Features

- 650 nm and 780 nm Wavelengths Supported
- 150 MHz Data Channel Bandwidth
- Fast Settling Time
- 4 Configurable Gain Steps
- 12 Photo Diodes
- Low Offset Voltage
- Power-down Mode
- Pb-free Optical 16-pin Package

Applications

- DVD +RW with CD-RW Capability
- DVD -RW with CD-RW Capability
- DVD-RAM with CD-RW Capability
- DVD 18x Application
- Recordable Optical Data Storage Devices

1. Description

The ATR0874 is a Photo Detector Integrated Circuit (PDIC) for operation in high speed DVD applications like DVD-RAM and DVD+/-RW at a wavelength of 650 nm and CD-RW at a wavelength of 780 nm . It includes 10 channels with 4 different gain

10-channel High Speed Photo Detector IC for DVD/CD steps. The four channels A, B, C, D are high speed channels whereas the channels E1G1, E2G2, F1H1, F2H2 are high gain channels at average speed for tracking control, sector information etc.. The remaining two channels RF+ and RF- are RF paraphase outputs. Channels A to D are summed together at the RF outputs.

Setting of the gain and entering/exiting sleep mode is controlled using the two tri-state inputs SW1 and SW2.
All channels are set to tri-state during sleep mode.
Due to its small package size the ATR0874 is especially suited for application with low height requirements like SLIM and UltraSLIM drives.

Figure 1-1. Block Diagram

2. Pin Configuration

Figure 2-1. Pinning QFN16L

Table 2-1. Pin Description

Pin	Symbol	Type	Function
1	VREF	Analog	Reference voltage
2	GND	Supply	Ground
3	F2H2	Analog	Output channel F2H2
4	F1H1	Analog	Output channel F1H1
5	E1G1	Analog	Output channel E1G1
6	E2G2	Analog	Output channel E2G2
7	SW1	Tri-state	Gain switch
8	SW2	Tri-state	Gain switch
9	RF-	Analog	Output RF-
10	RF+	Analog	Output RF+
11	A	Analog	Output channel A
12	D	Analog	Output channel D
13	C	Analog	Output channel C
14	B	Analog	Output channel B
15	GND	Supply	Ground
16	VCC	Supply	Supply voltage

3. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	VCC	-0.5 to +6.0	V
Input voltage at any input	Vin	-0.5 to VCC -0.5	V
Storage temperature	Tstg	-40 to +100	${ }^{\circ} \mathrm{C}$
Soldering temperature COB package	Tsol	235	${ }^{\circ} \mathrm{C}$
Soldering temperature QFN_Open package	Tsol	260	${ }^{\circ} \mathrm{C}$

4. Recommended Operating Conditions

Parameters	Symbol	Value	Unit
Supply voltage	VCC	4.5 to 5.5	V
Reference voltage	$\mathrm{V}_{\text {REF }}$	1.5 to 2.3	V
Operating temperature range	$\mathrm{T}_{\text {amb }}$	0 to +80	${ }^{\circ} \mathrm{C}$

5. Electrical Characteristics: General

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=1.85 \mathrm{~V}$
Output load: $\mathrm{R}_{\text {load }}=10 \mathrm{k} \Omega, \mathrm{C}_{\text {load }}=15 \mathrm{pF}$ (max. 20 pF)

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
1	DC Specifications, Power Supply								
1.1	Supply current		16	I_{CC}		36	46	mA	A
1.2	Current V REF		1	$\mathrm{I}_{\text {VREF }}$		2.5		mA	A
1.3	Output voltage Center channels, Satellite channels	A to D, E1G1 to F2H2	$\begin{gathered} 3-6,9 \\ 10-14 \end{gathered}$	$V_{\text {out }}$	1.95			Vpp	C
1.4	Max output RF+	$\mathrm{V}_{\text {RF+ }}-\mathrm{V}_{\text {REF }}$	1,10	$\mathrm{V}_{\text {maxRF }}$	1.1			Vpp	C
1.5	Max output RF-	$\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {RF- }}$	1, 9	$\mathrm{V}_{\text {minRF }}$	1.1			Vpp	C
1.6	Max output RF-	$\begin{aligned} & \mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {RF- }}, \\ & \mathrm{V}_{\text {REF }}=1.5 \mathrm{~V} \end{aligned}$	1,9	$\mathrm{V}_{\text {minRF }}$	0.6			Vpp	C
1.7	Max voltage	A to D, E1G1 to F2H2	$\begin{gathered} 3-6,9 \\ 10-14 \end{gathered}$	$V_{\text {outmax }}$	3.8			V	C
1.8	Power down mode		16	I PDown			2	mA	A
1.9	Power supply rejection ratio	Low freq. (10 kHz), application: $\mathrm{L}_{\mathrm{VCC}}=100 \mathrm{nH}$, $\mathrm{C}_{\mathrm{VCC}}=100 \mathrm{nF}$ at pin 16	$\begin{gathered} 3-6,9, \\ 10, \\ 11-14 \end{gathered}$	PSRR	-40			dB	C
1.10	Power supply rejection ratio	High freq. (100 kHz), application: $\mathrm{L}_{\mathrm{VCC}}=100 \mathrm{nH}$, $\mathrm{C}_{\mathrm{VCC}}=100 \mathrm{nF}$ at pin 16	$\begin{gathered} 3-6,9, \\ 10, \\ 11-14 \end{gathered}$	PSRR	-20			dB	C

