MOS INTEGRATED CIRCUIT $\mu PD720100A$

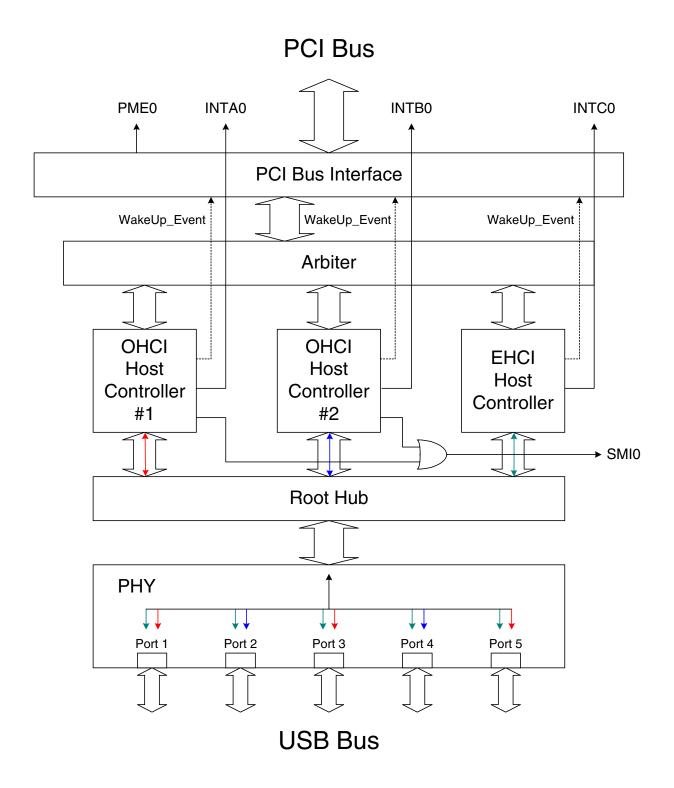
USB 2.0 HOST CONTROLLER

The μ PD720100A complies with the Universal Serial Bus Specification Revision 2.0 and Open Host Controller Interface Specification for full-/low-speed signaling and Intel's Enhanced Host Controller Interface Specification for high-speed signaling and works up to 480 Mbps. The μ PD720100A is integrated three host controller cores with PCI interface and USB 2.0 transceivers into a single chip.

Detailed function descriptions are provided in the following user's manual. Be sure to read the manual before designing. μ PD720100A User's Manual: S15534E

FEATURES

NEL


- Compliant with Universal Serial Bus Specification Revision 2.0 (Data Rate 1.5/12/480 Mbps)
- Compliant with Open Host Controller Interface Specification for USB Rev 1.0a
- Compliant with Enhanced Host Controller Interface Specification for USB Rev 0.95
- PCI multi-function device consists of two OHCI host controller cores for full-/low-speed signaling and one EHCI host controller core for high-speed signaling.
- · Root hub with five (max.) downstream facing ports which are shared by OHCI and EHCI host controller core
- All downstream facing ports can handle high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) transaction.
- Configurable number of downstream facing ports (2 to 5)
- 32-bit 33 MHz host interface compliant to PCI Specification release 2.2.
- Supports PCI Mobile Design Guide Revision 1.1.
- Supports PCI-Bus Power Management Interface Specification release 1.1.
- PCI Bus bus-master access
- System clock is generated by 30 MHz X'tal or 48 MHz clock input.
- Operational registers direct-mapped to PCI memory space
- Legacy support for all downstream facing ports. Legacy support features allow easy migration for motherboard implementation.
- 3.3 V power supply, PCI signal pins have 5 V tolerant circuit.

ORDERING INFORMATION

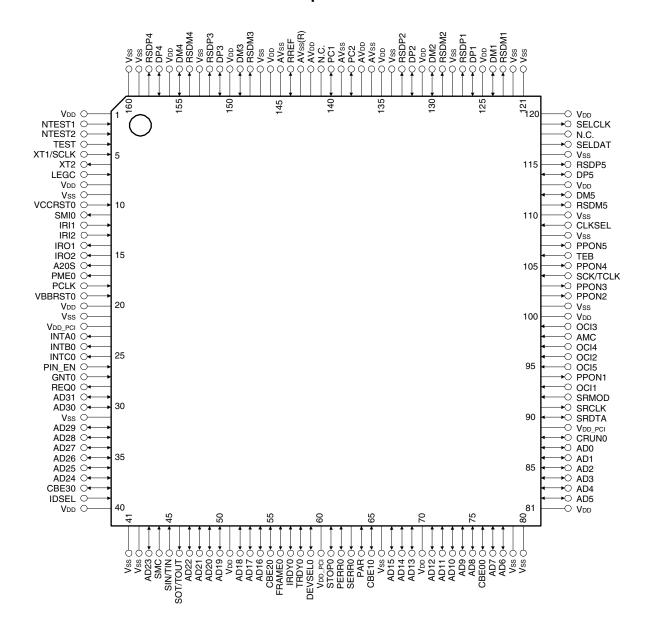
Part Number	Package	Remark
μPD720100AGM-8ED	160-pin plastic LQFP (Fine pitch) (24 \times 24)	
μPD720100AGM-8EY	160-pin plastic LQFP (Fine pitch) (24 \times 24)	
μPD720100AGM-8EY-A	160-pin plastic LQFP (Fine pitch) (24 \times 24)	Lead-free product
μPD720100AS1-2C	176-pin plastic FBGA (15 $ imes$ 15)	
μPD720100AS1-2C-A	176-pin plastic FBGA (15 $ imes$ 15)	Lead-free product

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

BLOCK DIAGRAM

PCI Bus Interface	:handles 32-bits 33 MHz PCI Bus master and target function which comply with PCI specification release 2.2. The number of enabled ports are set by bit in configuration space.
Arbiter	arbitrates among two OHCI Host controller cores and one EHCI Host controller core.
OHCI Host Controller #1	:handles full- (12 Mbps)/low-speed (1.5 Mbps) signaling at port 1, 3, and 5.
OHCI Host Controller #2	:handles full- (12 Mbps)/low-speed (1.5 Mbps) signaling at port 2 and 4.
EHCI Host Controller	:handles high- (480 Mbps) signaling at port 1, 2, 3, 4, and 5.
Root Hub	:handles USB hub function in Host controller and controls connection (routing)
	between Host controller core and port.
PHY	consists of high-speed transceiver, full-/low-speed transceiver, serializer, deserializer,
	etc
INTA0	is the PCI interrupt signal for OHCI Host Controller #1.
INTB0	is the PCI interrupt signal for OHCI Host Controller #2.
INTC0	is the PCI interrupt signal for EHCI Host Controller.
SMI0	is the interrupt signal which is specified by Open Host Controller Interface:
	Specification for USB Rev 1.0a. The SMI signal of each OHCI Host Controller appears
	at this signal.
PME0	is the interrupt signal which is specified by PCI-Bus Power Management Interface
	Specification release 1.1. Wakeup signal of each host controller core appears at this
	signal.

