

PHOTOCOUPLER

PS9613,PS9613L1,PS9613L2

1 Mbps, OPEN COLLECTOR OUTPUT, FOR GATE DRIVE INTERFACE INTELLIGENT POWER MODULE -NEPOC Series-**8-PIN DIP PHOTOCOUPLER**

<R> **DESCRIPTION**

The PS9613 and PS9613L are optically coupled isolators containing a GaAlAs LED on the input side and a photo diode and a signal processing circuit on the output side on one chip.

The PS9613 is in a plastic DIP (Dual In-line Package) and the PS9613L is lead bending type (Gull-wing) for surface mounting.

The PS9613L1 is lead bending type for long creepage distance.

The PS9613L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.

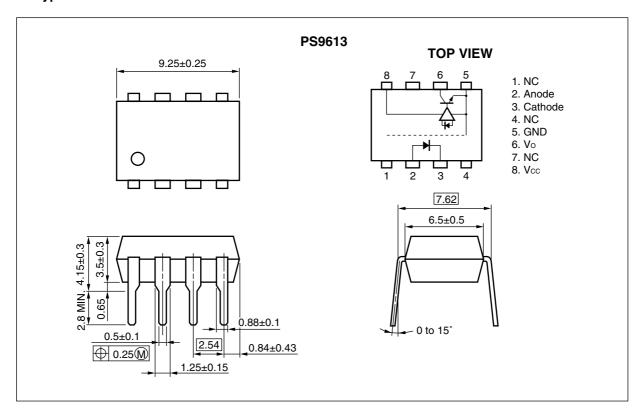
FEATURES

- High common mode transient immunity (CMH, CML = $\pm 15 \text{ kV/}\mu\text{s}$ MIN.)
- High-speed response (tphl = 500 ns MAX., tplh = 750 ns MAX.)
- Maximum propagation delays (tplh tphl = 270 ns TYP.)
- Pulse width distortion ($|t_{PHL} t_{PLH}| = 270 \text{ ns TYP.}$)
- Ordering number of tape product: PS9613L-E3, E4: 1 000 pcs/reel : PS9613L2-E3, E4: 1 000 pcs/reel
- <R> · Safety standards

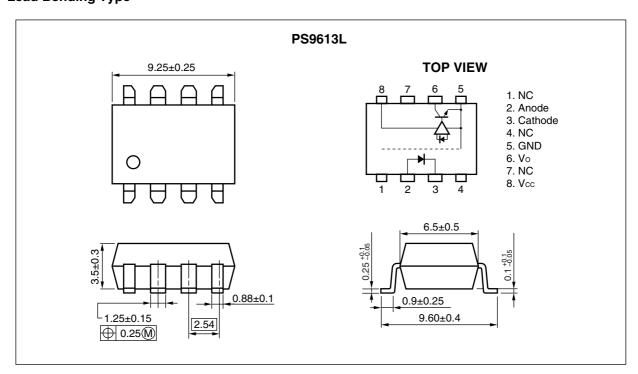
<R>

- UL approved: File No. E72422
- DIN EN60747-5-2 (VDE0884 Part2) approved (Option)

