt and/or read-throttle on a level-sensitive basis.

Additional external thermal sensor's outputs, for multiple sensors, can be wire-OR'd together allow signaling from multiple sensors located physically separately. Software can, if necessary, distinguish which DIMM(s) is the source of the over-temp through the serial interface. However, since the DIMMs will be located on the same memory bus data lines, any MCH-base read throttle will apply equally.

Note: The use of external sensors that include an internal pull-up resistor on the open-drain thermal trip output is discouraged; however, it may be possible depending on the size of the pull-up and the voltage of the sensor.

Figure 13. Platform External Sensor

NOTE: External pull-up R is associated with the voltage rail of the MCH input.

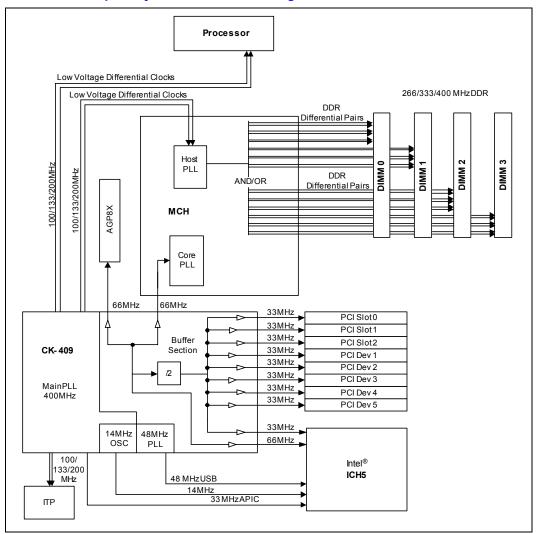
5.5.1.1 External Thermal Sensor Usage Model

There are several possible usage models for an external thermal sensor:

- External sensor(s) used for characterization only, not for normal production.
- Sensor on the DIMMs for temperature in OEM platform and use the results to permanently set read throttle values in the BIOS.
- Sensor on the MCH for temperature in OEM platform and use the results to permanently set write throttle values in the BIOS.
- External sensor(s) used for dynamic temperature feedback Control in production releases.
- Sensor on DIMMs, which can be used to dynamically control read throttling
- Sensor on MCH, which can be used to dynamically control write throttling

The advantage of the characterization model is the Bill-of-Material (BOM) cost; whereas, the potential advantage of the dynamic model is that retail customers may be able to experience higher peak performance since the throttle values are not forced to encompass worse case environmental conditions.

Characterization tools (e.g., CTMI and Maxband) can be made to work either with external or internal sensors.


5.6 Clocking

The MCH has the following clocks:

- 100/133/200 MHz spread spectrum, low voltage (0.7 V) differential HCLKP/HCLKN for FSB
- 66.667 MHz, spread spectrum, 3.3 V GCLKIN for hub interface and AGP
- 48 MHz, non-spread spectrum, USB clock
- 12 pairs DRAM output clocks (SCMCLK_x[5:0] and SCMDCLK_x[5:0]# for both channels A and B)

The MCH has inputs for a low voltage, differential pair of clocks called HCLKP and HCLKN. These pins receive a host clock from the external clock synthesizer. This clock is used by the host interface and system memory logic (Host Clock Domain). AGP and hub interface are synchronous to each other and are driven off of the 66-MHz clock.

Figure 14. Intel® 875P Chipset System Clock Block Diagram

Electrical Characteristics

6

This chapter contains the maximum ratings, thermal characteristics, power characteristics, and DC characteristics for the MCH.

6.1 Absolute Maximum Ratings

Table 29 lists the MCH's maximum environmental stress ratings. Functional operation at the absolute maximum and minimum is neither implied nor guaranteed. Functional operating parameters are listed in the DC Characteristics tables.

Warning:

Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operating beyond the "operating conditions" is not recommended and extended exposure beyond "operating conditions" may affect reliability.

Table 29. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VCC	1.5 V Core Supply	-0.3	1.75	V
VCC_AGP	1.5 V AGP Supply	-0.3	1.75	V
VCCA_AGP	1.5 V Analog AGP Supply	-0.3	1.75	V
VCC_HI	1.5 V HI/CSA Supply	-0.3	1.75	V
VTT	VTT Supply	-0.3	1.75	V
VCC_DDR	2.6 V DDR System Memory Interface Supply	-0.5	3	V
VCCA_DDR	1.5 V Analog Supply for System Memory PLLs	-0.3	1.75	V
VCC_33	3.3 V Supply	-0.3	3.6	V
VCCA_FSB	1.5 V Host PLL Analog Supply	-0.3	1.75	V

6.2 Thermal Characteristics

Refer to the Intel® 875P Chipset Thermal Design Guide for all thermal characteristics.

6.3 Power Characteristics

Table 30. Power Characteristics

Symbol	Parameter	Max	Unit	Notes
I _{VCC}	1.5 V Core Supply Current	2.7	Α	1
I _{VCC_AGP}	1.5 V AGP Supply Current	0.37	Α	1
I _{VCCA_AGP}	1.5 V Analog AGP Supply Current	0.01	Α	
I _{VCC_HI}	1.5 V HI/CSA Supply Current	0.18	Α	1
I _{VTT}	VTT Supply Current	1.6	Α	
I _{VCC_DDR}	2.6 V DDR System Memory Interface Supply Current	6.27	Α	
I _{VCCA_DDR}	1.5 V Analog Supply Current for System Memory DLLs	1.2	Α	
I _{VCC_33}	3.3 V Supply Current	0.2	Α	
I _{VCCA_FSB}	1.5 V Host PLL Analog Supply Current	0.05	Α	
I _{VCC_SUS_2.6}	2.6 V Standby Supply Current	0.250	Α	

NOTES:

6.4 Signal Groups

The signal description includes the type of buffer used for the particular signal:

2.6 V and 3.3 V miscellaneous buffers.

AGTL+ Open Drain AGTL+ interface signal. Refer to the AGTL+ I/O Specification for complete details. The MCH integrates most AGTL+ termination resistors.

AGP AGP interface signals. These signals are compatible with AGP 2.0 1.5 V and AGP 3.0 0.8 V Signaling Environment DC and AC Specifications. The buffers are not 3.3 V tolerant.

HI15 Hub Interface and CSA 1.5 V CMOS buffers.

SSTL_2 Stub Series Terminated Logic 2.6 V compatible signals. DDR system memory 2.6 V CMOS buffers.

Table 31. Signal Groups

Miscellaneous

Signal Group	Signal Type	Signals	Notes ¹		
AGP Interf	AGP Interface Signal Groups (only AGP 3.0 naming convention listed)				
(a)	AGP I/O	GADSTBF[1:0], GADSTBS[1:0], GFRAME, GIRDY, GTRDY, GSTOP, GDEVSEL, GAD[31:0], GCBE[3:0], GPAR, DBI_HI, DBI_LO			
(b)	AGP Input	GSBA[7:0]#, GRBF, GWBF, GSBSTBF, GSBSTBS, GREQ			
(c)	AGP Output	GST[2:0], GGNT			
(d)	AGP Miscellaneous	GVREF, GRCOMP, GVSWING			

^{1.} VCC, VCC_HI, and VCC_AGP current levels may happen simultaneously and can be summed into one 1.5 V supply.

Table 31. Signal Groups (Continued)

Signal Group	Signal Type	Signals	Notes ¹						
Hub Interface Signal Groups									
(e)	Hub Interface CMOS I/O	HI[10:0], HISTRS, HISTRF							
(f)	Hub Interface Miscellaneous	HI_SWING, HI_VREF, HI_RCOMP							
CSA Interface Signal Groups									
(e) CSA Interface CMOS I/O		CI[10:0], CISTRS, CISTRF							
(f)	CSA Interface Miscellaneous	CI_SWING, CI_VREF, CI_RCOMP							
Host Inter	face Signal Groups								
(g) AGTL+ I/O HADSTB[1:0] #, HD[63:0]#,HDSTBP[3		ADS#, BNR#, DBSY#, DINV[3:0]#, DRDY#, HA[31:3]#, HADSTB[1:0] #, HD[63:0]#,HDSTBP[3:0]#, HDSTBN[3:0]#, HIT#, HITM#, HREQ[4:0]#, PROCHOT#							
(h)	AGTL+ Input	HLOCK#							
(i)	AGTL+ Output	BPRI#, BREQ0#, CPURST#, DEFER#, HTRDY#, RS[2:0]#							
(j)	Host Clock Input	HCLKP, HCLKN							
(k)	Host Miscellaneous	HDVREF[1:0], HDRCOMP, HDSWING							
DDR Inter	face Signal Groups		.1						
(I)	DDR SSTL_2 I/O	SDQ_A[63:0], SDQ_B[63:0], SDQS_A[8:0], SDQS_B[8:0], SECC_A[7:0], SECC_B[7:0]							
(m) DDR SSTL_2 Output		SCMDCLK_A[5:0], SCMDCLK_B[5:0], SCMDCLK_A[5:0]#, SCMDCLK_B[5:0]#, SMAA_A[12:0], SMAA_B[12:0], SBA_A[1:0], SBA_B[1:0], SRAS_A#, SRAS_B#, SCAS_A#, SCAS_B#, SWE_A#, SWE_B#, SCS_A[3:0]#, SCS_B[3:0]#, SCKE_A[3:0], SCKE_B[3:0]							
(v)	DDR RCOMP	SMXRCOMP, SMYRCOMP							
(n)	DDR Miscellaneous ²	SMXRCOMPVOL, SMXRCOMPVOH, SMYRCOMPVOL, SMYRCOMPVOH, SMVREF_A, SMVREF_B							
Reset and	Miscellaneous Signal	Groups	•						
(t) 2.6 V Miscellaneous Input (3.3V tolerant)		RSTIN#, PWROK, EXTTS#							
(w)	XOR Test pins	TESTP[29:0]							
(x)	Bus Select Inputs	BSEL[1:0]							
(y)	Clock pin	GCLKIN							

- 1. For details on BSEL[1:0] pin electrical requirements, see the *Intel*® 875P Chipset Platform Design Guide.
 2. For additional details on SMXRCOMP, SMYRCOMP, SMXRCOMPVOH,
- 2. For additional details on SMXRCOMP, SMYRCOMP, SMXRCOMPVOL, SMXRCOMPVOH, SMYRCOMPVOH, SMYRCOMPVOH pin electrical requirements see the *Intel® 875P Chipset Platform Design Guide*.

6.5 DC Parameters

Unless otherwise specified, all DC operating conditions are specified at the pin.