PIN CONFIGURATION


• 160-pin plastic LQFP (Fine pitch) (24 × 24)

μPD720100AGM-8ED

μPD720100AGM-8EY

μPD720100AGM-8EY-A

Top View

Pin No.	Pin Name						
1	Vdd	41	Vss	81	Vdd	121	Vss
2	NTEST1	42	Vss	82	AD5	122	Vss
3	NTEST2	43	AD23	83	AD4	123	RSDM1
4	TEST	44	SMC	84	AD3	124	DM1
5	XT1/SCLK	45	SIN/TIN	85	AD2	125	Vdd
6	XT2	46	SOT/TOUT	86	AD1	126	DP1
7	LEGC	47	AD22	87	AD0	127	RSDP1
8	Vdd	48	AD21	88	CRUN0	128	Vss
9	Vss	49	AD20	89	VDD_PCI	129	RSDM2
10	VCCRST0	50	AD19	90	SRDTA	130	DM2
11	SMI0	51	Vdd	91	SRCLK	131	Vdd
12	IRI1	52	AD18	92	SRMOD	132	DP2
13	IRI2	53	AD17	93	OCI1	133	RSDP2
14	IRO1	54	AD16	94	PPON1	134	Vss
15	IRO2	55	CBE20	95	OCI5	135	Vdd
16	A20S	56	FRAME0	96	OCI2	136	AVss
17	PME0	57	IRDY0	97	OCI4	137	AVDD
18	PCLK	58	TRDY0	98	AMC	138	PC2
19	VBBRST0	59	DEVSEL0	99	OCI3	139	AVss
20	Vdd	60	VDD_PCI	100	Vdd	140	PC1
21	Vss	61	STOP0	101	Vss	141	N.C.
22		62	PERR0	102	PPON2	142	AVDD
23	INTA0	63	SERR0	103	PPON3	143	AVss (R)
24	INTB0	64	PAR	104	SCK/TCLK	144	RREF
25	INTC0	65	CBE10	105	PPON4	145	AVss
26	PIN_EN	66	Vss	106	ТЕВ	146	Vdd
27	GNT0	67	AD15	107	PPON5	147	Vss
28	REQ0	68	AD14	108	Vss	148	RSDM3
29	AD31	69	AD13	109	CLKSEL	149	DM3
30	AD30	70	Vdd	110	Vss	150	Vdd
31	Vss	71	AD12	111	RSDM5	151	DP3
32	AD29	72	AD11	112	DM5	152	RSDP3
33	AD28	73	AD10	113	Vdd	153	Vss
34	AD27	74	AD9	114	DP5	154	RSDM4
35	AD26	75	AD8	115	RSDP5	155	DM4
36	AD25	76	CBE00	116	Vss	156	Vdd
37	AD24	77	AD7	117	SELDAT	157	DP4
38	CBE30	78	AD6	118	N.C.	158	RSDP4
39	IDSEL	79	Vss	119	SELCLK	159	Vss
40	Vdd	80	Vss	120	Vdd	160	Vss

Remark AVss (R) should be used to connect RREF through 1 % precision reference resistor of 9.1 k Ω .

• 176-pin plastic FBGA (15 × 15)

µPD720100AS1-2C

★ μPD720100AS1-2C-A

Bottom View

	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45		17
30	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	46	16
29	88	141	142	143	144	145	146	147	148	149	150	151	152	153	104	47	15
28	87	140					171	172	173					154	105	48	14
27	86	139												155	106	49	13
26	85	138												156	107	50	12
25	84	137												157	108	51	11
24	83	136	170										174	158	109	52	10
23	82	135	169										175	159	110	53	9
22	81	134	168										176	160	111	54	8
21	80	133												161	112	55	7
20	79	132												162	113	56	6
19	78	131												163	114	57	5
18	77	130					167	166	165					164	115	58	4
17	76	129	128	127	126	125	124	123	122	121	120	119	118	117	116	59	3
16	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	2
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		1
U	Т	R	Р	Ν	М	L	K	J	Н	G	F	Е	D	С	В	А	

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	Vss	45	Vdd	89	SELCLK	133	PPON1
2	Vss	46	NTEST1	90	Vss	134	OCI4
3	SMC	47	NANDTEST	91	RSDM1	135	Vss
4	AD20	48	TEST	92	RSDP1	136	SCK/TCLK
5	AD18	49	Vss	93	DM2	137	PPON5
6	CBE20	50	IRI1	94	RSDP2	138	Vss
7	DEVSEL0	51	IRO2	95	AVss	139	Vdd
8	VDD_PCI	52	VBBRST0	96	PC2	140	RSDP5
9	SERR0	53	Vdd	97	AVss	141	Vdd
10	Vss	54	INTA0	98	DM3	142	DP1
11	AD14	55	PIN_EN	99	DP3	143	Vss
12	AD11	56	REQ0	100	RSDM4	144	Vdd
13	CBE00	57	AD29	101	DP4	145	Vss
14	AD6	58	AD25	102	Vss	146	AVDD
15	Vss	59	CBE30	103	Vss	147	N.C.
16	AD5	60	N.C.	104	Vdd	148	RREF
17	N.C.	61	IDSEL	105	NTEST2	149	Vss
18	AD3	62	Vss	106	LEGC	150	Vdd
19		63	AD23	107	VCCRST0	151	Vss
20	SRMOD	64	AD22	108	IRI2	152	DM4
21	OCI5	65	AD19	109	A20S	153	XT1/SCLK
22	OCI3	66	AD17	110	PCLK	154	XT2
23	Vdd	67	FRAME0	111	INTC0	155	Vdd
24	PPON3	68	TRDY0	112	AD31	156	SMI0
25	TEB	69	CBE10	113	Vss	157	IRO1
26	Vss	70	AD13	114	AD27	158	PME0
27	DM5	71	AD12	115	AD24	159	Vss
28	Vss	72	AD9	116	Vdd	160	INTB0
29	N.C.	73	AD7	117	SIN/TIN	161	GNT0
30	N.C.	74	Vss	118	SOT/TOUT	162	AD30
31	Vss	75	Vss	119	AD21	163	AD28
32	N.C.	76	Vdd	120	Vdd	164	AD26
33	DM1	77	AD4	121	AD16	165	Vss
34	RSDM2	78	AD0	122	IRDY0	166	Vdd
35	DP2	79	SRDTA	123	STOP0	167	PERR0
36	Vdd	80	OCI1	124	PAR	168	Vss
37	AVss	81	OCI2	125	AD15	169	Vss
38	PC1	82	AMC	126	Vdd	170	PPON2
39	AVss (R)	83	PPON4	127	AD10	171	Vss
40	Vdd	84	CLKSEL	128	AD8	172	Vss
41	RSDM3	85	RSDM5	129	AD2	173	AVDD
42	RSDP3	86	DP5	130	AD1	174	Vss
43	N.C.(VDD)	87	SELDAT	131	CRUN0	175	Vdd
44	RSDP4	88	Vdd	132	SRCLK	176	VDD_PCI

Remarks 1. Pin 43 can be opened. But this signal is connected to pin 45 in the package. Should not be connected to GND.

2. AVss (R) should be used to connect RREF through 1 % precision reference resistor of 9.1 k $\Omega.$

1. PIN INFORMATION

Pin Name	I/O	Buffer Type	Active	(1/2) Function
Fin Name	1/0	Bullet Type	Level	T unction
AD (31 : 0)	I/O	5 V PCI I/O		PCI "AD [31 : 0]" signal
CBE (3 : 0)0	I/O	5 V PCI I/O		PCI "C/BE [3 : 0]" signal
PAR	I/O	5 V PCI I/O		PCI "PAR" signal
FRAME0	I/O	5 V PCI I/O		PCI "FRAME#" signal
IRDY0	I/O	5 V PCI I/O		PCI "IRDY#" signal
TRDY0	I/O	5 V PCI I/O		PCI "TRDY#" signal
STOP0	I/O	5 V PCI I/O		PCI "STOP#" signal
IDSEL	I	5 V PCI Input		PCI "IDSEL" signal
DEVSEL0	I/O	5 V PCI I/O		PCI "DEVSEL#" signal
REQ0	0	5 V PCI Output		PCI "REQ#" signal
GNT0	I	5 V PCI Input		PCI "GNT#" signal
PERR0	I/O	5 V PCI I/O		PCI "PERR#" signal
SERR0	0	5 V PCI N-ch Open Drain		PCI "SERR#" signal
INTA0	0	5 V PCI N-ch Open Drain	Low	PCI "INTA#" signal
INTB0	0	5 V PCI N-ch Open Drain	Low	PCI "INTB#" signal
INTC0	0	5 V PCI N-ch Open Drain	Low	PCI "INTC#" signal
PCLK	I	5 V PCI Input		PCI "CLK" signal
VBBRST0	I	5 V PCI Input	Low	Hardware Reset for Chip
CRUN0	I/O	5 V PCI I/O		PCI "CLKRUN#" signal
PME0	0	5 V PCI N-ch Open Drain	Low	PCI "PME#" signal
VCCRST0	I	5 V tolerant Input	Low	RESET for Power Management
SMI0	0	5 V tolerant N-ch Open Drain	Low	System management interrupt output
PIN_EN	I	5 V tolerant Input	High	PCI Interface enable
XT1/SCLK	I	Input		System clock input or Oscillator In
XT2	0	Output		Oscillator Out
DP (5 : 1)	I/O	USB high speed D+I/O		USB's high speed D+ signal
DM (5 : 1)	I/O	USB high speed D–I/O		USB's high speed D– signal
RSDP (5 : 1)	0	USB full speed D+ O		USB's full speed D+ signal
RSDM (5 : 1)	0	USB full speed D– O		USB's full speed D- signal
OCI (5 : 1)	I (I/O)	5 V tolerant Input	Low	USB Root Hub Port's overcurrent status input
PPON (5 : 1)	O (I/O)	5 V tolerant Output	High	USB Root Hub Port's power supply control output
LEGC	I (I/O)	Input	High	Legacy support switch
IRI1	I (I/O)	5 V tolerant Input	High	INT input from keyboard
IRI2	I (I/O)	5 V tolerant Input	High	INT input from mouse
IRO1	0	5 V tolerant Output	High	INT output from keyboard
IRO2	0	5 V tolerant Output	High	INT output from mouse
A20S	0	5 V tolerant 3-state Output		GateA20 State output

		1		(2/2
Pin Name	I/O	Buffer Type	Active Level	Function
RREF	А	Analog		Reference resistor
PC1	А	Analog		Capacitor for PLL
PC2	А	Analog		Capacitor for PLL
NTEST(2:1)	I	Input with 12 k Ω Pull down R	High	Test pin
SMC	I	Input with 50 k Ω Pull down R	High	Scan mode control
SIN/TIN	I	Input with 50 k Ω Pull down R		Scan input or RAM BIST input
SOT/TOUT	0	Output		Scan output or RAM BIST output
TEB	I	Input with 50 k Ω Pull down R	High	BIST enable
AMC	I	Input with 50 k Ω Pull down R	High	ATG mode control
SCK/TCLK	I	Input with 50 k Ω Pull down R		Scan clock or RAM BIST clock
CLKSEL	I	Input with 50 k Ω Pull down R		Clock select signal
TEST	I	Input with 50 k Ω Pull down R	High	Test Control
NANDTEST	I	Input with 50 k Ω Pull down R	High	NAND Tree Test enable
SELDAT	0	Output		Test signal
SELCLK	0	Output		Test signal
SRCLK	0	Output		Serial ROM Clock Out
SRDTA	I/O	I/O		Serial ROM Data
SRMOD	I	Input with 50 k Ω Pull down R	High	Serial ROM Input Enable
AVDD				VDD for Analog circuit
VDD				VDD
VDD_PCI				5 V (5 V PCI) or 3.3 V (3.3 V PCI)
AVss				Vss for Analog circuit
Vss				Vss
N.C.				Not connect

Remarks 1. "5 V tolerant" means that the buffer is 3 V buffer with 5 V tolerant circuit.

- "5 V PCI" indicates a PCI buffer, which complies with the 3 V PCI standard, has a 5 V tolerant circuit. It does not indicate a buffer that fully complies with 5 V PCI standard. However, this function can be used for evaluating the operation of a device on a 5V add-in card.
- **3.** The signal marked as "(I/O)" in the above table operates as I/O signals during testing. However, they do not need to be considered in normal use.

2. ELECTRICAL SPECIFICATIONS

2.1 Buffer List

- 3 V input buffer with Pull down resister
 NTEST1, NTEST2, TEST, SMC, SIN/TIN, SRMOD, AMC, SCK/TCLK, CLKSEL, TEB
- 3 V output buffer

SOT/TOUT (IoL = 9 mA), SRCLK (IoL = 3 mA)

• 3 V bi-directional buffer

LEGC (IoL = 9 mA), SRDTA (IoL = 3 mA)

• 3 V Oscillator interface

XT1/SCLK, XT2

• 5 V input buffer

VCCRST0, PIN_EN

- 5 V IoL = 12 mA N-ch Open Drain buffer
 SMI0, PME0, INTA0, INTB0, INTCO, SERRO
- 5 V IoL = 6 mA 3-state Output buffer A20S
- 5 V IoL = 12 mA 3-state Output buffer
 - IRO1, IRO2
- 5 V PCI Input buffer with enable (OR type)
 - PCLK, VBBRST0, GNT0, IDSEL
- 5 V PCI IoL = 12 mA 3-state Output buffer
 - REQ0
- ★ 5 V PCI IoL = 9 mA bi-directional buffer with input enable (OR-type)

AD(31:0), CBE(3:0)0, PAR, FRAME0, IRDY0, TRDY0, STOP0, DEVSEL0, PERR0, CRUN0, IRI(1:2), PPON(1:5), OCI(1:5)

USB interface

DP(1:5), DM(1:5), RSDP(1:5), RSDM(1:5), PC1, PC2, RREF, SELDAT, SELCLK

Above, "5 V" refers to a 3-V buffer with 5-V tolerant circuit. Therefore, it is possible to have a 5-V connection for an external bus, but the output level will be only up to 3 V, which is the VDD voltage. Similarly, "5 V PCI" above refers to a PCI buffer that has a 5-V tolerant circuit, which meets the 3-V PCI standard; it does not refer to a PCI buffer that meets the 5-V PCI standard.

2.2 Terminology

Parameter	Symbol	Meaning
Power supply voltage	Vdd	Indicates voltage range within which damage or reduced reliability will not result when power is applied to a V_{DD} pin.
Input voltage	Vı	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an input pin.
Output voltage	Vo	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an output pin.
Operating temperature	TA	Indicates the ambient temperature range for normal logic operations.
Storage temperature	T _{stg}	Indicates the element temperature range within which damage or reduced reliability will not result while no voltage or current are applied to the device.

Terms Used in Absolute Maximum Ratings

Terms Used in Recommended Operating Range

Parameter	Symbol	Meaning
Power supply voltage	Vdd	Indicates the voltage range for normal logic operations occur when $V_{\text{SS}} = 0V$.
High-level input voltage	Vін	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the high level states for normal operation of the input buffer.
		* If a voltage that is equal to or greater than the "MIN." value is applied, the input voltage is guaranteed as high level voltage.
Low-level input voltage VIL		Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the low level states for normal operation of the input buffer.
		* If a voltage that is equal to or lesser than the "MAX." value is applied, the input voltage is guaranteed as low level voltage.

Terms Used in DC Characteristics

Parameter	Symbol	Meaning
Off-state output leakage current	loz	Indicates the current that flows from the power supply pins when the rated power supply voltage is applied when a 3-state output has high impedance.
Output short circuit current	los	Indicates the current that flows when the output pin is shorted (to GND pins) when output is at high-level.
Input leakage current	h	Indicates the current that flows when the input voltage is supplied to the input pin.
Low-level output current	lo∟	Indicates the current that flows to the output pins when the rated low-level output voltage is being applied.
High-level output current	Іон	Indicates the current that flows from the output pins when the rated high-level output voltage is being applied.

2.3 Electrical Specifications

Absolute Maximum Ratings

	Parameter	Symbol	Condition	Rating	Unit
	Power supply voltage	VDD		-0.5 to +4.6	V
*		AVDD		-0.5 to +4.6	V
★		VDD_PCI		–0.5 to +6.0	V
	Input voltage, 5 V buffer	Vı	$\begin{array}{l} 3.0 \ V \leq V_{\text{DD}} \leq 3.6 \ V \\ V_{\text{I}} < V_{\text{DD}} + 3.0 \ V \end{array} \end{array} \label{eq:VD}$	-0.5 to +6.6	V
	Input voltage, 3.3 V buffer	Vı	$\begin{array}{l} 3.0 \ V \leq V_{DD} \leq 3.6 \ V \\ V_{I} < V_{DD} + 0.5 \ V \end{array}$	-0.5 to +4.6	V
	Output voltage, 5 V buffer	Vo	$\begin{array}{l} 3.0 \ V \leq V_{\text{DD}} \leq 3.6 \ V \\ V_{\text{O}} < V_{\text{DD}} + 3.0 \ V \end{array}$	-0.5 to +6.6	V
	Output voltage, 3.3 V buffer	Vo	$\begin{array}{l} 3.0 \ V \leq V_{\text{DD}} \leq 3.6 \ V \\ V_{\text{O}} < V_{\text{DD}} + 0.5 \ V \end{array} \end{array} \label{eq:VD}$	-0.5 to +4.6	V
	Operating temperature	TA		0 to +70	°C
	Storage temperature	Tstg		-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameters. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	Operating voltage	Vdd		3.0	3.3	3.6	V
*		AVDD		3.0	3.3	3.6	V
*		VDD_PCI	In 3.3 V PCI	3.0	3.3	3.6	V
			In 5 V PCI	4.75	5.0	5.25	V
	High-level input voltage	VIH					
	3.3 V High-level input voltage			2.0		Vdd	V
	5.0 V High-level input voltage			2.0		5.5	V
	Low-level input voltage	VIL					
	3.3 V Low-level input voltage			0		0.8	V
	5.0 V Low-level input voltage			0		0.8	V

Recommended Operating Ranges

DC Characteristics (VDD = 3.0 to 3.6 V, TA = 0 to +70°C)

Control Pin Block

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Off-state output current	loz	Vo = VDD or Vss		±10	μA
Output short circuit current	los ^{Note}			-250	mA
Low-level output current	lo∟				
3.3 V Low-level output current		Vol = 0.4 V	9.0		mA
3.3 V Low-level output current		Vol = 0.4 V	3.0		mA
5.0 V Low-level output current		Vol = 0.4 V	12.0		mA
5.0 V Low-level output current		Vol = 0.4 V	6.0		mA
High-level output current	Іон				
3.3 V High-level output current		Vон = 2.4 V	-9.0		mA
3.3 V High-level output current		Vон = 2.4 V	-3.0		mA
5.0 V High-level output current		Vон = 2.4 V	-2.0		mA
5.0 V High-level output current		Vон = 2.4 V	-2.0		mA
Input leakage current	h				
3.3 V buffer		$V_I = V_{DD} \text{ or } V_{SS}$		±10	μA
3.3 V buffer with 50 k Ω PD		$V_{I} = V_{DD}$		191	μA
5.0 V buffer		VI = VDD or Vss		±10	μA

Note The output short circuit time is one second or less and is only for one pin on the LSI.