[^0]
5. Electrical Characteristics: General (Continued)

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=1.85 \mathrm{~V}$
Output load: $\mathrm{R}_{\text {load }}=10 \mathrm{k} \Omega, \mathrm{C}_{\text {load }}=15 \mathrm{pF}$ (max. 20 pF)

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
2	Output Offset Voltage (Reference to Output Voltage, 1.5V \leq VREF $\leq 2.3 \mathrm{~V}$)								
2.1	Output offset	$\begin{aligned} & V_{\text {REF }}-V_{A}, V_{\text {REF }}-V_{B}, \\ & V_{\text {REF }}-V_{c}, V_{\text {REF }}-V_{D} \end{aligned}$	1,11-14	$\mathrm{V}_{\text {OFF1 }}$	-25	0	+25	mV	C
2.2	Output offset	$\begin{aligned} & \mathrm{V}_{\text {REF }}-\mathrm{V}_{\mathrm{E} 1 \mathrm{G} 1}, \\ & \mathrm{~V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{E} 2 \mathrm{G} 2}, \\ & \mathrm{~V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{F1H} 1}, \\ & \mathrm{~V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{F} 2 \mathrm{H} 2} \end{aligned}$	1, 3-6	$\mathrm{V}_{\text {OFF2 }}$	-25	0	+25	mV	C
2.3	Output offset	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{RF}}, \\ & \mathrm{~V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{RF}} \end{aligned}$	1, 9, 10	$\mathrm{V}_{\text {OFF2 }}$	-25	0	+25	mV	C
2.4	Offset drift			$\mathrm{dV}_{\text {OFF }} / \mathrm{dT}$	-30	+10	+30	$\mu \mathrm{V} /{ }^{\circ}$	C
3	Sensitivity								
	Gain = Read High								
3.1	Center channels	A to D	11-14	$\mathrm{S}_{\mathrm{A} 40}$ to $\mathrm{S}_{\mathrm{D} 40}$	7.68	9.6	12.0	$\mathrm{mV} / \mu \mathrm{W}$	A
3.2	RF channels (differential)	RF+ - RF-	9,10	$\mathrm{S}_{\text {RF40 }}$	7.68	9.6	12.0	$\mathrm{mV} / \mu \mathrm{W}$	A
3.3	Satellite channels	E1G1 to F2H2	$\begin{gathered} 3,4,5 \\ 6 \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{E}_{\mathrm{S}_{\mathrm{F} 2 \mathrm{H} 2-40}-40}} \text { to } \\ & \hline \end{aligned}$	30.72	38.4	48.0	$\mathrm{mV} / \mu \mathrm{W}$	A
	Gain = Read Low								
3.4	Center channels	A to D	$\begin{aligned} & 11,12, \\ & 13,14 \end{aligned}$	$\mathrm{S}_{\mathrm{A} 13}$ to $\mathrm{S}_{\mathrm{D} 13}$	2.56	3.2	4.0	$\mathrm{mV} / \mu \mathrm{W}$	A
3.5	RF channels	RF+ - RF-	9, 10	$\mathrm{S}_{\text {RF13 }}$	2.56	3.2	4.0	$\mathrm{mV} / \mu \mathrm{W}$	A
3.6	Satellite channels	E1G1 to F2H2	$\begin{array}{\|c} \hline 3,4,5, \\ 6 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{S}_{\mathrm{E} 1 \mathrm{G1} 1-13 \text { to }}^{\mathrm{S}_{\mathrm{F} 2 \mathrm{H} 2-13}} \end{aligned}$	10.24	12.8	16.0	$\mathrm{mV} / \mu \mathrm{W}$	A
	Gain = Write High								
3.7	Center channels	A to D	$\begin{aligned} & \hline 11,12, \\ & 13,14 \end{aligned}$	$\mathrm{S}_{\mathrm{A} 3}$ to $\mathrm{S}_{\mathrm{D} 3}$	0.58	0.72	0.90	$\mathrm{mV} / \mu \mathrm{W}$	A
3.8	RF channels	RF+ - RF-	9, 10	$\mathrm{S}_{\text {RF3 }}$	0.58	0.72	0.90	$\mathrm{mV} / \mu \mathrm{W}$	A
3.9	Satellite channels	E1G1 to F2H2	$\begin{array}{\|c} \hline 3,4,5, \\ 6 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{S}_{\mathrm{E} 1 \mathrm{G} 1-3} \text { to } \\ & \mathrm{S}_{\mathrm{F} 2 \mathrm{H} 2-3} \end{aligned}$	2.30	2.88	3.60	$\mathrm{mV} / \mu \mathrm{W}$	A
	Gain = Write Low								
3.10	Center channels	A to D	$\begin{aligned} & 11,12, \\ & 13,14 \end{aligned}$	$\mathrm{S}_{\mathrm{A} 1}$ to $\mathrm{S}_{\mathrm{D} 1}$	0.19	0.24	0.30	$\mathrm{mV} / \mu \mathrm{W}$	A
3.11	RF channels	RF+ - RF-	9, 10	$\mathrm{S}_{\mathrm{RF} 1}$	0.19	0.24	0.30	$\mathrm{mV} / \mu \mathrm{W}$	A
3.12	Satellite channels	E1G1 to F2H2	$\begin{gathered} 3,4,5 \\ 6 \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{E} 1 \mathrm{G1} 1-1} \text { to } \\ & \mathrm{S}_{\mathrm{F} 2 \mathrm{H} 2-1} \end{aligned}$	0.77	0.96	1.20	$\mathrm{mV} / \mu \mathrm{W}$	A
	AC Specifications (Total optical power per central segment in read mode: $\mathrm{P}_{\text {opt }} \sim 20 \mu \mathrm{~W}$)								
4	Frequency Response								
4.1	f-1dB, center channels, RF channels, CD mode	Gain mode: read high, Read Low	9-15	$\mathrm{b}_{-1 \mathrm{~dB}}$	50			MHz	C
4.2	$\mathrm{f}-1 \mathrm{~dB}$, center channels, RF channels, DVD mode	Gain mode: read high, read low	9-15	$\mathrm{b}_{-1 \mathrm{~dB}}$	75			MHz	C