Table 32. DC Operating Characteristics

Signal Name	Parameter	Min	Nom	Max	Unit
I/O Buffer Supply V	oltage	1			
VCC ¹²	Core Voltage	1.425	1.5	1.575	V
VCC_AGP	AGP I/O Voltage	1.425	1.5	1.575	V
VCCA_AGP	Analog AGP Supply Voltage	1.425	1.5	1.575	V
VCC_HI	HI/CSA I/O Voltage	1.425	1.5	1.575	V
VTT (Intel [®] Pentium [®] 4 processor on 0.13 micron process only)	Host AGTL+ Termination Voltage	1.35	1.45	1.55	V
VTT (Intel [®] Pentium [®] 4 processor on 90 nm process only)	Host AGTL+ Termination Voltage	1.14	1.225	1.31	٧
VCC_DDR	DDR I/O Supply Voltage	2.5	2.6	2.7	V
VCCA_DDR	Analog DDR Supply Voltage	1.425	1.5	1.575	V
VCC_3_3	3.3V Supply Voltage	3.135	3.3	3.465	V
VCCA_FSB	Host PLL Analog Voltage	1.425	1.5	1.575	V
Reference Voltages	i				
GVREF (2.0)	AGP 2.0 Reference Voltage	1/2 * VCC_AGP_min - 2%	1/2 * VCC_AGP	1/2 * VCC_AGP_max + 2%	٧
GVREF (3.0) ⁴	AGP 3.0 Reference Voltage	0.2333 * VCC_AGP_min - 0.01	0.2333* VCC_AGP	0.2333*VCC_AGP_max +0.01	V
GVSWING (3.0) ⁵	AGP 3.0 Swing Voltage	0.5333* VCC_AGP_min -0.05	0.5333* VCC_AGP	0.5333*VCC_AGP_max + 0.05	V
HI_VREF ^{6,7}	Hub Interface Reference Voltage	0.343	0.35	0.357	V
HI_SWING ^{6,8}	Hub Interface Compensation Reference Voltage	0.784	0.8	0.816	٧
CI_VREF ^{9,10}	CSA Interface Reference Voltage	0.343	0.35	0.357	V
CI_SWING ^{9,11}	CSA Interface Compensation Reference Voltage	0.784	0.8	0.816	٧
Vsh ¹	MCH Vtt/CPU Shared Voltage	(Vtt_min + VccCPU_min)/2	(Vtt + VccCPU)/2	(Vtt_max + VccCPU_max)/2	V
HDVREF ²	Vtt Plane Host Reference Voltage	0.63 x Vsh_min – 2%	0.63 x Vsh	0.63 x Vsh_max + 2%	V

Table 32. DC Operating Characteristics (Continued)

Signal Name	Parameter	Min	Nom	Max	Unit
HDSWING/ HASWING	Host Compensation Reference Voltage	1/4 x Vtt_min – 2%	1/4 x Vtt	1/4 x Vtt_max + 2%	٧
SMXRCOMPVOL ³ / SMYRCOMPVOL	DDR RCOMP VOL	VCC_DDR_min * (1/4.112) – 2%	VCC_DDR * (1/4.112)	VCC_DDR_max * (1/4.112) + 2%	٧
SMXRCOMPVOH ³ / SMYRCOMPVOH	DDR RCOMP VOH	VCC_DDR_min * (3.112/4.112) – 2%	VCC_DDR * (3.112/4.112)	VCC_DDR_max * (3.112/4.112) + 2%	V
SMVREF	DDR Reference Voltage	0.49 x VCC_DDR_min	0.5 x VCC_DDR	0.51 x VCC_DDR_max	V

- 1. Refer to the appropriate processor datasheet for processor VCC values used to calculate Vsh.
- 2. HDVREF is generically referred to as GTLREF throughout the rest of this document.
- SMXRCOMPVOL/SMYRCOMPVOL and SMXRCOMPVOH/SMYRCOMPVOH have maximum input leakage current of 1 mA.
- 4. Measured at receiver pad.
- 5. Standard 50 Ω load to ground.
- 6. HI_REF and HI_SWING are derived from VCC (nominal VCC = 1.5 V) which is the nominal core voltage for the MCH. Voltage supply tolerance for a particular interface driver voltage must be within a 5% range of nominal.
- 7. Nominal value of HI_REF is 0.350 V. The specification is at nominal VCC. Note that HI_REF will vary linearly with VCC; thus, VCC variation (± 5%) must be accounted for in the HI_REF specification in addition to the 2% variation of HI_REF in the table.
- 8. Nominal value of HI_SWING is 0.800 V. The specification is at nominal VCC. Note that HI_SWING will vary linearly with VCC; thus, VCC variation (± 5%) must be accounted for in the HI_SWING specification in addition to the 2% variation of HI_SWING in the table.
- CI_REF and CI_SWING are derived from VCC (nominal VCC = 1.5 V) which is the nominal core voltage for the MCH. Voltage supply tolerance for a particular interface driver voltage must be within a 5% range of nominal
- 10. Nominal value of CI_VREF is 0.350 V. The specification is at nominal VCC. Note that CI_VREF will vary linearly with VCC; thus, VCC variation (± 5%) must be accounted for in the CI_VREF specification in addition to the 2% variation of CI_REF in the table.
- 11. Nominal value of CI_SWING is 0.800 V. The specification is at nominal VCC. Note that CI_SWING will vary linearly with VCC; thus, VCC variation (± 5%) must be accounted for in the CI_SWING specification in addition to the 2% variation of CI_SWING in the table.
- 12. For AC noise components > 20 MHz, the maximum allowable noise component at the MCH is ±180 mV at VCC_nom, +180/-105 mV at VCC_min, and +105/-180 mV at VCC_max. For AC noise components < 20 MHz, the sum of the DC voltage and AC noise component must be within the specified DC minimum/maximum operating range.

Table 33. DC Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes	
1.5 V AGP 2.0 (1.5 V signaling)								
V_{IL_AGP}	(a,b)	AGP Input Low Voltage	-0.5		AGP_VREF - 0.15	٧		
V _{IH_AGP}	(a,b)	AGP Input High Voltage	AGP_VREF + 0.15		VCC_AGP + 0.5	٧		
V _{OL_AGP}	(a,c)	AGP Output Low Voltage			0.225	٧		
V _{OH_AGP}	(a,c)	AGP Output High Voltage	1.275			٧		
I _{OL_AGP}	(a,c)	AGP Output Low Current			6.65	mA	@ 0.1* VCC_AGP	
I _{OH_AGP}	(a,c)	AGP Output High Current	-4.7			mA	@ 0.85* VCC_AGP	
I _{LEAK_AGP} 6	(a,b)	AGP Input Leakage Current			±25	μА	0 <vin< VCC_AGP</vin< 	
C _{IN_AGP}	(a,b)	AGP Input Capacitance			4	pF	F _C =1MHz	
1.5 V AGP 3.0	0 (0.8 V s	ignaling)						
V _{IL_AGP}	(a,b)	AGP Input Low Voltage	-0.3		AGP_VREF - 0.10	V		
V _{IH_AGP}	(a,b)	AGP Input High Voltage	AGP_VREF + 0.10		VCC_AGP	V		
V _{OL_AGP}	(a,c)	AGP Output Low Voltage			0.05	V	I _{out} = 1500 μA	
V _{OH_AGP}	(a,c)	AGP Output High Voltage	0.5333* VCC_AGP_min -0.05	0.5333* VCC_AGP	0.5333* VCC_AGP_ max +0.05	٧	Standard 50 Ω load to ground	
I _{OH_AGP}	(a,c)	AGP Output High Current	14.54		17.78	mA		
I _{LEAK_AGP} 6	(a,b)	AGP Input Leakage Current			±25	μΑ		
C _{IN_AGP}	(a,b)	AGP Input Capacitance	1		2.5	pF	F _C =1 MHz	
1.5 V Hub Int	erface							
V _{IL_HI}	(e)	Hub Interface Input Low Voltage	-0.3		HI_VREF - 0.1	٧		
V _{IH_HI}	(e)	Hub Interface Input High Voltage	HI_VREF + 0.1		1.2	٧		
V _{OL_HI}	(e)	Hub Interface Output Low Voltage			0.05	V	I _{OL} = 1 mA	
V _{OH_HI}	(e)	Hub Interface Output High Voltage	0.6		1.2	٧	$I_{OUT} = 0.8/R_{TT},$ $R_{TT} = 60 \Omega$	
I _{LEAK_HI} 7	(e)	Hub Interface Input Leakage Current			± 50	μА		
C _{IN_HI}	(e)	Hub Interface Input Capacitance			5	pF	F _C =1MHz	

Table 33. DC Characteristics (Continued)

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes		
1.5 V CSA Interface									
V_{IL_CI}	(e)	CSA Interface Input Low Voltage	-0.3		CI_VREF - 0.1	V			
V _{IH_CI}	(e)	CSA Interface Input High Voltage	CI_VREF + 0.1		1.2	V			
V _{OL_CI}	(e)	CSA Interface Output Low Voltage			0.05	V	I _{OL} = 1 mA		
V _{OH_CI}	(e)	CSA Interface Output High Voltage	0.6		1.2	V	$I_{OUT} = 0.8/R_{TT},$ $R_{TT} = 60 \Omega$		
I _{LEAK_CI} 8	(e)	CSA Interface Input Leakage Current			± 50	μА			
C _{IN_CI}	(e)	CSA Interface Input Capacitance			5	pF	F _C =1 MHz		
VTT DC Char	acteristi	cs	<u> </u>		1	1			
V _{IL_AGTL+}	(g,h)	Host AGTL+ Input Low Voltage			HDVREF - (0.04*Vsh)	V			
V _{IH_AGTL+}	(g,h)	Host AGTL+ Input High Voltage	HDVREF + (0.04*Vsh)			V			
V _{OL_AGTL+}	(g,i)	Host AGTL+ Output Low Voltage		1/4* Vsh		V			
V _{OH_AGTL+}	(g,i)	Host AGTL+ Output High Voltage	(Vsh-0.1) * 0.95		Vsh	V			
I _{OL_AGTL+}	(g,i)	Host AGTL+ Output Low Current			0.75 * Vshmax / Rttmin	mA	Rtt _{min} =57 Ω		
I _{LEAK_AGTL+}	(g,h)	Host AGTL+ Input Leakage Current			± 25	μА	V _{OL} <vpad<vtt< td=""></vpad<vtt<>		
C _{PAD_AGTL+}	(g,h)	Host AGTL+ Input Capacitance	1		3.3	pF	F _C =1 MHz		
2.6 V DDR Sy	stem Me	emory							
V _{IL_DDR(DC)}	(1)	DDR Input Low Voltage	-0.1 * VCC_DDR		SMVREF - 0.15	V			
V _{IH_DDR(DC)}	(1)	DDR Input High Voltage	SMVREF + 0.15		VCC_DDR	V			
V _{IL_DDR(AC)}	(1)	DDR Input Low Voltage	-0.1 * VCC_DDR		SMVREF - 0.31	V			
V _{IH_DDR(AC)}	(1)	DDR Input High Voltage	SMVREF + 0.31		VCC_DDR	V			
V _{OL_DDR}	(l,m,v)	DDR Output Low Voltage			0.600	V	With 50 Ω load to DDR Vtt		
V _{OH_DDR}	(l,m,v)	DDR Output High Voltage	VCC_DDR - 0.600			V	With 50 Ω load to DDR Vtt		
I _{OL_DDR}	(l,m)	DDR Output Low Current			25	mA	With 50 Ω load to DDR Vtt		
I _{OH_DDR}	(l,m)	DDR Output High Current	-25			mA	With 50 Ω load to DDR Vtt		
I _{OL_DDR} RCOMP	(v)	DDR RCOMP Output Low Current			50	mA			

Table 33. DC Characteristics (Continued)