PCI Interface Block

Parameter	Symbol	Condition	MIN.	MAX.	Unit
High-level input voltage	Vih		2.0	5.25	V
Low-level input voltage	Vil		0	0.8	V
Low-level output current	lol	Vol = 0.4 V	12.0		mA
High-level output current	Іон	Vон = 2.4 V	-2.0		mA
Input high leakage current	lin	Vin = 2.7		70	μA
Input low leakage current	la	V _{in} = 0.5		-70	μA
PME0 leakage current	loff	Vo < 3.6 V Vcc off or floating		1	μA

USB Interface Block

Parameter	Symbol	Conditions	MIN	MAX	Unit
Serial Resistor between DP (DM) and RSDP (RSDM).	Rs		35.64	36.36	Ω
Output pin impedance	ZHSDRV	Includes Rs resistor	40.5	49.5	Ω
Input Levels for Low-/full-speed:					
High-level input voltage (drive)	VIH		2.0		V
High-level input voltage (floating)	VIHZ		2.7	3.6	
Low-level input voltage	VIL			0.8	V
Differential input sensitivity	VDI	(D+) – (D–)	0.2		V
Differential Common mode Range	Vсм	Includes VDI range	0.8	2.5	V
Output Levels for Low-/full-speed:					
High-level output voltage	Vон	R∟ of 14.25 kΩ to GND	2.8	3.6	V
Low-level output voltage	Vol	R∟ of 1.425 kΩ to 3.6 V	0.0	0.3	V
SE1	Vose1		0.8		V
Output signal crossover point voltage	VCRS		1.3	2.0	V
Input Levels for High-speed:		·			
High-speed squelch detection threshold (differential signal)	Vhssq		100	150	mV
High-speed disconnect detection threshold (differential signal)	VHSDSC		525	625	mV
High-speed data signaling common mode voltage range	Vнsсм		-50	+500	mV
High-speed differential input signaling level	See Figure	e 2-4.		·	
Output Levels for High-speed:					
High-speed idle state	VHSOI		-10.0	+10	mV
High-speed data signaling high	Vнsoн		360	440	mV
High-speed data signaling low	VHSOL		-10.0	+10	mV
Chirp J level (different signal)	VCHIRPJ		700	1100	mV
Chirp K level (different signal)	VCHIRPK		-900	-500	mV

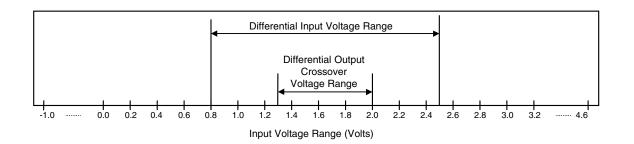


Figure 2-1. Differential Input Sensitivity Range for Low-/full-speed

Figure 2-2. Full-speed Buffer Von/Ion Characteristics for High-speed Capable Transceiver

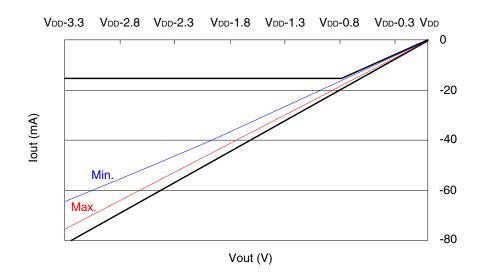
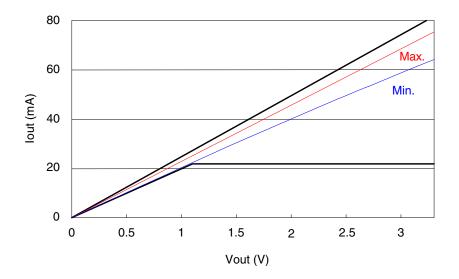



Figure 2-3. Full-speed Buffer VoL/IoL Characteristics for High-speed Capable Transceiver

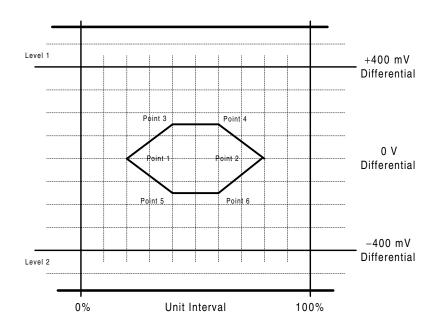
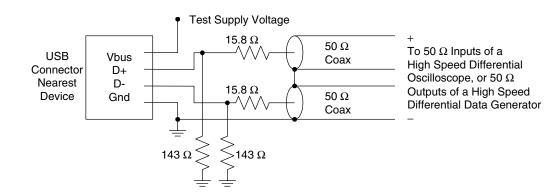



Figure 2-4. Receiver Sensitivity for Transceiver at DP/DM

Pin Capacitance

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Input capacitance	Cı	$V_{DD} = 0 V$, $T_A = 25^{\circ}C$	6	8	pF
Output capacitance	Co	fc = 1 MHz	10	12	pF
I/O capacitance	Сю	Unmeasured pins	10	12	pF
PCI input pin capacitance	Cin	returned to 0 V		8	pF
PCI clock input pin capacitance	Cclk		6	8	pF
PCI IDSEL input pin capacitance	CIDSEL			8	pF

╈

4

★

Power Consumption

Parameter	Symbol	Condition	TYP.	Unit
Power Consumption	Pwdo-o	The power consumption under the state without suspend. Device state = D0, All the ports does not connect to any function. ^{Note 1}	168.0	mA
	Pwd0-2	The power consumption under the state without suspend. Device state = D0, The number of active ports is 2. Note 2		
		Full- or low-speed device(s) is (are) on the port. High-speed device(s) is (are) on the port.	186.2 301.6	mA mA
	Pwdo-3	The power consumption under the state without suspend. Device state = D0, The number of active ports is 3. Note 2		
		Full- or low-speed device(s) is (are) on the port. High-speed device(s) is (are) on the port.	195.3 368.4	mA mA
	Pwd0-4	The power consumption under the state without suspend. Device state = D0, The number of active ports is 4. Note 2		
		Full- or low-speed device(s) is (are) on the port. High-speed device(s) is (are) on the port.	204.4 435.2	mA mA
	Pwdo-5	The power consumption under the state without suspend. Device state = D0, The number of active ports is 5. Note 2		
		Full- or low-speed device(s) is (are) on the port. High-speed device(s) is (are) on the port.	213.5 502.0	mA mA
	Pwdo_s	The power consumption under suspend state. Device state = D0, The internal clock is stopped. Note 3	136.2	mA
	Pwdo_c	The power consumption under suspend state during PCI clock is stopped by CRUN0. Device state = D0, The internal clock is stopped. Note 3	113.0	mA
	PwD1	Device state = D1, Analog PLL output is stopped. Note 3, 4	24.7	mA
	Pwd2	Device state = D2, Analog PLL output is stopped. Note 3, 4	10.9	mA
	Рwdзн	Device state = D3hot, PIN_EN = High Analog PLL output is stopped. Note 3,4	10.9	mA
	Pwd3c	Device state = D3 _{cold} , PIN_EN = Low Oscillator output is stopped. ^{Note 3, 4, 5}	650	μA

Notes1. When any device is not connected to all the ports of HC, the power consumption for HC does not depend on the number of active ports.

- 2. The number of active ports is set by the value of Port No field in PCI configuration space EXT register.
- For the condition of clock stop, see μPD720100A User's Manual 7.3 Control for System Clock Operation.
- When the device state = D1, PCI clock is defined as it is running. When the device state = D2 or D3, PCI clock is defined as it is stopped.
- 5. If 48 MHz oscillator clock-in is used, power consumption for oscillator block + HC chip will be more than 15 mA.

System Clock Ratings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock frequency	fс∟к	X'tal	–500 ppm	30	+500 ppm	MHz
		Oscillator block	–500 ppm	48	+500 ppm	MHz
Clock Duty cycle	t duty		40	50	60	%

Remarks 1. Recommended accuracy of clock frequency is \pm 100 ppm.

 Required accuracy of X'tal or Oscillator block is including initial frequency accuracy, the spread of X'tal capacitor loading, supply voltage, temperature, and aging, etc.

AC Characteristics (VDD = 3.0 to 3.6 V, TA = 0 to $+70^{\circ}$ C)

PCI Interface Block

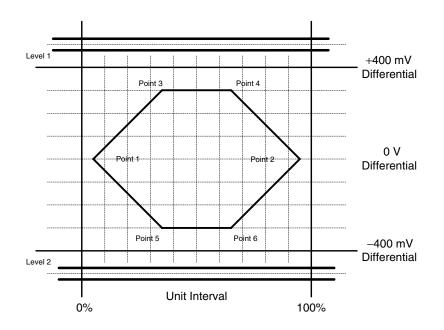
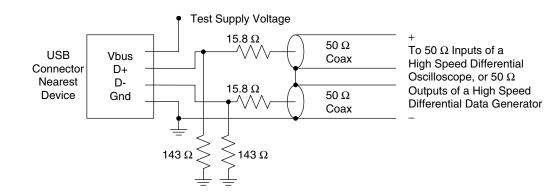
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
PCI clock cycle time	tcyc		30		ns
PCI clock pulse, high-level width	thigh		11		ns
PCI clock pulse, low-level width	tiow		11		ns
PCI clock, rise slew rate	Scr	0.2 VDD to 0.6 VDD	1	4	V/ns
PCI clock, fall slew rate	Scf	0.2 VDD to 0.6 VDD	1	4	V/ns
PCI reset active time (vs. power supply stability)	trst		1		ms
PCI reset active time (vs. CLK Start)	trst-clk		100		μs
Output float delay time (vs. RST0 \downarrow)	trst-off			40	ns
PCI reset rise slew rate	Srr		50		mV/ns
PCI bus signal output time (vs. PCLK \uparrow)	tval		2	11	ns
PCI point-to-point signal output time (vs. PCLK↑)	t _{val} (ptp)	REQ0	2	12	ns
Output delay time (vs. PCLK [↑])	ton		2		ns
Output float delay time (vs. PCLK [↑])	toff			28	ns
Input setup time (vs. PCLK [↑])	t _{su}		7		ns
Point-to-point input setup time (vs. PCLK [↑])	t _{su} (ptp)	GNT0	10		ns
Input hold time	th		0		ns

USB Interface Block

Parameter	Symbol	Conditions	MIN.	MAX.	Uni
Low Source Electrical Characteristics					
Rise time (10% - 90%)	tlr.	$C_{L} = 200 \text{ pF} - 600 \text{ pF},$ $R_{S} = 36 \Omega$	75	300	ns
Fall time (90% - 10%)	t∟⊧	$C_{L} = 200 \text{ pF} - 600 \text{ pF},$ $R_{S} = 36 \Omega$	75	300	ns
Differential Rise and Fall Time matching	t lrfm	(tlr/tlf)	80	125	%
Low-speed Data Rate	t LDRATHS	Average bit rate	1.49925	1.50075	Mbp
Source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	todji todje		-25 -14	+25 +14	ns ns
Source Jitter for Differential Transition to SE0 transition	t LDEOP		-40	+100	ns
Receiver Jitter: To Next Transition For Paired Transitions	tujr1 tujr2		-152 -200	+152 +200	ns ns
Source SE0 interval of EOP	t leopt		1.25	1.50	μs
Receiver SE0 interval of EOP	t leopr		670		ns
Width of SE0 interval during differential transition	t⊧st			210	ns
Full-speed Source Electrical Characterist	ics	1	1	1	
Rise time (10% - 90%)	tFR	CL = 50 pF, Rs = 36 Ω	4	20	ns
Fall time (90% - 10%)	tff	CL = 50 pF, Rs = 36 Ω	4	20	ns
Differential Rise and Fall Time matching	t FRFM	(tfr/tff)	90	111.11	%
Full-speed Data Rate	t FDRATHS	Average bit rate	11.9940	12.0060	Mbp
Frame Interval	t FRAME		0.9995	1.0005	ms
Consecutive Frame Interval Jitter	t RFI	No clock adjustment		42	ns
Source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	toji toj2		-3.5 -4.0	+3.5 +4.0	ns
Source Jitter for Differential Transition to SE0 transition	t FDEOP		-2	+5	ns
Receiver Jitter: To Next Transition For Paired Transitions	tJR1 tJR2		-18.5 -9	+18.5 +9	ns ns
Source SE0 interval of EOP	t feopt		160	175	ns
Receiver SE0 interval of EOP	t feopr		82		ns