[^1]5. Electrical Characteristics: General (Continued)
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}=1.85 \mathrm{~V}$
Output load: $\mathrm{R}_{\text {load }}=10 \mathrm{k} \Omega, \mathrm{C}_{\text {load }}=15 \mathrm{pF}$ (max. 20 pF)

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
4.3	f-3dB, center channels, RF channels, CD mode	Gain mode: read high, read low	9-15	$\mathrm{b}_{-3 \mathrm{~dB}}$	100			MHz	C
4.4	f-3dB, center channels, RF channels, DVD mode	Gain mode: read high, read low	9-15	$\mathrm{b}_{-3 \mathrm{~dB}}$	108			MHz	C
4.5	$\mathrm{f}-3 \mathrm{~dB}$, center channels, RF channels	Gain mode: write high, write low	9-15	$\mathrm{b}_{-3 \mathrm{~dB}}$	30			MHz	C
4.6	$\mathrm{f}-3 \mathrm{~dB}$, satellite channels	All gain steps	3-6	$\mathrm{b}_{-3 \mathrm{~dB}}$	30			MHz	C
4.7	BW flatness center channels, RF channels, CD mode	Gain mode: read high, read low, 1 MHz to 100 MHz	9-15	BW fl	-3		+ 3	dB	C
4.8	BW flatness center channels, RF channels, DVD mode	Gain mode: read high, read low, 1 MHz to 108 MHz	9-15	BW fl	-3		+ 3	dB	C
5	Group Delay Error								
5.1	Center channels RF channels	1 MHz to 81 MHz	9-15	gd	-1.0	+0.1	+1.0	ns	C
6	Settling Time (Optical Power to Get Pulse Height = 1 Vpp; Measure Time Interval Start Pulse to $\mathbf{1 \%}$ or 2\% Off Final Value)								
6.1	Center channels RF channels	Gain mode: read high, read low, write high CD mode; 2% off	9-15	$\mathrm{t}_{\text {set12 }}$			14	ns	C
6.2	Center channels RF channels	Gain mode: write low CD mode; 2\% off	9-15	$\mathrm{t}_{\text {set12 }}$			16	ns	C
6.3	Satellite channels	E1G1 to F2H2 CD mode; 2% off	3-6	$\mathrm{t}_{\text {set22 }}$			30	ns	C
6.4	Center channels RF channels	Gain mode: read high, read low, write high CD mode; 1% off	9-15	$t_{\text {set11 }}$			20	ns	C
6.5	Center channels RF channels	Gain mode: write low CD mode; 1\% off	9-15	$t_{\text {set11 }}$			25	ns	C
6.6	Satellite channels	E1G1 to F2H2 CD mode; 1% off	3-6	$\mathrm{t}_{\text {set21 }}$			35	ns	C
6.7	Center channels RF channels	Gain mode: read high, read low, write high DVD mode; 2% off	9-15	$\mathrm{t}_{\text {set12D }}$			10	ns	C
6.8	Center channels RF channels	Gain mode: write low DVD mode; 2\% off	9-15	$\mathrm{t}_{\text {set12D }}$			16	ns	C
6.9	Satellite channels	E1G1 to F2H2 DVD mode; 2\% off	3-6	$\mathrm{t}_{\text {set22D }}$			30	ns	C
6.10	Center channels RF channels	Gain mode: read high, read low, write high DVD mode; 1% off	9-15	$\mathrm{t}_{\text {set11D }}$			20	ns	C
6.11	Center channels RF channels	Gain mode: write low DVD mode; 1\% off	9-15	$\mathrm{t}_{\text {set11D }}$			25	ns	C