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes		
I _{OH_DDR} RCOMP	(v)	DDR RCOMP Output High Current	-50			mA			
I _{Leak_DDR}	(I)	Input Leakage Current			±15	μΑ			
C _{IN_DDR}	(I)	DDR Input /Output Pin Capacitance			5.5	pF	F _C =1 MHz		
2.6 V Miscella	2.6 V Miscellaneous Signals (3.3 V tolerant)								
V_{IL}	(t)	2.6 V Input Low Voltage			0.4	V			
V _{IH}	(t)	2.6 V Input High Voltage	VCC_DDR - 0.4		VCC_33	V			
I _{LEAK}	(t)	2.6 V Input Leakage Current			±50	μА			
C _{IN}	(t)	2.6 V Input Capacitance			5.5	pF			
Bus Select S	ignals					•			
V _{IL}	(x)	Input Low Voltage			0.4	V			
V _{IH}	(x)	Input High Voltage	0.8			V			
Clock Signal	S					•			
V _{IL}	(y)	Input Low Voltage			0.4	V			
V _{IH}	(y)	Input High Voltage	VCC_DDR - 0.4		VCC_33	V	1		
I _{LEAK}	(y)	Input Leakage Current			100	μА			
C _{IN}	(y)	Input Capacitance			5.5	pF			
V _{CROSS(abs)}	(j)	Absolute Crossing Voltage	0.250	NA	0.550	V	2,3		
V _{CROSS(rel)}	(j)	Relative Crossing Voltage	0.250 + 0.5(V _{Havg} - 0.700)	NA	0.550 + 0.5(V _{Havg} – 0.700)	V	3,4,5		

- 1. Absolute max overshoot = 4.5 V
- 2. Crossing voltage is defined as the instantaneous voltage value when the rising edge of HCLKP equals the falling edge of HCLKN.
- 3. The crossing point must meet the absolute and relative crossing point specifications simultaneously.
- 4. V_{Havg} is the statistical average of the V_H measured by the oscilloscope.
 5. V_{Havg} can be measured directly using "Vtop" on Agilent* oscilloscopes and "High" on Tektronix* oscilloscopes.
- 6. Maximum leakage current specification for the GVREF pin is 65 µA. Maximum leakage current specification for the GVSWING pin is 50 µA. Refer to the Intel® 875P Chipset Platform Design Guide for the resistor divider circuit details that takes this specification into account.
- 7. Maximum leakage current specification for HI_VREF and HI_SWING pins is 50 µA. Refer to the Intel® 875P Chipset Platform Design Guide for the resistor divider circuit details that take this specification into account.
- 8. Maximum leakage current specification for CI_VREF and CI_SWING pins is 50 μA. Refer to the Intel® 875P Chipset Platform Design Guide for the resistor divider circuit details that takes this specification into account.

Ballout and Package Information

7

This chapter provides the MCH ballout and package information.

7.1 MCH Ballout

The ballout footprint is shown in Figure 15 and Figure 16. These figures represent the ballout arranged by ball number. Table 34 provides the ballout arranged alphabetically by signal name.

Note: The following notes apply to the ballout.

- 1. For AGP signals, only the AGP 2.0 signal name is listed. For the corresponding AGP 3.0 signal name, refer to Figure 2.
- 2. NC = No Connect.
- 3. RSVD = These reserved balls should not be connected and should be allowed to float.
- 4. Shaded cells in Figure 15 and Figure 16 do not have a ball.

Figure 15. MCH Ballout Diagram (Top View—Left Side)

_					•	٠.				•							
	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
AN			NC	VCC_DDR	SDQ_A24	SMAA_A5	SDQ_A22	SMAA_A11	SDQ_A17	SDQ_A20	SCKE_A3	VCC_DDR	SDQ_A15	SCMDCLK _A1	SDQ_A13	VCC_DDR	SDQ_A9
AM		NC	RSVD	TestP14	VSS	SDQ_A19	SMAA_A7	VSS	SDQ_A21	SCKE_A0	VSS	SDQ_A11	SCMD CLK_A1#	VSS	SCMD CLK_A4	TestP18	VSS
AL	NC	RSVD	VSS	SDQS_A3	SDQ_A25	SDQ_A23	SMAA_A8	SMAA_A9	SDQS_A2	SMAA_ A12	SCKE_A2	SCKE_A1	SDQ_A10	SMAA_ B12	SCMD CLK_A4#	SDQ_A12	SDQ_A8
AK	VCCA_ DDR	TestP26	SDQ_A30	SMAA_A4	TestP13	SMAA_A6	VSS	SDQ_A18	VSS	SDQ_A16	TestP28	TestP15	TestP29	SDQ_A14	VSS	SDQ_B10	VSS
AJ	SECC_A4	VSS	SDQ_A26	VSS	SMAA_A3	SDQ_A29	SDQ_A28	SDQ_B25	SDQ_B24	SDQ_B23	SDQ_B22	SMAA_B9	SDQS_B2	SDQ_B20	SDQS_A1	SDQ_B15	SDQ_A2
АН	SECC_A5	SMAA_A1	SDQ_A31	SDQ_A27	SMAA_B1	VSS	SMAA_B3	TestP6	TestP27	TestP20	SDQ_B18	VSS	SDQ_B17	TestP19	SCKE_B3	VSS	SCMD CLK_B4#
AG	SCMD CLK_A3#	SCMDCLK _A3	SMAA_A2	SECC_A0	SMAA_B2	SDQ_B31	SDQ_B26	SDQS_B3	SMAA_B6	SDQ_B19	SMAA_B7	SMAA_B11	SDQ_B16	SCKE_B2	SDQ_B14	SCMD CLK_B1	SCMD CLK_B4
AF	SDQS_A8	VSS	SECC_A1	VSS	SECC_B1	TestP7	SMAA_B4	VSS	SDQ_B28	SMAA_B5	VSS	SDQ_B21	SCKE_B1	VSS	TestP16	SCMD CLK_B1#	VSS
AE	SECC_A2	SCMD CLK_A0#	SCMD CLK_A0	TestP12	SCMDCLK _B0	SECC_B0	SECC_B4	SDQ_B30	SDQ_B29	VSS	SMAA_B8	VSS	SCKE_B0	VSS	SDQ_B11	VSS	SDQ_B13
AD	VCC_DDR	SECC_B6	SMY RCOMP	SMAA_ A10	SCMD CLK_B0#	VSS	SCMD CLK_B3	SDQ_B27	VSS	VCC_DDR	VSS	VCC_DDR	VSS	VCC_DDR	VSS	VCC_DDR	VSS
AC	SECC_A3	VSS	SECC_A6	VSS	SMAA_A0	SDQS_B8	SCMD CLK_B3#	TestP25	SECC_B5	VSS	VCCA_ DDR	VCCA_ DDR	VCC_DDR	VSS	VCC_DDR	VSS	VCC_DDR
АВ	SECC_A7	TestP21	SBA_B1	SBA_A1	SECC_B7	VSS	SECC_B2	SMAA_B0	VSS	VCC_DDR	VCCA_ DDR						
AA	SDQ_A33	SDQ_A37	SDQ_A36	SDQS_A4	SDQ_B33	SDQ_A32	SECC_B3	VSS	SMAA_ B10	VSS	VCC_DDR						
Y	SDQ_A34	VSS	SDQ_A38	VSS	SDQ_B37	VSS	SDQ_B36	SDQ_B32	VSS	VCC_DDR	VSS			VCC	VSS	VCC	vss
w	SDQ_A39	SDQ_A35	SBA_A0	TestP8	SDQ_B39	SDQ_B38	SDQ_B34	VSS	SDQS_B4	VSS	VCC_DDR			VSS	VCC	VSS	VCC
V	SDQ_A40	VSS	SRAS_A#	SDQ_A44	SDQ_B44	VSS	SDQ_B35	SBA_B0	VSS	VCC_DDR	VSS			VCC	VSS	VCC	VSS
U	SDQ_A45	SDQ_A41	SWE_A#	TestP9	SWE_B#	SRAS_B#	SDQ_B40	VSS	SDQ_B45	VSS	VCC_DDR			VSS	VCC	VSS	VCC
т	SCAS_A#	TestP22	SCS_A0#	SCS_A2#	SCS_B1#	VSS	SCS_B2#	SDQ_B41	VSS	VCC_DDR	VSS			VCC	VSS	VCC	VSS
R	SCS_A3#	VSS	SDQS_A5	VSS	SDQ_B46	SDQS_B5	SCS_B3#	TestP10	SCAS_B#	VSS	VCC_DDR			VSS	vcc	VSS	VCC
P	VCC_DDR	SCS_A1#	SDQ_A42	SDQ_B47	SDQ_B52	VSS	SDQ_B42	SCS_B0#	VSS	VCC_DDR	VSS			VCC	VSS	VCC	VSS
N	SMYRCO MPVOL	SMYRCO MPVOH	SDQ_A43	VSS	SDQ_B48	SDQ_B53	SDQ_B49	TestP11	SDQ_B43	VSS	VCC_DDR						
M	SDQ_A47	VSS	SDQ_A46	SCMD CLK_B2	SCMD CLK_B2#	VSS	SCMD CLK_B5#	SCMD CLK_B5	VSS	VSS	VSS						
L	SDQ_A52	SDQ_A49	SDQ_A48	TestP23	SDQS_B6	SDQ_B54	SDQ_B55	VSS	SDQ_B51	VSS	VSS	VTT	VTT	VTT	VTT	VTT	VTT
K	SDQ_A53	VSS	SCMD CLK_A5#	SCMD CLK_A5	SDQ_B50	VSS	SDQ_B56	SDQS_B7	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS
J	SCMD CLK_A2#	SCMD CLK_A2	SDQS_A6	VSS	SDQ_B60	SDQ_B61	SDQ_B62	VSS	VSS	VSS	VSS	VSS	HD16#	VSS	HD48#	VSS	DINV3#
н	SDQ_A54	VSS	SDQ_A55	SDQ_A50	SDQ_B57	VSS	SDQ_B59	VSS	VSS	HD19#	HD17#	HD21#	VSS	HD18#	VSS	CPURST#	VSS
G	SDQ_A51	SDQ_A60	SDQ_A61	VSS	SDQ_B58	SDQ_B63	VSS	HD20#	HD23#	HD27#	HD22#	HD29#	HD24#	HD49#	HDSTB P3#	HD53#	HD62#
F	SDQ_A56	VSS	SDQ_A57	SDQS_A7	VSS	VSS	VSS	VSS	DINV1#	VSS	HD28#	VSS	HDSTB P1#	VSS	HDSTB N3#	VSS	HD55#
E	SDQ_A62	SDQ_A63	SDQ_A59	VSS	TestP24	HD4#	HD3#	HDSTB P0#	HD26#	HD25#	HD30#	HDSTB N1#	HD31#	HD50#	HD52#	HD51#	HD54#
D	VCC_DDR	VSS	SDQ_A58	VSS	VSS	HD1#	VSS	HD10#	VSS	HD36#	VSS	HDSTB P2#	VSS	HD40#	VSS	HD46#	VSS
С	NC	SMVREF_ A	VSS	VSS	HD0#	HD6#	HD5#	HD11#	HD15#	HD34#	HD33#	HD37#	HD38#	DINV2#	HD45#	HD44#	HA18#
В		NC	DINV0#	VSS	HD7#	VSS	HD9#	VSS	HD12#	vss	HDSTB N2#	vss	HD41#	VSS	HD43#	vss	HA19#
A			NC	VCCA_ FSB	HD8#	HD2#	HD13#	HDSTB N0#	HD14#	VTT	HD32#	HD39#	HD35#	VTT	HD42#	HD47#	HA17#
	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17

Figure 16. MCH Ballout Diagram (Top View—Right Side)