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
High-speed Source Electrical Characterist	ics				
Rise time (10% - 90%)	thsr		500		ps
Fall time (90% - 10%)	thsf		500		ps
Driver waveform	See Figure	2-6.			
High-speed Data Rate	t HSDRAT		479.760	480.240	Mbps
Microframe Interval	thsfram		124.9375	125.0625	μs
Consecutive Microframe Interval Difference	thsrfi			4 high-speed	Bit times
Data source jitter	See Figure	2-6.	·		•
Receiver jitter tolerance	See Figure	2-4.			
Hub event Timings					
Time to detect a downstream facing port connect event	tdcnn		2.5	2000	μs
Time to detect a disconnect event at a downstream facing port:	todis		2.0	2.5	μs
Duration of driving resume to a downstream port	t drsmdn	Nominal	20		ms
Time from detecting downstream resume to rebroadcast.	tursm			1.0	ms
Inter-packet Delay for packets traveling in same direction for high-speed	thsipdsd		88		Bit times
Inter-packet Delay for packets traveling in opposite direction for high-speed	thsipdod		8		Bit times
Inter-packet delay for root hub response for high-speed	thsrspipd1			192	Bit times
Time for which a Chirp J or Chirp K must be continuously detected during Reset handshake	tri∟⊤		2.5		μs
Time after end of device Chirp K by which hub must start driving first Chirp K	twтdcн			100	μs
Time for which each individual Chirp J or Chirp K in the chirp sequence is driven downstream during reset	tоснвіт		40	60	μs
Time before end of reset by which a hub must end its downstream chirp sequence	tdCHSE0		100	500	μs

(2/2)

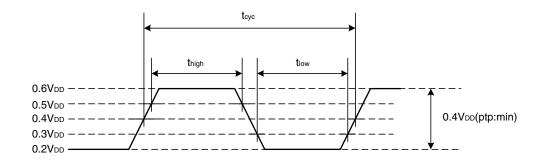
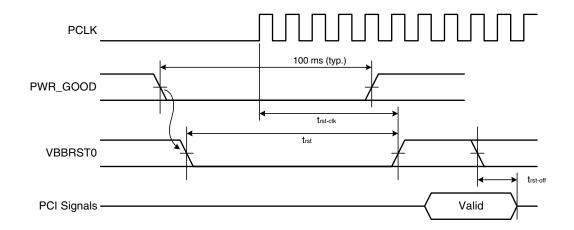
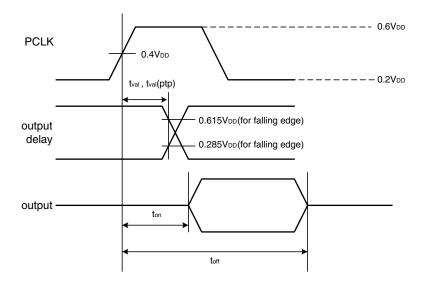
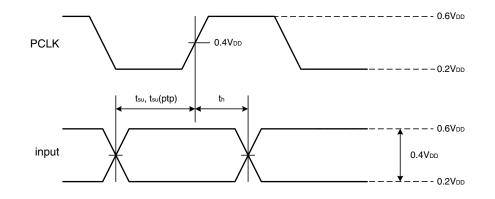

Figure 2-6. Transmit Waveform for Transceiver at DP/DM

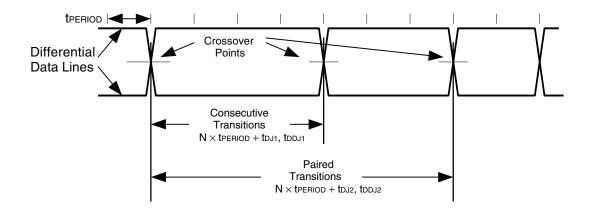
Figure 2-7. Transmitter Measurement Fixtures