${ }^{*}$) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter

ATR0874 [Preliminary]

5. Electrical Characteristics: General (Continued)

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=1.85 \mathrm{~V}$
Output load: $\mathrm{R}_{\text {load }}=10 \mathrm{k} \Omega, \mathrm{C}_{\text {load }}=15 \mathrm{pF}$ (max. 20 pF)

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
6.12	Satellite channels	E1G1 to F2H2 DVD mode; 1\% off	3-6	$\mathrm{t}_{\text {set21D }}$			35	ns	C
7	Saturation Recovery Time (Output Swing 1.95Vp Ref. to $\mathrm{V}_{\text {REF }}$: Measure Fall Time: Vout = 1.5V to 0.1V Ref. to $\mathrm{V}_{\text {REF }}$)								
7.1	Center channels RF channels	Gain mode: read high, read low, CD mode	9-15	$t_{\text {satur }}$		6	12.5	ns	C
7.2	Center channels RF channels	Gain mode: write high, write low, CD mode	9-15	$\mathrm{t}_{\text {satur }}$		6	12.5	ns	C
7.3	Center channels RF channels	Gain mode: read high, read low, DVD mode	9-15	$\mathrm{t}_{\text {satur }}$		6	12.5	ns	C
7.4	Center channels RF channels	Gain mode: write high, write low, DVD mode	9-15	$\mathrm{t}_{\text {satur }}$		6	12.5	ns	C
8	Output Noise Level								
8.1	Center channels RF channels	Gain mode: read High, read Low	9-15	$\mathrm{V}_{\text {noise }}$		-80	-76	dBm	C
9	Switching Time								
9.1	Gain switching time	Gain mode: read high - Write high/read low - Write low and vice versa	7, 8	t_{gs}		50		ns	C

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter

6. Gain Setting

Mode	Rel. Gain	SW1	SW2
Read high	40	1	1
Read low	13	1	0
Write high	3	0	1
Write low	1	0	0
Power down	-	Hi-Z	Hi-Z

Note: 1. All gain switches have tri-state inputs

7. Gain Switching

Logical State	Level Min.	Level Max.	Unit
low	0	0.7	V
$\mathrm{Hi}-Z$	1.3	1.9	V
high	2.5	VCC	V

8. Applications Recommendation

To achieve the best performance both pins VCC and VREF need to be blocked using a high quality capacitors ($\mathrm{C}=100 \mathrm{nF}$) as close to device or pins as possible.

We recommend placing a GND-plane on the flexboard below the center of the package (shielding, etc.).

9. Photo Diode Arrangement

Figure 9-1. Phote Diode Arrangement

	Dimensions	
a	150.0	$\mu \mathrm{~m}$
b	145.0	$\mu \mathrm{~m}$
c	115.0	$\mu \mathrm{~m}$
d	100.0	$\mu \mathrm{~m}$
e	5.0	$\mu \mathrm{~m}$
f	5.0	$\mu \mathrm{~m}$

Photo diode is symmetrically centered to the center of the chip and package

Symmetrical axis is parallel to the package

10. Ordering Information

Extended Type Number	Package	Remarks
ATR0874-PZQW	QFN_OPEN_4x3.5_16L	Taped and reeled, Pb-free

11. Package Information

Package: QFN_OPEN_4×3.5_16L
Dimensions in mm

Drawing-No.: 6.543-5116.01-4
Issue: 1; 02.03.05

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia

Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-47-50
Fax: (33) 4-76-58-47-60

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$ and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

[^0]: *) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter

[^1]: ${ }^{*}$) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter