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
SDQ_A7	SDQS_A0	SDQ_A4	SMXRCOM PVOH	SMVREF_B	VCC_DDR	VCC_DDR	RSVD	VCC_HI	HI7	HI4	VCC_HI	HI9	NC			AN
SDQ_A3	SDQ_A1	VSS	SDQ_B5	VCC_DDR	VCC_DDR	VCC_DDR	VSS	HI6	VSS	HI10	VSS	HI2	VSS	NC		AM
SDQ_A6	SDQ_A0	SDQS_B0	SDQ_B1	VCC_DDR	VCC_DDR	VCC_DDR	CI2	HI5	HI8	VSS	HISTRS	HI0	VSS	VSS	NC	AL
SDQ_A5	VSS	SDQ_B2	TestP4	VCC_DDR	VCC_DDR	VCC_DDR	CI1	VSS	CISTRF	HISTRF	HI1	VSS	GAD3	GAD1	GAD0	AK
SDQ_B12	SDQ_B3	SDQ_B6	SDQ_B4	VCC_DDR	VCC_DDR	VCC_DDR	VSS	CISTRS	VSS	HI3	VSS	GAD5	GAD4	VSS	GAD2	AJ
TestP5	SDQ_B7	VSS	SMXRCOM PVOL	VCC_DDR	VCC_DDR	VCC_DDR	CI3	CI10	CI8	VSS	CI7	VSS	VSS	GAD6	GAD7	АН
SDQ_B9	SDQ_B8	SDQ_B0	SMX RCOMP	VCC_DDR	VCC_DDR	VCC_DDR	CI0	RSVD	VSS	CI6	VSS	GCBE0	GADSTBS0	VSS	CI_VREF	AG
SDQS_B1	VSS	EXTTS#	VSS	VCC_DDR	VCC_DDR	VCC_DDR	VSS	VSS	CI4	CI5	GAD8	VSS	GADSTBF0	CI_RCOMP	HI_VREF	AF
VSS	VCC_DDR	VSS	TestP17	VCC_DDR	VCC_DDR	VCC_DDR	PWROK	RSTIN#	CI9	VSS	GAD10	GAD9	CI_SWING	VSS	VCC_AGP	AE
VCC_DDR	VSS	VCC_DDR	VSS	VCC_DDR	VCC_DDR	VCC_DDR	VSS	GAD13	VSS	GAD12	GAD11	VSS	HI_SWING	GVREF	HI_RCOMP	AD
VSS	VCC_DDR	VSS	VCC_DDR	VCC_DDR	VCC_DDR	VCC_DDR	RSVD	GAD15	RSVD	VSS	GCBE1	GAD14	GRCOMP	VSS	GVSWING	AC
					VSS	VSS	VSS	VSS	GFRAME	GIRDY	GSTOP	VSS	GPAR	GDEVSEL	GTRDY	AB
					VSS	VCC_HI	VSS	GSBA4#	GSBA7#	VSS	GSBA6#	GAD16	GCBE2	VSS	VCC_AGP	AA
vcc	VSS	vcc			VCC_HI	VCC_HI	VCC_HI	VSS	GSBA2#	GSBSTBF	GSBA5#	VSS	GAD20	GAD17	GAD18	Y
VSS	vcc	VSS			VCC_HI	VCC_HI	VCC_HI	GST2	GSBA3#	VSS	GSBSTBS	GAD21	GAD22	VSS	GAD19	w
VCC	VSS	VCC			VCC	VCC_HI	VCC_HI	VSS	GRBF	GSBA1#	GSBA0#	VSS	GCBE3	GADSTBS1	GADSTBF1	V
VSS	VCC	VSS			VCC	VCC_HI	VCC_HI	GST1	GST0	VSS	GWBF	GAD25	GAD24	VSS	GAD23	U
VCC	VSS	VCC			VCC	VCC	VCC_HI	VCC_HI	VCC_HI	GGNT	GREQ	VSS	GAD28	GAD27	VCC_AGP	Т
VSS	VCC	VSS			VCC	VCC	VCC_HI	VCC_HI	VCC_HI	VCC_HI	VCC_HI	GAD31	GAD29	VSS	GAD26	R
VCC	VSS	VCC			VCC	VCC	VCC	VCC_HI	VCC_HI	VCC_HI	VCC_HI	VSS	VSS	DBI_LO	GAD30	P
					VCC	VCC	VCC	VCC	VCC	VCC_HI	VCC_HI	VCC_AGP	VCC_AGP	VSS	DBI_HI	N
					VCC	VCC	VCC	VCC	VCC	VCC	VCC_HI	VCC_AGP	VCC_AGP	VCC_AGP	VSS	M
VTT	VTT	VTT	VTT	VSS	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC_AGP	VCC_AGP	VCC_AGP	VCC_AGP	L
VSS	VSS	VSS	VSS	VTT	TestP0	TestP1	TestP2	TestP3	VSS	VCC	VCC	VCC_AGP	VCC_AGP	VCC_AGP	VCC_AGP	K
VSS	HD59#	VSS	HTRDY#	VSS	HA13#	VSS	HA10#	VSS	HA14#	VCC	VCC	VCC_AGP	VCC_AGP	VCC_AGP	VCC_AGP	J
HD61#	VSS	BREQ0#	VSS	HA6#	VSS	HA12#	VSS	HA16#	VSS	VTT	VTT	VSS	VCC_AGP	VCC_AGP	VCC_AGP	Н
HD56#	HD58#	HREQ4#	HREQ2#	HA4#	RS2#	RS1#	HADSTB0#	HA11#	GCLKIN	VTT	VTT	VTT	VCC_AGP	VCC_AGP	VCC_AGP	G
VSS	HDVREF0	VSS	HREQ1#	VSS	HA7#	VSS	HA9#	VSS	HA15#	VSS	VTT	VTT	VSS	VCCA_ AGP	VCC_AGP	F
HD57#	HD63#	HD60#	HA3#	HREQ3#	HREQ0#	HA5#	HA8#	HCLKP	HCLKN	VTT	VTT	VTT	VTT	VSS	VCCA_ AGP	E
HADSTB1#	VSS	HA29#	VSS	RS0#	VSS	DEFER#	VSS	HA26#	VSS	VTT	VTT	VTT	VTT	VCC33V	VSS	D
BSEL1	BSEL0	BPRI#	HA22#	HA30#	HLOCK#	PROCHOT#	HA21#	HA27#	HA31#	VTT	VTT	VTT	VTT	VCCA_FSB	NC	С
VSS	HA28#	VSS	BNR#	VSS	HA20#	VSS	DBSY#	VSS	HIT#	VSS	VTT	VTT	VTT	NC		В
VTT	HA25#	HA23#	HA24#	HDRCOMP	DRDY#	VTT	ADS#	HITM#	HDVREF1	HDSWING	RSVD	VTT	NC			A
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2		

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Signal Name							
Signal Name	Ball #						
ADS#	A9						
BNR#	B13						
BPRI#	C14						
BREQ0#	H14						
BSEL0	C15						
BSEL1	C16						
CI_RCOMP	AF2						
CI_SWING	AE3						
CI_VREF	AG1						
CI0	AG9						
CI1	AK9						
CI2	AL9						
CI3	AH9						
CI4	AF7						
CI5	AF6						
CI6	AG6						
CI7	AH5						
CI8	AH7						
CI9	AE7						
CI10	AH8						
CISTRF	AK7						
CISTRS	AJ8						
CPURST#	H18						
DBI_HI	N1						
DBI_LO	P2						
DBSY#	B9						
DEFER#	D10						
DINV0#	B31						
DINV1#	F25						
DINV2#	C20						
DINV3#	J17						
DRDY#	A11						
EXTTS#	AF14						
GAD0	AK1						
GAD1	AK2						
GAD2	AJ1						
GAD3	AK3						
GAD4	AJ3						
GAD5	AJ4						
GAD6	AH2						
GAD7	AH1						
GAD8	AF5						

GAD9 AE4 GAD10 AE5 GAD11 AD5 GAD12 AD6 GAD13 AD8 GAD14 AC4 GAD15 AC8 GAD16 AA4 GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GC/BE4 AB2 GFRAME AB7 GRPAR <th>Signal Name</th> <th>Ball #</th>	Signal Name	Ball #
GAD11 AD5 GAD12 AD6 GAD13 AD8 GAD14 AC4 GAD15 AC8 GAD16 AA4 GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD29 R3 GAD31 R4 GAD5TBF0 AF3 GAD5TBF1 V1 GAD5TBS0 AG3 GAD5TBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD9	AE4
GAD12 AD6 GAD13 AD8 GAD14 AC4 GAD15 AC8 GAD16 AA4 GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GRPAR AB3 GRPAR<	GAD10	AE5
GAD13 AD8 GAD14 AC4 GAD15 AC8 GAD16 AA4 GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS0 AG3 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GREQ	GAD11	AD5
GAD14 AC4 GAD15 AC8 GAD16 AA4 GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCKIN G7 GDEVSEL AB2 GFRAME AB7 GRPAR AB3 GRBF V7 GRCOMP AC3 GREQ <td>GAD12</td> <td>AD6</td>	GAD12	AD6
GAD15 AC8 GAD16 AA4 GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GRDY AB6 GPAR AB3 GREQ T5 GSBA0# V5	GAD13	AD8
GAD16 AA4 GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GRPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD14	AC4
GAD17 Y2 GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD29 R3 GAD30 P1 GAD31 R4 GAD31 R4 GAD5TBF0 AF3 GAD5TBF1 V1 GAD5TBF0 AF3 GAD5TBF1 V1 GAD5TBS0 AG3 GAD5TBS1 V2 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD15	AC8
GAD18 Y1 GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GROT AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD16	AA4
GAD19 W1 GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GAD31 R4 GAD5TBF0 AF3 GAD5TBF1 V1 GAD5TBF0 AF3 GAD5TBF1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GREQ T5 GSBA0# V5	GAD17	Y2
GAD20 Y3 GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GRNT T6 GIRDY AB6 GPAR AB3 GREQ T5 GSBA0# V5	GAD18	Y1
GAD21 W4 GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GRNT T6 GIRDY AB6 GPAR AB3 GREQ T5 GSBA0# V5	GAD19	W1
GAD22 W3 GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GAD5TBF0 AF3 GAD5TBF1 V1 GAD5TBF0 AG3 GAD5TBF1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GREQ T5 GSBA0# V5	GAD20	Y3
GAD23 U1 GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GREQ T5 GSBA0# V5	GAD21	W4
GAD24 U3 GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GREQ T5 GSBA0# V5	GAD22	W3
GAD25 U4 GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD23	U1
GAD26 R1 GAD27 T2 GAD28 T3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD24	U3
GAD27 T2 GAD28 T3 GAD29 R3 GAD29 R3 GAD30 P1 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD25	U4
GAD28 T3 GAD29 R3 GAD29 R3 GAD30 P1 GAD31 R4 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD26	R1
GAD29 R3 GAD30 P1 GAD31 R4 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD27	T2
GAD30 P1 GAD31 R4 GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD28	T3
GAD31 R4 GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD29	R3
GADSTBF0 AF3 GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD30	P1
GADSTBF1 V1 GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GAD31	R4
GADSTBS0 AG3 GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GADSTBF0	AF3
GADSTBS1 V2 GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GADSTBF1	V1
GC/BE0 AG4 GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GADSTBS0	AG3
GC/BE1 AC5 GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GADSTBS1	V2
GC/BE2 AA3 GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GC/BE0	AG4
GC/BE3 V3 GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GC/BE1	AC5
GCLKIN G7 GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GC/BE2	AA3
GDEVSEL AB2 GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GC/BE3	V3
GFRAME AB7 GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GCLKIN	G7
GGNT T6 GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GDEVSEL	AB2
GIRDY AB6 GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GFRAME	AB7
GPAR AB3 GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GGNT	T6
GRBF V7 GRCOMP AC3 GREQ T5 GSBA0# V5	GIRDY	AB6
GRCOMP AC3 GREQ T5 GSBA0# V5	GPAR	AB3
GREQ T5 GSBA0# V5	GRBF	V7
GSBA0# V5	GRCOMP	AC3
	GREQ	T5
GSBA1# V6	GSBA0#	V5
	GSBA1#	V6