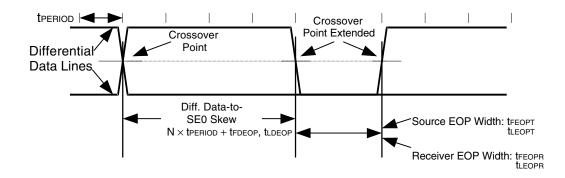


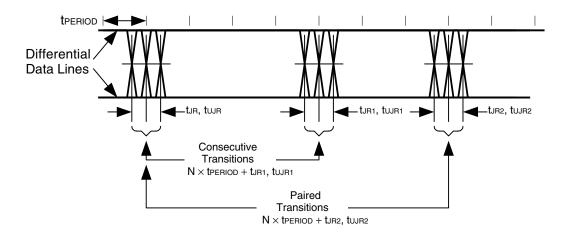
Timing Diagram

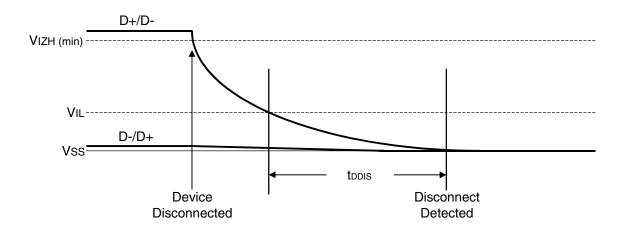

PCI Clock

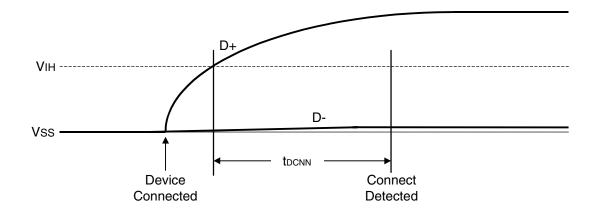

PCI Reset

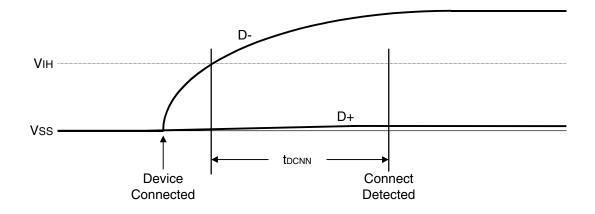

PCI Output Timing Measurement Condition


PCI Input Timing Measurement Condition

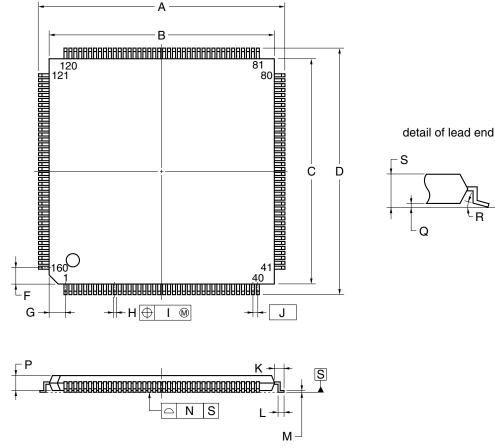

USB Differential Data Jitter for Low-/full-speed


USB Differential-to-EOP Transition Skew and EOP Width for Low-/full-speed


USB Receiver Jitter Tolerance for Low-/full-speed


Low-/full-speed Disconnect Detection

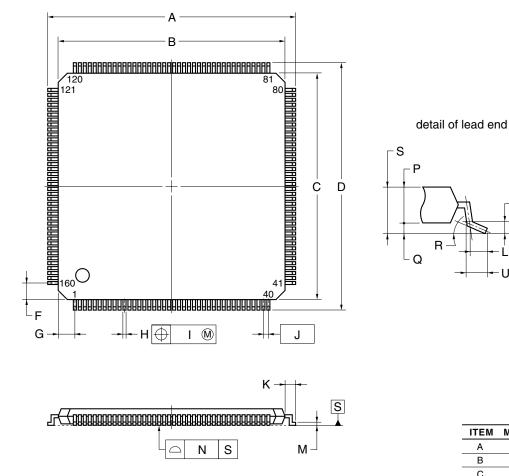
Full-/high-speed Device Connect Detection



Low-speed Device Connect Detection

3. PACKAGE DRAWING

160-PIN PLASTIC LQFP (FINE PITCH) (24x24)

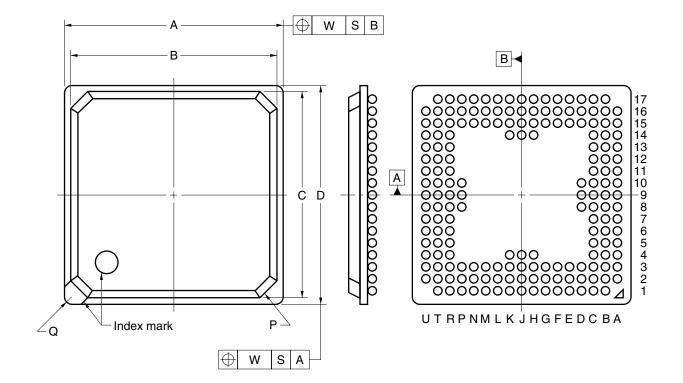


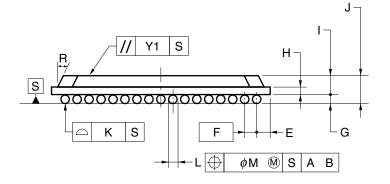
NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	26.0±0.2
В	24.0±0.2
С	24.0±0.2
D	26.0±0.2
F	2.25
G	2.25
Н	$0.22\substack{+0.05\\-0.04}$
I	0.10
J	0.5 (T.P.)
К	1.0±0.2
L	0.5±0.2
М	$0.145^{+0.055}_{-0.045}$
Ν	0.10
Р	1.4±0.1
Q	0.125±0.075
R	$3^{\circ}^{+7^{\circ}}_{-3^{\circ}}$
S	1.7 MAX.
:	S160GM-50-8ED-3

160-PIN PLASTIC LQFP (FINE PITCH) (24x24)


NOTE


Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	26.0±0.2
В	24.0±0.2
C	24.0±0.2
D	26.0±0.2
F	2.25
G	2.25
н	$0.22\substack{+0.05 \\ -0.04}$
I	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17\substack{+0.03 \\ -0.07}$
Ν	0.08
Р	1.4±0.05
Q	0.10±0.05
R	$3^{\circ}^{+4^{\circ}}_{-3^{\circ}}$
S	1.6 MAX.
Т	0.25 (T.P.)
U	0.16±0.15
	P160GM-50-8EY

Т

176-PIN PLASTIC FBGA (15x15)

ITEM	MILLIMETERS
А	15.00±0.10
В	14.40
С	14.40
D	15.00±0.10
Е	1.10
F	0.8 (T.P.)
G	0.35±0.1
н	0.36
I	1.16
J	1.51±0.15
К	0.10
L	$\phi 0.50^{+0.05}_{-0.10}$
М	0.08
Р	C1.0
Q	R0.3
R	25°
W	0.20
Y1	0.20
	S176S1-80-2C-1

4. RECOMMENDED SOLDERING CONDITIONS

The μ PD720100A should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

μ PD720100AGM-8ED: 160-pin plastic LQFP (Fine pitch) (24 × 24)

μ PD720100AGM-8EY: 160-pin plastic LQFP (Fine pitch) (24 × 24)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),	IR35-103-3
	Count: Three times or less	
	Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

★ µPD720100AGM-8EY-A: 160-pin plastic LQFP (Fine pitch) (24 × 24) Lead-free product

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher),	IR60-107-3
	Count: Three times or less	
	Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

µPD720100AS1-2C: 176-pin plastic FBGA (15 × 15)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),	IR35-107-3
	Count: Three times or less	
	Exposure limit: 7 days ^{Note} (after that, prebake at $125^{\circ}C$ for 10 hours)	

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

★ μ PD720100AS1-2C-A: 176-pin plastic FBGA (15 × 15) Lead-free product

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher),	IR60-107-3
	Count: Three times or less	
	Exposure limit: 7 days ^{Note} (after that, prebake at $125^{\circ}C$ for 10 hours)	

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

② HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

USB logo is a trademark of USB Implementers Forum, Inc.

- The information in this document is current as of Macrh, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).