Signal Name	Ball #
GSBA2#	Y7
GSBA3#	W7
GSBA4#	AA8
GSBA5#	Y5
GSBA6#	AA5
GSBA7#	AA7
GSBSTBF	Y6
GSBSTBS	W5
GST0	U7
GST1	U8
GST2	W8
GSTOP	AB5
GTRDY	AB1
GVREF	AD2
GVSWING	AC1
GWBF	U5
HA3#	E13
HA4#	G12
HA5#	E10
HA6#	H12
HA7#	F11
HA8#	E9
HA9#	F9
HA10#	J9
HA11#	G8
HA12#	H10
HA13#	J11
HA14#	J7
HA15#	F7
HA16#	H8
HA17#	A17
HA18#	C17
HA19#	B17
HA20#	B11
HA21#	C9
HA22#	C13
HA23#	A14
HA24#	A13
HA25#	A15
HA26#	D8
HA27#	C8
HA28#	B15

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Signal N	lame
Signal Name	Ball #
HA29#	D14
HA30#	C12
HA31#	C7
HADSTB0#	G9
HADSTB1#	D16
HCLKN	E7
HCLKP	E8
HD0#	C29
HD1#	D28
HD2#	A28
HD3#	E27
HD4#	E28
HD5#	C27
HD6#	C28
HD7#	B29
HD8#	A29
HD9#	B27
HD10#	D26
HD11#	C26
HD12#	B25
HD13#	A27
HD14#	A25
HD15#	C25
HD16#	J21
HD17#	H23
HD18#	H20
HD19#	H24
HD20#	G26
HD21#	H22
HD22#	G23
HD23#	G25
HD24#	G21
HD25#	E24
HD26#	E25
HD27#	G24
HD28#	F23
HD29#	G22
HD30#	E23
HD31#	E21
HD32#	A23
HD33#	C23
HD34#	C24

Signal Name	Ball #
HD35#	A21
HD36#	D24
HD37#	C22
HD38#	C21
HD39#	A22
HD40#	D20
HD41#	B21
HD42#	A19
HD43#	B19
HD44#	C18
HD45#	C19
HD46#	D18
HD47#	A18
HD48#	J19
HD49#	G20
HD50#	E20
HD51#	E18
HD52#	E19
HD53#	G18
HD54#	E17
HD55#	F17
HD56#	G16
HD57#	E16
HD58#	G15
HD59#	J15
HD60#	E14
HD61#	H16
HD62#	G17
HD63#	E15
HDRCOMP	A12
HDSTBN0#	A26
HDSTBN1#	E22
HDSTBN2#	B23
HDSTBN3#	F19
HDSTBP0#	E26
HDSTBP1#	F21
HDSTBP2#	D22
HDSTBP3#	G19
HDSWING	A6
HDVREF0	F15
HDVREF1	A7
HI_RCOMP	AD1

Signal Name	Ball #
HI_SWING	AD3
HI_VREF	AF1
HI00	AL4
HI1	AK5
HI2	AM4
HI3	AJ6
HI4	AN6
HI5	AL8
HI6	AM8
HI7	AN7
HI8	AL7
HI9	AN4
HI10	AM6
HISTRF	AK6
HISTRS	AL5
HIT#	B7
HITM#	A8
HLOCK#	C11
HREQ0#	E11
HREQ1#	F13
HREQ2#	G13
HREQ3#	E12
HREQ4#	G14
HTRDY#	J13
NC	AN31
NC	AN3
NC	AM32
NC	AM2
NC	AL33
NC	AL1
NC	C33
NC	C1
NC	B32
NC	B2
NC	A31
NC	A3
PROCHOT#	C10
PWROK	AE9
RSVD	AG8
RSVD	A5
RSVD	AC9
RSVD	AM31

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name Table 34. MCH Ballout by Signal Name

Signal Name	
Signal Name	Ball #
RSVD	AL32
RSVD	AN9
RSVD	AC7
RS0#	D12
RS1#	G10
RS2#	G11
RSTIN#	AE8
SBA_A0	W31
SBA_A1	AB30
SBA_B0	V26
SBA_B1	AB31
SCAS_A#	T33
SCAS_B#	R25
SCKE_A0	AM24
SCKE_A1	AL22
SCKE_A2	AL23
SCKE_A3	AN23
SCKE_B0	AE21
SCKE_B1	AF21
SCKE_B2	AG20
SCKE_B3	AH19
SCMDCLK_A0	AE31
SCMDCLK_A0#	AE32
SCMDCLK_A1	AN20
SCMDCLK_A1#	AM21
SCMDCLK_A2	J32
SCMDCLK_A2#	J33
SCMDCLK_A3	AG32
SCMDCLK_A3#	AG33
SCMDCLK_A4	AM19
SCMDCLK_A4#	AL19
SCMDCLK_A5	K30
SCMDCLK_A5#	K31
SCMDCLK_B0	AE29
SCMDCLK_B0#	AD29
SCMDCLK_B1	AG18
SCMDCLK_B1#	AF18
SCMDCLK_B2	M30
SCMDCLK_B2#	M29
SCMDCLK_B3	AD27
SCMDCLK_B3#	AC27
SCMDCLK_B4	AG17
<u> </u>	

Signal Name	Ball #
SCMDCLK_B4#	AH17
SCMDCLK_B5	M26
SCMDCLK_B5#	M27
SCS_A0#	T31
SCS_A1#	P32
SCS_A2#	T30
SCS_A3#	R33
SCS_B0#	P26
SCS_B1#	T29
SCS_B2#	T27
SCS_B3#	R27
SDQ_A0	AL15
SDQ_A1	AM15
SDQ_A2	AJ17
SDQ_A3	AM16
SDQ_A4	AN14
SDQ_A5	AK16
SDQ_A6	AL16
SDQ_A7	AN16
SDQ_A8	AL17
SDQ_A9	AN17
SDQ_A10	AL21
SDQ_A11	AM22
SDQ_A12	AL18
SDQ_A13	AN19
SDQ_A14	AK20
SDQ_A15	AN21
SDQ_A16	AK24
SDQ_A17	AN25
SDQ_A18	AK26
SDQ_A19	AM28
SDQ_A20	AN24
SDQ_A21	AM25
SDQ_A22	AN27
SDQ_A23	AL28
SDQ_A24	AN29
SDQ_A25	AL29
SDQ_A26	AJ31
SDQ_A27	AH30
SDQ_A28	AJ27
SDQ_A29	AJ28
SDQ_A30	AK31

Signal Name	Ball #
SDQ A31	AH31
SDQ_A32	AA28
SDQ_A33	AA33
SDQ_A34	Y33
SDQ_A35	W32
SDQ_A36	AA31
SDQ_A37	AA32
SDQ_A38	Y31
SDQ_A39	W33
SDQ_A40	V33
SDQ_A41	U32
SDQ_A42	P31
SDQ_A43	N31
SDQ_A44	V30
SDQ_A45	U33
SDQ_A46	M31
SDQ_A47	M33
SDQ_A48	L31
SDQ_A49	L32
SDQ_A50	H30
SDQ_A51	G33
SDQ_A52	L33
SDQ_A53	K33
SDQ_A54	H33
SDQ_A55	H31
SDQ_A56	F33
SDQ_A57	F31
SDQ_A58	D31
SDQ_A59	E31
SDQ_A60	G32
SDQ_A61	G31
SDQ_A62	E33
SDQ_A63	E32
SDQ_B0	AG14
SDQ_B1	AL13
SDQ_B2	AK14
SDQ_B3	AJ15
SDQ_B4	AJ13
SDQ_B5	AM13
SDQ_B6	AJ14
SDQ_B7	AH15
SDQ_B8	AG15

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Signal Name Ball # SDQ_B9 AG16 SDQ_B10 AK18 SDQ_B11 AE19 SDQ_B12 AJ16	
SDQ_B10 AK18 SDQ_B11 AE19 SDQ_B12 AJ16	;
SDQ_B11 AE19 SDQ_B12 AJ16	
SDQ_B12 AJ16	,
_	,
SDQ_B13 AE17	
SDQ_B14 AG19)
SDQ_B15 AJ18	
SDQ_B16 AG21	
SDQ_B17 AH21	
SDQ_B18 AH23	,
SDQ_B19 AG24	F
SDQ_B20 AJ20	
SDQ_B21 AF22	
SDQ_B22 AJ23	
SDQ_B23 AJ24	
SDQ_B24 AJ25	
SDQ_B25 AJ26	
SDQ_B26 AG27	,
SDQ_B27 AD26	į
SDQ_B28 AF25	
SDQ_B29 AE25	,
SDQ_B30 AE26	;
SDQ_B31 AG28	}
SDQ_B32 Y26	
SDQ_B33 AA29	,
SDQ_B34 W27	
SDQ_B35 V27	
SDQ_B36 Y27	
SDQ_B37 Y29	
SDQ_B38 W28	
SDQ_B39 W29	
SDQ_B40 U27	
SDQ_B41 T26	
SDQ_B42 P27	
SDQ_B43 N25	
SDQ_B44 V29	
SDQ_B45 U25	
SDQ_B46 R29	
SDQ_B47 P30	
SDQ_B48 N29	
SDQ_B49 N27	
SDQ_B50 K29	

Cianal Nama	Dell #
Signal Name	Ball #
SDQ_B51	L25
SDQ_B52	P29
SDQ_B53	N28
SDQ_B54	L28
SDQ_B55	L27
SDQ_B56	K27
SDQ_B57	H29
SDQ_B58	G29
SDQ_B59	H27
SDQ_B60	J29
SDQ_B61	J28
SDQ_B62	J27
SDQ_B63	G28
SDQS_A0	AN15
SDQS_A1	AJ19
SDQS_A2	AL25
SDQS_A3	AL30
SDQS_A4	AA30
SDQS_A5	R31
SDQS_A6	J31
SDQS_A7	F30
SDQS_A8	AF33
SDQS_B0	AL14
SDQS_B1	AF16
SDQS_B2	AJ21
SDQS_B3	AG26
SDQS_B4	W25
SDQS_B5	R28
SDQS_B6	L29
SDQS_B7	K26
SDQS_B8	AC28
SECC_A0	AG30
SECC_A1	AF31
SECC_A2	AE33
SECC_A3	AC33
SECC_A4	AJ33
SECC_A5	AH33
SECC A6	AC31
SECC_A7	AB33
SECC B0	AE28
SECC B1	AF29
SECC B2	AB27
0200_02	ADEI

o.g.i.a. i.	
Signal Name	Ball #
SECC_B3	AA27
SECC_B4	AE27
SECC_B5	AC25
SECC_B6	AD32
SECC_B7	AB29
SMAA_A0	AC29
SMAA_A1	AH32
SMAA_A2	AG31
SMAA_A3	AJ29
SMAA_A4	AK30
SMAA_A5	AN28
SMAA_A6	AK28
SMAA_A7	AM27
SMAA_A8	AL27
SMAA_A9	AL26
SMAA_A10	AD30
SMAA_A11	AN26
SMAA_A12	AL24
SMAA_B0	AB26
SMAA_B1	AH29
SMAA_B2	AG29
SMAA_B3	AH27
SMAA_B4	AF27
SMAA_B5	AF24
SMAA_B6	AG25
SMAA_B7	AG23
SMAA_B8	AE23
SMAA_B9	AJ22
SMAA_B10	AA25
SMAA_B11	AG22
SMAA_B12	AL20
SMVREF_A	C32
SMVREF_B	AN12
SMXRCOMP	AG13
SMXRCOMPVOH	AN13
SMXRCOMPVOL	AH13
SMYRCOMP	AD31
SMYRCOMPVOH	N32
SMYRCOMPVOL	N33
SRAS_A#	V31
SRAS_B#	U28
SWE_A#	U31

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Signal Name	
Signal Name	Ball #
SWE_B#	U29
TESTP0	K11
TESTP1	K10
TESTP2	K9
TESTP3	K8
TESTP4	AK13
TESTP5	AH16
TESTP6	AH26
TESTP7	AF28
TESTP8	W30
TESTP9	U30
TESTP10	R26
TESTP11	N26
TESTP12	AE30
TESTP13	AK29
TESTP14	AM30
TESTP15	AK22
TESTP16	AF19
TESTP17	AE13
TESTP18	AM18
TESTP19	AH20
TESTP20	AH24
TESTP21	AB32
TESTP22	T32
TESTP23	L30
TESTP24	E29
TESTP25	AC26
TESTP26	AK32
TESTP27	AH25
TESTP28	AK23
TESTP29	AK21
VCC	Y20
VCC	Y18
VCC	Y16
VCC	Y14
VCC	W19
VCC	W17
VCC	W15
VCC	V20
VCC	V18
VCC	V16
VCC	V14

Signal Name	Ball #
VCC	V11
VCC	U19
VCC	U17
VCC	U15
VCC	U11
VCC	T20
VCC	T18
VCC	T16
VCC	T14
VCC	T11
VCC	T10
VCC	R19
VCC	R17
VCC	R15
VCC	R11
VCC	R10
VCC	P20
VCC	P18
VCC	P16
VCC	P14
VCC	P11
VCC	P10
VCC	P9
VCC	N11
VCC	N10
VCC	N9
VCC	N8
VCC	N7
VCC	M11
VCC	M10
VCC	M9
VCC	M8
VCC	M7
VCC	M6
VCC	L11
VCC	L10
VCC	L9
VCC	L8
VCC	L7
VCC	L6
VCC	L5
VCC	K6

Signal Name	Ball #
VCC	K5
VCC	J6
VCC	J5
VCC_AGP	AE1
VCC_AGP	AA1
VCC_AGP	T1
VCC_AGP	N4
VCC_AGP	N3
VCC_AGP	M4
VCC_AGP	М3
VCC_AGP	M2
VCC_AGP	L4
VCC_AGP	L3
VCC_AGP	L2
VCC_AGP	L1
VCC_AGP	K4
VCC_AGP	K3
VCC_AGP	K2
VCC_AGP	K1
VCC_AGP	J4
VCC_AGP	J3
VCC_AGP	J2
VCC_AGP	J1
VCC_AGP	H3
VCC_AGP	H2
VCC_AGP	H1
VCC_AGP	G3
VCC_AGP	G2
VCC_AGP	G1
VCC_AGP	F1
VCC_DDR	AN30
VCC_DDR	AN22
VCC_DDR	AN18
VCC_DDR	AN11
VCC_DDR	AN10
VCC_DDR	AM12
VCC_DDR	AM11
VCC_DDR	AM10
VCC_DDR	AL12
VCC_DDR	AL11
VCC_DDR	AL10
VCC_DDR	AK12

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Signal Name	
Signal Name	Ball #
VCC_DDR	AK11
VCC_DDR	AK10
VCC_DDR	AJ12
VCC_DDR	AJ11
VCC_DDR	AJ10
VCC_DDR	AH12
VCC_DDR	AH11
VCC_DDR	AH10
VCC_DDR	AG12
VCC_DDR	AG11
VCC_DDR	AG10
VCC_DDR	AF12
VCC_DDR	AF11
VCC_DDR	AF10
VCC_DDR	AE15
VCC_DDR	AE12
VCC_DDR	AE11
VCC_DDR	AE10
VCC_DDR	AD33
VCC_DDR	AD24
VCC_DDR	AD22
VCC_DDR	AD20
VCC_DDR	AD18
VCC_DDR	AD16
VCC_DDR	AD14
VCC_DDR	AD12
VCC_DDR	AD11
VCC_DDR	AD10
VCC_DDR	AC21
VCC_DDR	AC19
VCC_DDR	AC17
VCC_DDR	AC15
VCC_DDR	AC13
VCC_DDR	AC12
VCC_DDR	AC11
VCC_DDR	AC10
VCC_DDR	AB24
VCC_DDR	AA23
VCC_DDR	Y24
VCC_DDR	W23
VCC_DDR	V24
VCC_DDR	U23

Signal Name	Ball #
VCC_DDR	T24
VCC_DDR	R23
VCC_DDR	P33
VCC_DDR	P24
VCC_DDR	N23
VCC_DDR	D33
VCC_HI	Y11
VCC_HI	Y10
VCC_HI	Y9
VCC_HI	W11
VCC_HI	W10
VCC_HI	W9
VCC_HI	V10
VCC_HI	V9
VCC_HI	U10
VCC_HI	U9
VCC_HI	T9
VCC_HI	T8
VCC_HI	T7
VCC_HI	R9
VCC_HI	R8
VCC_HI	R7
VCC_HI	R6
VCC_HI	R5
VCC_HI	P8
VCC_HI	P7
VCC_HI	P6
VCC_HI	P5
VCC_HI	N6
VCC_HI	N5
VCC_HI	M5
VCC_HI	AN8
VCC_HI	AN5
VCC_HI	AA10
VCC33 V	D2
VCCA_AGP	F2
VCCA_AGP	E1
VCCA_DDR	AK33
VCCA_DDR	AC23
VCCA_DDR	AC22
VCCA_DDR	AB23
VCCA_FSB	C2

Signal Name	Ball #
VCCA_FSB	A30
VSS	AM29
VSS	AM26
VSS	AM23
VSS	AM20
VSS	AM17
VSS	AM14
VSS	AM9
VSS	AM7
VSS	AC6
VSS	AC2
VSS	AB28
VSS	AB25
VSS	AB11
VSS	AB10
VSS	AB9
VSS	AB8
VSS	AB4
VSS	AA26
VSS	AA24
VSS	AA11
VSS	AA9
VSS	AA6
VSS	AA2
VSS	Y32
VSS	Y30
VSS	Y28
VSS	Y25
VSS	Y23
VSS	Y19
VSS	Y17
VSS	Y15
VSS	Y8
VSS	Y4
VSS	W26
VSS	W24
VSS	W20
VSS	W18
VSS	W16
VSS	W14
VSS	W6
VSS	W2

Table 34. MCH Ballout by Signal Name Table 34. MCH Ballout by Signal Name Signal Name Signal Name

Signal Name				
Signal Name	Ball #			
VSS	K14			
VSS	K13			
VSS	K7			
VSS	J30			
VSS	J26			
VSS	J25			
VSS	J24			
VSS	J23			
VSS	J22			
VSS	J20			
VSS	J18			
VSS	J16			
VSS	J14			
VSS	J12			
VSS	J10			
VSS	J8			
VSS	H32			
VSS	H28			
VSS	H26			
VSS	H25			
VSS	H21			
VSS	H19			
VSS	H17			
VSS	H15			
VSS	H13			
VSS	H11			
VSS	H9			
VSS	H7			
VSS	H4			
VSS	G30			
VSS	G27			
VSS	F32			
VSS	F29			
VSS	AM5			
VSS	AM3			
VSS	AL31			
VSS	AL6			
VSS	AL3			
VSS	AL2			
VSS	AK27			
VSS	AK25			
VSS	AK19			

Signal Name	Ball #
VSS	AK17
VSS	AK15
VSS	AK8
VSS	AK4
VSS	AJ32
VSS	AJ30
VSS	AJ9
VSS	AJ7
VSS	AJ5
VSS	AJ2
VSS	AH28
VSS	AH22
VSS	AH18
VSS	AH14
VSS	AH6
VSS	AH4
VSS	AH3
VSS	AG7
VSS	AG5
VSS	AG2
VSS	AF32
VSS	AF30
VSS	AF26
VSS	AF23
VSS	V32
VSS	V28
VSS	V25
VSS	V23
VSS	V19
VSS	V17
VSS	V15
VSS	V8
VSS	V4
VSS	U26
VSS	U24
VSS	U20
VSS	U18
VSS	U16
VSS	U14
VSS	U6
VSS	U2
VSS	T28

Signal Name	Ball #
VSS	T25
VSS	T23
VSS	T19
VSS	T17
VSS	T15
VSS	T4
VSS	R32
VSS	R30
VSS	R24
VSS	R20
VSS	R18
VSS	R16
VSS	R14
VSS	R2
VSS	P28
VSS	F28
VSS	F27
VSS	F26
VSS	F24
VSS	F22
VSS	F20
VSS	F18
VSS	F16
VSS	F14
VSS	F12
VSS	F10
VSS	F8
VSS	F6
VSS	F3
VSS	E30
VSS	E2
VSS	D32
VSS	D30
VSS	D29
VSS	D27
VSS	D25
VSS	D23
VSS	D21
VSS	D19
VSS	D17
VSS	D15
VSS	D13

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Table 34. MCH Ballout by Signal Name

Signal Name			
Signal Name	Ball #		
VSS	D11		
VSS	D9		
VSS	D7		
VSS	D1		
VSS	C31		
VSS	C30		
VSS	AF20		
VSS	AF17		
VSS	AF15		
VSS	AF13		
VSS	AF9		
VSS	AF8		
VSS	AF4		
VSS	AE24		
VSS	AE22		
VSS	AE20		
VSS	AE18		
VSS	AE16		
VSS	AE14		
VSS	AE6		
VSS	AE2		
VSS	AD28		
VSS	AD25		
VSS	AD23		
VSS	AD21		
VSS	AD19		
VSS	AD17		
VSS	AD15		
VSS	AD13		
VSS	AD9		
VSS	AD7		
VSS	AD4		
VSS	AC32		
VSS	AC30		
VSS	AC24		
VSS	AC20		
VSS	AC18		
VSS	AC16		
VSS	AC14		
VSS	P25		
VSS	P23		
VSS	P19		
	1		

Signal Name				
Signal Name	Ball #			
VSS	P17			
VSS	P15			
VSS	P4			
VSS	P3			
VSS	N30			
VSS	N24			
VSS	N2			
VSS	M32			
VSS	M28			
VSS	M25			
VSS	M24			
VSS	M23			
VSS	M1			
VSS	L26			
VSS	L24			
VSS	L23			
VSS	L12			
VSS	K32			
VSS	K28			
VSS	K25			
VSS	K24			
VSS	K23			
VSS	K22			
VSS	K21			
VSS	K20			
VSS	K19			
VSS	K18			
VSS	K17			
VSS	K16			
VSS	K15			
VSS	B30			
VSS	B28			
VSS	B26			
VSS	B24			
VSS	B22			
VSS	B20			
VSS	B18			
VSS	B16			
VSS	B14			
VSS	B12			
VSS	B10			
VSS	B8			

Signal Name	Ball #
VSS	В6
VTT	E4
VTT	E3
VTT	D6
VTT	D5
VTT	D4
VTT	D3
VTT	C6
VTT	C5
VTT	C4
VTT	C3
VTT	B5
VTT	B4
VTT	L22
VTT	L21
VTT	L20
VTT	L19
VTT	L18
VTT	L17
VTT	L16
VTT	L15
VTT	L14
VTT	L13
VTT	K12
VTT	H6
VTT	H5
VTT	G6
VTT	G5
VTT	G4
VTT	F5
VTT	F4
VTT	E6
VTT	E5
VTT	В3
VTT	A24
VTT	A20
VTT	A16
VTT	A10
VTT	A4

7.2 Package Information

The MCH is in a 42.5 mm x 42.5 mm Flip Chip Ball Grid Array (FC-BGA) package with 1005 solder balls and 1 mm ball pitch. Figure 17 through Figure 19 show the package dimensions.

Figure 17. Intel® 82875P MCH Package Dimensions (Top View)

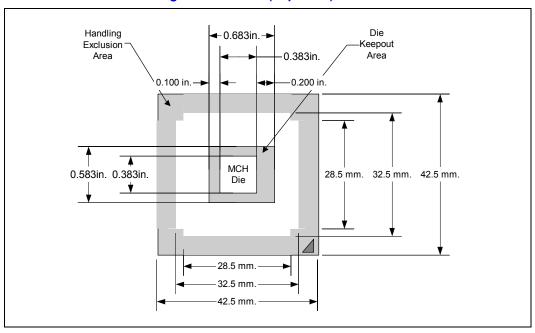
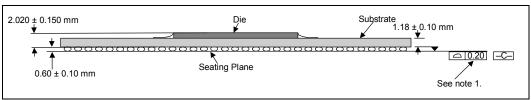



Figure 18. Intel® 82875P MCH Package Dimensions (Side View)

- 1. Primary datum —C— and seating plane are defined by the spherical crowns of the solder balls.
- 2. All dimensions and tolerances conform to ANSI Y14.5M-1982.

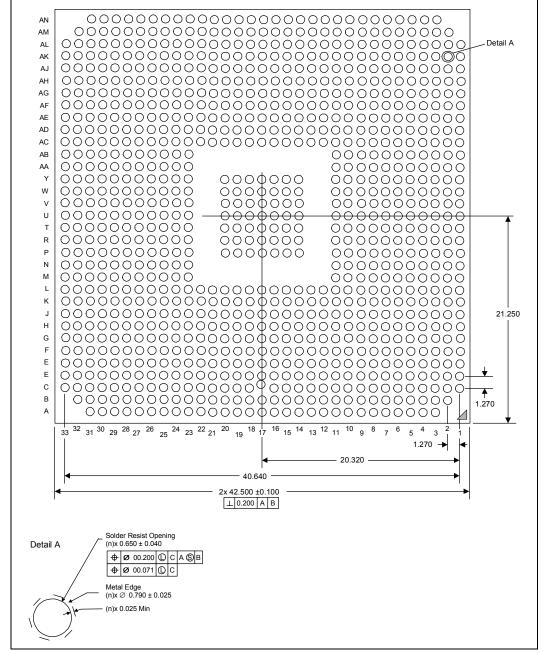
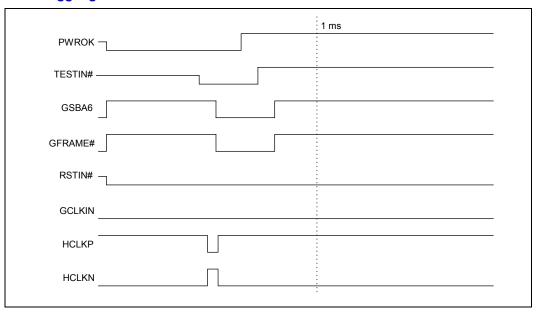


Figure 19. Intel® 82875P MCH Package Dimensions (Bottom View)

- 1. All dimensions are in millimeters
- 2. All dimensions and tolerances conform to ANSI Y14.5M-1982

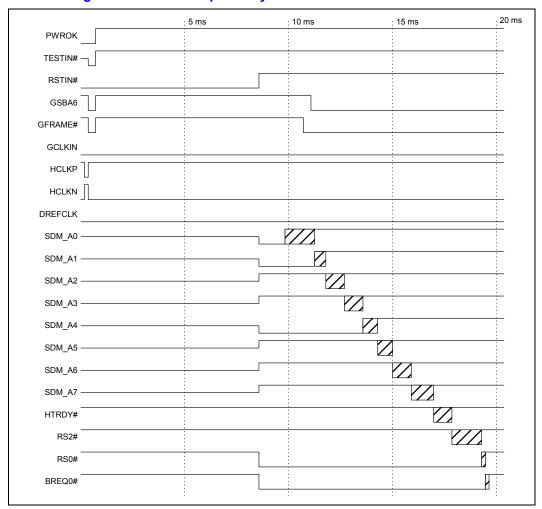
This page is intentionally left blank.


intel® Testability

In the MCH, testability for Automated Test Equipment (ATE) board level testing has been implemented as an XOR chain. An XOR-tree is a chain of XOR gates, each with one input pin connected to it.

8.1 **XOR Test Mode Initialization**

XOR test mode can be entered by driving GSBA6#, GSBA7#, TESTIN#, PWROK low, and RSTIN# low, then driving PWROK high, then RSTIN# high. XOR test mode via TESTIN# (pin AC9) does not require a clock. But toggling of HCLKP and HCLKN as shown in Figure 20 is required for deterministic XOR operation. This applies to AGP 2.0 mode. If the part is in AGP 3.0 mode, GSBA6,# GSBA7#, and GC#/BE1 must be driven high.


Figure 20. XOR Toggling of HCLKP and HCLKN

Pin testing will not start until RSTIN# is de-asserted. Figure 21 shows chains are tested sequentially. Note that for the MCH, sequential testing is not required. All chains can be tested in parallel for test time reduction.

Figure 21. XOR Testing Chains Tested Sequentially

8.1.1 XOR Chain Definition

The MCH has 12 XOR chains. The XOR chain outputs are driven out on the output pins shown in Table 35. During fullwidth testing, XOR chain outputs will be visible on both pins. (For example, xor_out0 is visible on SDM_A0 and SDM_B0.) During channel shared mode on the tester, outputs are visible on their respective channels. (For example, in channel A mode, xor_out0 is visible on SDM_A0 and the same is visible on SDM_B0 in channel B mode.)

Table 35. XOR Chain Outputs

XOR Chain	DDR Output Pin Channel A DDR Output Pin Chan		
xor_out0	TESTP17	TESTP4	
xor_out1	TESTP18	TESTP5	
xor_out2	TESTP19	TESTP6	
xor_out3	TESTP20	TESTP7	
xor_out4	TESTP21	TESTP8	
xor_out5	TESTP22	TESTP9	
xor_out6	TESTP23	TESTP10	
xor_out7	TESTP24	TESTP11	
xor_out8	HTRDY#	BPRI#	
xor_out9	RS2#	DEFER#	
xor_out10	RS0#	RS1#	
xor_out11	BREQ0#	CPURST#	

Table 36 through Table 48 shows the XOR chain pin mappings and their monitors for the MCH.

Note: Notes for Table 36 through Table 48.

- 1. Only AGP differential strobes are on different chains but in the same channel group. Other interface strobes are on the same chain since they do not require to be in opposite polarity all the time. All XOR chains can be run in parallel except chains with AGP strobes (chains 0 and 1, chains 0 and 2, and chains 2 and 4).
- 2. The channel A and channel B output pins for each chain show the same output.
- 3. For AGP signals, only the AGP 3.0 signal name is listed. For the corresponding AGP 2.0 signal name, refer to Chapter 2.

Table 36. XOR Chain 0 (60 Inputs) Output Pins: TESTP17, TESTP4

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
CI7	AH5	GAD3	AK3	GST0	U7
CI1	AK9	GC/BE0#	AG4	GIRDY	AB6
CI2	AL9	GADSTBF0	AF3	GC/BE2#	AA3
CI8	AH7	GAD12	AD6	GCBE3	V3
CI9	AE7	GAD7	AH1	GST2	W8
CI0	AG9	GSTOP	AB5	DBI_HI	N1
CISTRF	AK7	GAD11	AD5	GREQ	T5
CISTRS	AJ8	GAD10	AE5	GSBA2#	Y7
CI6	AG6	GAD9	AE4	GSBSTBF	Y6
CI3	AH9	GAD15	AC8	GSBA7#	AA7
CI4	AF7	GAD13	AD8	GSBA0#	V5
CI5	AF6	GAD14	AC4	GSBA5#	Y5
CI10	AH8	GTRDY	AB1	GSBA3#	W7
GAD1	AK2	GPAR	AB3	GSBA4#	AA8
GAD5	AJ4	GCBE1	AC5	GSBA1#	V6
GAD0	AK1	GFRAME	AB7	GSBA6#	AA5
GAD6	AH2	DBI_LO	P2	TESTP2	K9
GAD2	AJ1	GDEVSEL	AB2	TESTP3	K8
GAD4	AJ3	GRBF	V7	TESTP0	K11
GAD8	AF5	GWBF	U5	RSVD	AC7
Output	Pins				
TESTP17	AE13				
TESTP4	AK13				

Table 37. XOR Chain 1 (33 Inputs) Output Pins: TESTP18, TESTP5

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
HI7	AN7	HI8	AL7	GAD23	U1
HI4	AN6	HI9	AN4	GAD25	U4
HI3	AJ6	GST1	U8	GAD27	T2
HI5	AL8	GAD20	Y3	GAD24	U3
HISTRF	AK6	GAD16	AA4	GAD21	W4
HI10	AM6	GAD17	Y2	GAD28	T3
HISTRS	AL5	GAD19	W1	GAD30	P1
HI2	AM4	GAD18	Y1	GAD31	R4
HI0	AL4	GADSTBF1	V1	GAD29	R3
HI6	AM8	GAD22	W3	GGNT	T6
HI1	AK5	GAD26	R1	EXTTS#	AF14
Output Pins					
TESTP18	AM18				
TESTP5	AH16				

Table 38. XOR Chain 2 (44 Inputs) Output Pins: TESTP19, TESTP6

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
GADSTBS0	AG3	HD19#	H24	HDSTBN0#	A26
GSBSTBS	W5	HD27#	G24	HD6#	C28
HD29#	G22	HD24#	G21	HD9#	B27
HD25#	E24	HD21#	H22	HD12#	B25
HD26#	E25	HD28#	F23	HD3#	E27
HD31#	E21	HD16#	J21	HD2#	A28
HD22#	G23	HD18#	H20	HD0#	C29
HD17#	H23	DINV0#	B31	HD4#	E28
HD30#	E23	HD8#	A29	HD5#	C27
HD20#	G26	HD11#	C26	HD7#	B29
DINV1#	F25	HD14#	A25	HD1#	D28
HD23#	G25	HD10#	D26	PROCHOT#	C10
HDSTBP1#	F21	HD15#	C25	HITM#	A8
HDSTBN1#	E22	HD13#	A27	BSEL0	C15
		HDSTBP0#	E26	HLOCK#	C11
Output	Output Pins				
TESTP19	AH20				
TESTP6	AH26				

Table 39. XOR Chain 3 (41 Inputs) Output Pins: TESTP20, TESTP7

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
BNR#	B13	HA12#	H10	HA19#	B17
BSEL1	C16	HA9#	F9	HA18#	C17
HIT#	B7			HA22#	C13
DRDY#	A11	HA4#	G12	HA24#	A13
DBSY#	B9	HA10#	J9	HA23#	A14
ADS#	A9	HA15#	F7	HADSTB1#	D16
HREQ4#	G14	HA8#	E9	HA17#	A17
HA16#	H8	HA13#	J11	HA25#	A15
HREQ3#	E12	HA6#	H12	HA20#	B11
HREQ0#	E11	HA5#	E10	HA30#	C12
HA3#	E13	HA11#	G8	HA21#	C9
HREQ1#	F13	HREQ2#	G13	HA27#	C8
HA7#	F11	HA31#	C7	HA29#	D14
HA14#	J7	HA26#	D8	HA28#	B15
Output	Pins				
TESTP20	AH24				
TESTP7	AF28				

Table 40. XOR Chain 4 (40 Inputs) Output Pins: TESTP21, TESTP8

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
HD45#	C19	HD43#	B19	HD57#	E16
HD46#	D18	HD33#	C23	HDSTBP3#	G19
HD40#	D20	HD41#	B21	HDSTBN3#	F19
HD47#	A18	HD35#	A21	HD51#	E18
HD39#	A22	HD32#	A23	HD49#	G20
HD36#	D24	HD37#	C22	HD55#	F17
HD44#	C18	HD58#	G15	HD54#	E17
HD42#	A19	HD56#	G16	HD53#	G18
DINV2#	C20	HD62#	G17	HD50#	E20
HDSTBP2#	D22	HD61#	H16	HD48#	J19
HDSTBN2#	B23	HD63#	E15	HD52#	E19
HD34#	C24	HD59#	J15	DINV3#	J17
HD38#	C21	HD60#	E14	GADSTBF1	V1
Output	Pins			TESTP1	K10
TESTP21	AB32				
TESTP8	W30				

Table 41. XOR Chain 5 (44 Inputs) Output Pins: TESTP22, TESTP9

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
SDQ_A58	D31	SDQ_A53	K33	SDQ_A41	U32
SDQ_A59	E31	SDQ_A48	L31	SDQ_A44	V30
SDQ_A62	E33	SDQ_A52	L33	SDQS_A4	AA30
SDQ_A63	E32	SDQ_A49	L32	SDQ_A35	W32
SDQS_A7	F30	SCMDCLK_A5#	K31	SDQ_A38	Y31
SDQ_A61	G31	SCMDCLK_A5	K30	SDQ_A39	W33
SDQ_A57	F31	SCMDCLK_A2#	J33	SDQ_A34	Y33
SDQ_A56	F33	SCMDCLK_A2	J32	SDQ_A33	AA33
SDQ_A60	G32	SDQS_A5	R31	SDQ_A37	AA32
SDQ_A51	G33	SDQ_A42	P31	SDQ_A36	AA31
SDQ_A50	H30	SDQ_A46	M31	SDQ_A32	AA28
SDQ_A55	H31	SDQ_A47	M33	SCMDCLK_A0	AE31
SDQS_A6	J31	SDQ_A43	N31	SCMDCLK_A0#	AE32
SDQ_A54	H33	SDQ_A40	V33	SCMDCLK_A3#	AG33
		SDQ_A45	U33	SCMDCLK_A3	AG32
Output	Pins				
TESTP22	T32				
TESTP9	U30				

Table 42. XOR Chain 6 (40 Inputs) Output Pins: TESTP23, TESTP10

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
SDQ_A30	AK31	SDQ_A19	AM28	SDQ_A8	AL17
SDQS_A3	AL30	SDQ_A23	AL28	SDQ_A6	AL16
SDQ_A27	AH30	SDQ_A22	AN27	SDQ_A2	AJ17
SDQ_A31	AH31	SDQ_A16	AK24	SDQ_A3	AM16
SDQ_A29	AJ28	SDQ_A20	AN24	SDQS_A0	AN15
SDQ_A26	AJ31	SDQ_A10	AL21	SDQ_A5	AK16
SDQ_A25	AL29	SDQ_A15	AN21	SDQ_A7	AN16
SDQ_A24	AN29	SDQ_A14	AK20	SDQ_A4	AN14
SDQ_A28	AJ27	SDQS_A1	AJ19	SCMDCLK_A1	AN20
SDQS_A2	AL25	SDQ_A11	AM22	SCMDCLK_A1#	AM21
SDQ_A21	AM25	SDQ_A13	AN19	SDQ_A1	AM15
SDQ_A17	AN25	SDQ_A9	AN17	SCMDCLK_A4#	AL19
SDQ_A18	AK26	SDQ_A12	AL18	SCMDCLK_A4	AM19
				SDQ_A0	AL15
Output	Pins				
TESTP23	L30				
TESTP10	R26				

Table 43. XOR Chain 7 (45 Inputs) Output Pins: TESTP24, TESTP11

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
HADSTB1#	D16	SDQS_B6	L29	SDQ_B41	T26
SDQ_B57	H29	SDQ_B48	N29	SDQS_B5	R28
SDQ_B61	J28	SDQ_B49	N27	SDQ_B37	Y29
SDQ_B58	G29	SDQ_B52	P29	SDQ_B36	Y27
SDQ_B63	G28	SCMDCLK_B5	M26	SDQ_B35	V27
SDQ_B60	J29	SCMDCLK_B5#	M27	SDQ_B32	Y26
SDQS_B7	K26	SCMDCLK_B2#	M29	SDQ_B34	W27
SDQ_B62	J27	SCMDCLK_B2	M30	SDQ_B38	W28
SDQ_B59	H27	SDQ_B43	N25	SDQ_B33	AA29
SDQ_B56	K27	SDQ_B46	R29	SDQ_B39	W29
SDQ_B51	L25	SDQ_B42	P27	SDQS_B4	W25
SDQ_B54	L28	SDQ_B47	P30	SCMDCLK_B0	AE29
SDQ_B55	L27	SDQ_B45	U25	SCMDCLK_B0#	AD29
SDQ_B53	N28	SDQ_B40	U27	SCMDCLK_B3	AD27
SDQ_B50	K29	SDQ_B44	V29	SCMDCLK_B3#	AC27
Output	Pins				
TESTP24	E29				
TESTP11	N26				

Table 44. XOR Chain 8 (40 Inputs) Output Pins: TESTP8, TESTP8

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
SDQ_B30	AE26	SDQ_B21	AF22	SDQ_B8	AG15
SDQ_B26	AG27	SDQ_B17	AH21	SCMDCLK_B4#	AH17
SDQ_B29	AE25	SDQS_B2	AJ21	SCMDCLK_B4	AG17
SDQ_B27	AD26	SDQ_B16	AG21	SCMDCLK_B1#	AF18
SDQ_B31	AG28	SDQ_B20	AJ20	SCMDCLK_B1	AG18
SDQ_B25	AJ26	SDQ_B10	AK18	SDQ_B1	AL13
SDQS_B3	AG26	SDQ_B14	AG19	SDQ_B3	AJ15
SDQ_B28	AF25	SDQ_B15	AJ18	SDQ_B7	AH14
SDQ_B24	AJ25	SDQ_B11	AE19	SDQ_B2	AK14
SDQ_B23	AJ24	SDQ_B13	AE17	SDQ_B6	AJ14
SDQ_B18	AH23	SDQ_B12	AJ16	SDQ_B5	AM13
SDQ_B19	AG24	SDQ_B9	AG16	SDQ_B0	AG14
SDQ_B22	AJ23	SDQS_B1	AF16	SDQ_B4	AJ13
				SDQS_B0	AL14
Output	Pins				
HTRDY#	J13				
BPRI#	C14				

Table 45. XOR Chain 9 (62 Inputs) Output Pins: RSB2, DEFER#

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
SCAS_A#	T33	SMAA_B0	AB26	SMAA_B7	AG23
SWE_A#	U31	TESTP25	AC26	SMAA_B9	AJ22
SCS_B3#	R27	SMAA_A6	AK28	SMAA_B11	AG22
SBA_B1	AB31	SMAA_B6	AG25	SMAA_B4	AF27
SBA_A1	AB30	TESTP27	AH25	SMAA_B5	AF24
SCS_A1#	P32	TESTP26	AK32	SCKE_A3	AN23
SCS_A2#	T30	SMAA_A3	AJ29	SCKE_A0	AM24
SCS_A3#	T33	SMAA_B3	AH27	SMAA_A11	AN26
SRAS_A#	V31	SMAA_B1	AH29	SMAA_A12	AL24
SBA_A0	W31	TESTP14	AM30	SCKE_A2	AL23
SCS_A0#	T31	SMAA_A4	AK30	SCKE_A1	AL22
SMAA_B2	AG29	TESTP15	AK22	SCKE_B0	AE21
SRAS_B#	U28	TESTP13	AK29	SCKE_B3	AH19
SMAA_B10	AA25	TESTP28	AK23	SCKE_B2	AG20
SBA_B0	V26	TESTP29	AK21	SMAA_B12	AL20
SMAA_A10	AD30	SMAA_A9	AL26	SCKE_B1	AF21
TESTP12	AE30	TESTP16	AF19	SCS_B1#	T29
SMAA_A0	AC29	SMAA_A8	AL27	SCS_B0#	P26
SMAA_A1	AH32	SMAA_A5	AN28	SCS_B2#	T27
SMAA_A2	AG31	SMAA_A7	AM27	SWE_B#	U29
		SMAA_B8	AE23	SCAS_B#	T25
Output	Pins				
RS2#	G11				
DEFER#	D10				

Table 46. XOR Chain 10 (9 Inputs) Output Pins: RS0#, RS1#

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
SECC_A5	AH33	SECC_A1	AF31	SDQS_A8	AF33
SECC_A4	AJ33	SECC_A3	AC33	SECC_A7	AB33
SECC_A2	AE33	SECC_A0	AG30	SECC_A6	AC31
Output	Pins				
RS0#	D12				
RS1#	G10				

Table 47. XOR Chain 11 (9 Inputs) Output Pins: BREQ0#, CPURST#

Signal Name	Ball Number	Signal Name	Ball Number	Signal Name	Ball Number
SECC_B1	AF29	SECC_B7	AB29	SECC_B3	AA27
SECC_B0	AE28	SECC_B6	AD32	SECC_B5	AC25
SDQS_B8	AC28	SECC_B4	AE27	SECC_B2	AB27
Output	Pins				
BREQ0#	H14				
CPURST#	H18				

Table 48. XOR Excluded Pins

Signal Name	Ball Number	Signal Name	Ball Number
BPRI#	C14	TESTP20	AH24
BREQ0#	H14	TESTP21	AB32
CPURST#	H18	TESTP22	T32
DEFER#	D10	TESTP23	L30
GCLKIN	G7	TESTP24	E29
GRCOMP	AC3	TESTP4	AK13
GVREF	AD2	TESTP5	AH16
GVSWING	AC1	TESTP6	AH26
HCLKN	E7	TESTP7	AF28
HCLKP	E8	TESTP8	W30
HDRCOMP	A12	TESTP9	U30
HDSWING	A6	TESTP10	R26
HDVREF0	F15	TESTP11	N26
HDVREF1	A7	SMVREF_A	C32
HTRDY#	J13	SMVREF_B	AN12
HI_RCOMP	AD1	SMXRCOMP	AG13
HI_VREF	AF1	SMXRCOMPVOH	AN13
HI_SWING	AD3	SMXRCOMPVOL	AH13
PWROK	AE9	SMYRCOMP	AD31
RS0#	D12	SMYRCOMPVOH	N32
RS1#	G10	SMYRCOMPVOL	N33
RS2#	G11	RESERVED	A5
RSTIN#	AE8	TESTIN#	AC9
TESTP17	AE13	CI_RCOMP	AF2
TESTP18	AM18	CI_VREF	AG1
TESTP19	AH20	CI_SWING	AE3