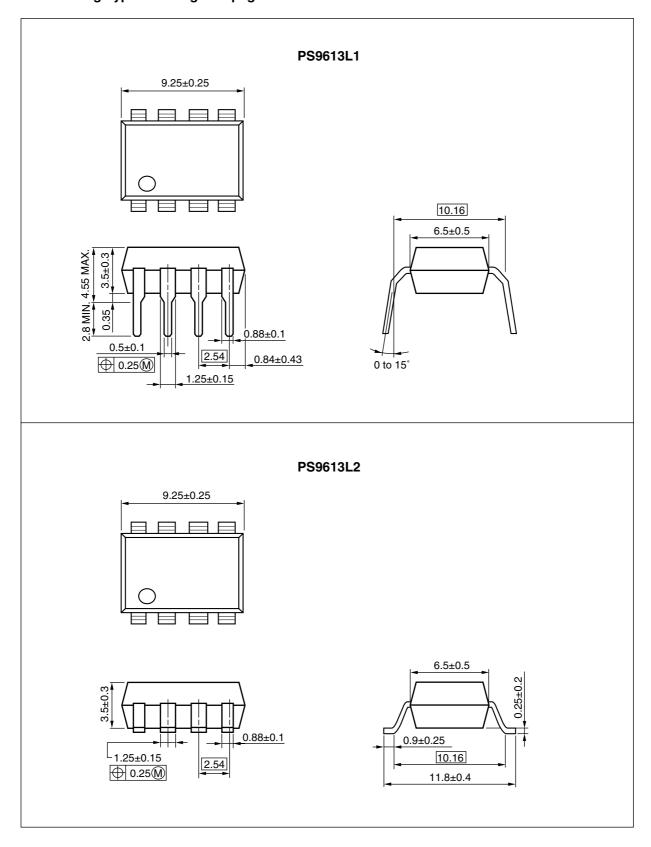
APPLICATIONS


- IPM Driver
- General purpose inverter

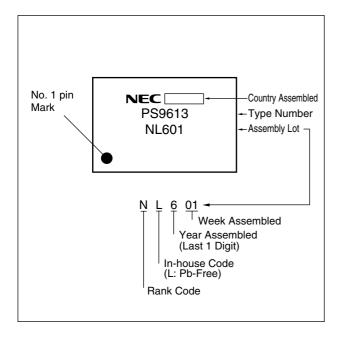
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

PACKAGE DIMENSIONS (UNIT: mm)


DIP Type


Lead Bending Type


<R> Lead Bending Type For Long Creepage Distance

FUNCTIONAL DIAGRAM

<R> MARKING EXAMPLE

<R> ORDERING INFORMATION

Part Number	Order Number	Facking Style		Safety Standard Approval	Application Part Number 1
PS9613	PS9613-A	Pb-Free	Magazine case 50 pcs	Standard products	PS9613
PS9613L	PS9613L-A			(UL approved)	
PS9613L-E3	PS9613L-E3-A		Embossed Tape 1 000 pcs/reel		
PS9613L-E4	PS9613L-E4-A				
PS9613L1	PS9613L1-A		Magazine case 50 pcs		
PS9613L2	PS9613L2-A				
PS9613L2-E3	PS9613L2-E3-A		Embossed Tape 1 000 pcs/reel		
PS9613L2-E4	PS9613L2-E4-A				
PS9613-V	PS9613-V-A		Magazine case 50 pcs	DIN EN60747-5-2	
PS9613L-V	PS9613L-V-A			(VDE0884 Part2)	
PS9613L-V-E3	PS9613L-V-E3-A		Embossed Tape 1 000 pcs/reel	Approved (Option)	
PS9613L-V-E4	PS9613L-V-E4-A				
PS9613L1-V	PS9613L1-V-A		Magazine case 50 pcs		
PS9613L2-V	PS9613L2-V-A				
PS9613L2-V-E3	PS9613L2-V-E3-A		Embossed Tape 1 000 pcs/reel		
PS9613L2-V-E4	PS9613L2-V-E4-A				

^{*1} For the application of the Safety Standard, following part number should be used.

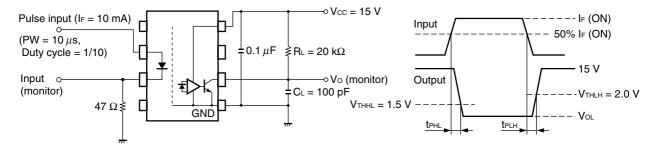
ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

<R>

<R>

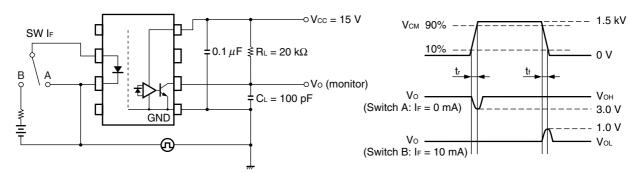
Parameter		Symbol	Ratings	Unit
Diode	Forward Current 1	lF	25	mA
	Reverse Voltage	VR	3.0	٧
Detector	Supply Voltage	Vcc -0.5 to +35		٧
	Output Voltage	Vo	-0.5 to +35	٧
	Output Current	lo	15	mA
	Power Dissipation 2	Pc	100	mW
Isolation Voltage *3		BV	5 000	Vr.m.s.
Operating Ambient Temperature		TA	-40 to +100	°C
Storage Temperature		Tstg	-55 to +125	°C

- *1 Reduced to 0.33 mA/ $^{\circ}$ C at T_A = 70 $^{\circ}$ C or more.
- *2 Reduced to 1.9 mW/ $^{\circ}$ C at T_A = 70 $^{\circ}$ C or more.
- *3 AC voltage for 1 minute at $T_A = 25^{\circ}$ C, RH = 60% between input and output. Pins 1-4 shorted together, 5-8 shorted together.


RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	
Forward Current	lF	10		20	mA	
Output Voltage	Vo	0		30	٧	
Supply Voltage	Vcc	4.5	15	30	٧	
Input Voltage	VF	0		0.8	V	

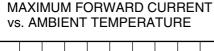
ELECTRICAL CHARACTERISTICS (TA = -40 to +100°C, Vcc = 15 V, unless otherwise specified)

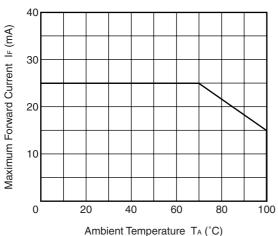

Parameter		Symbol	Conditions	MIN.	TYP.*1	MAX.	Unit
Diode	Forward Voltage	VF	I _F = 10 mA	1.3	1.65	2.1	V
	Reverse Current	lR	V _R = 3 V			200	μΑ
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz, T _A = 25°C		30		pF
Detector	Low Level Output Voltage	Vol	IF = 10 mA, Vcc = 5 V, IoL = 2.4 mA		0.13	0.6	V
	High Level Output Current	Іон	Vcc = 30 V, V _F = 0.8 V		1.0	50	μΑ
	High Level Supply Current	Іссн	Vcc = 30 V, V _F = 0.8 V, V _O = open		0.6	1.3	mA
	Low Level Supply Current	Iccl	Vcc = 30 V, I _F = 10 mA, Vo = open		0.6	1.3	mA
Coupled	Threshold Input Current $(H \rightarrow L)$	IFHL	Vo = 0.8 V, Io = 0.75 mA		1.5	5.0	mA
	Current Transfer Ratio (Ic/IF)	CTR	IF = 10 mA, Vo = 0.6 V	44	110		%
	Isolation Resistance	R _{I-O}	V _{I-O} = 1 kV _{DC} , RH = 40 to 60%, T _A = 25°C	1011			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz, T _A = 25°C		0.6		pF
	Propagation Delay Time $(H \rightarrow L)^{^{*2}}$	tрнL	$I_F=10mA,~R_L=20~k\Omega,~C_L=100~pF,$ $V_{THHL}=1.5~V,~V_{THLH}=2.0~V$		250	500	ns
	Propagation Delay Time $(L \rightarrow H)^{*2}$	tрLН			520	750	
	Maximum Propagation Delays	tршн—tрнш		-200	270	650	
	Pulse Width Distortion (PWD)'2	tенц—tецн			270	650	
	Common Mode Transient Immunity at High Level Output ^{*3}	СМн	$T_{A}=25^{\circ}C,\ I_{F}=0\ mA,\ V_{O}>3.0\ V,$ $V_{CM}=1.5\ kV,\ R_{L}=20\ k\Omega,$ $C_{L}=100\ pF$	15			kV/μs
	Common Mode Transient Immunity at Low Level Output ^{'3}	CM∟	$T_{A} = 25^{\circ}C, \; I_{F} = 10 \; mA, \; V_{O} < 1.0 \; V,$ $V_{CM} = 1.5 \; kV, \; R_{L} = 20 \; k\Omega,$ $C_{L} = 100 \; pF$	15			kV/μs

- *1 Typical values at $T_A = 25^{\circ}C$.
- *2 Test circuit for propagation delay time

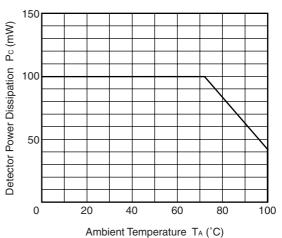
CL includes probe and stray wiring capacitance.

*3 Test circuit for common mode transient immunity

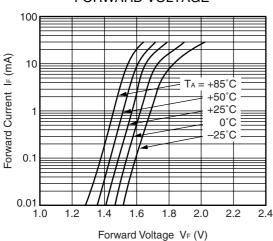


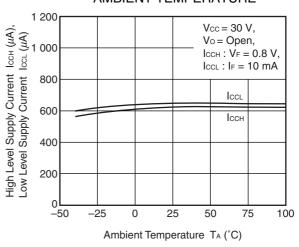

C∟ includes probe and stray wiring capacitance.

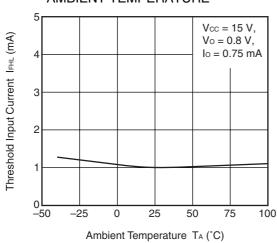
USAGE CAUTIONS

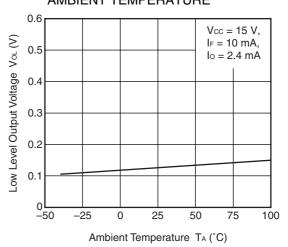

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1 μ F is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
- 3. Avoid storage at a high temperature and high humidity.

TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise specified)

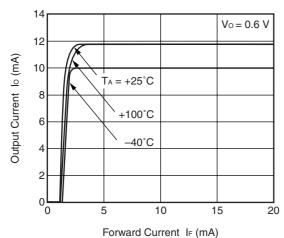



DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

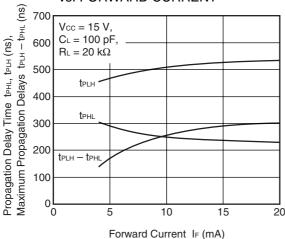

FORWARD CURRENT vs. FORWARD VOLTAGE


SUPPLY CURRENT vs.
AMBIENT TEMPERATURE

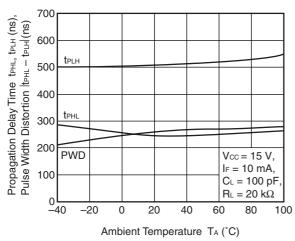
THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE

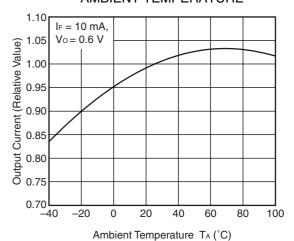


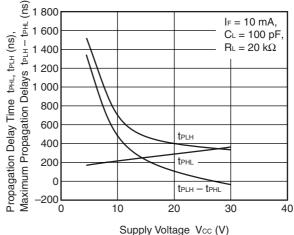
LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

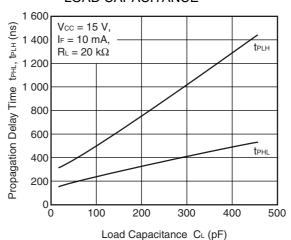


Remark The graphs indicate nominal characteristics.

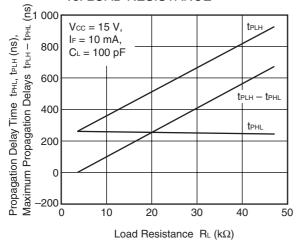

OUTPUT CURRENT vs. FORWARD CURRENT


PROPAGATION DELAY TIME, MAXIMUM PROPAGATION DELAYS vs. FORWARD CURRENT

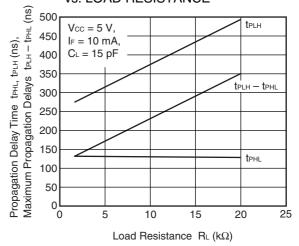

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE


OUTPUT CURRENT vs. AMBIENT TEMPERATURE

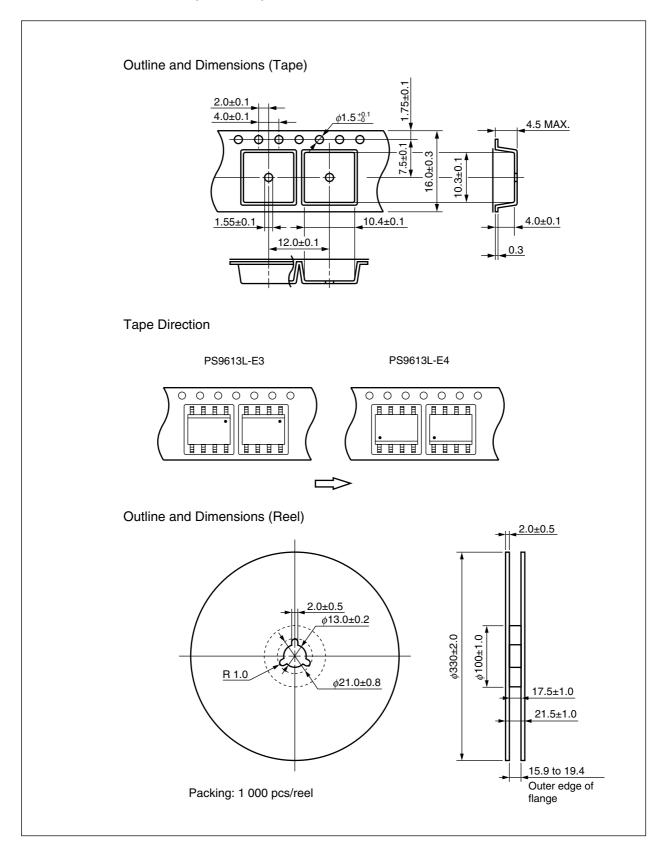
PROPAGATION DELAY TIME, MAXIMUM PROPAGATION DELAYS vs. SUPPLY VOLTAGE



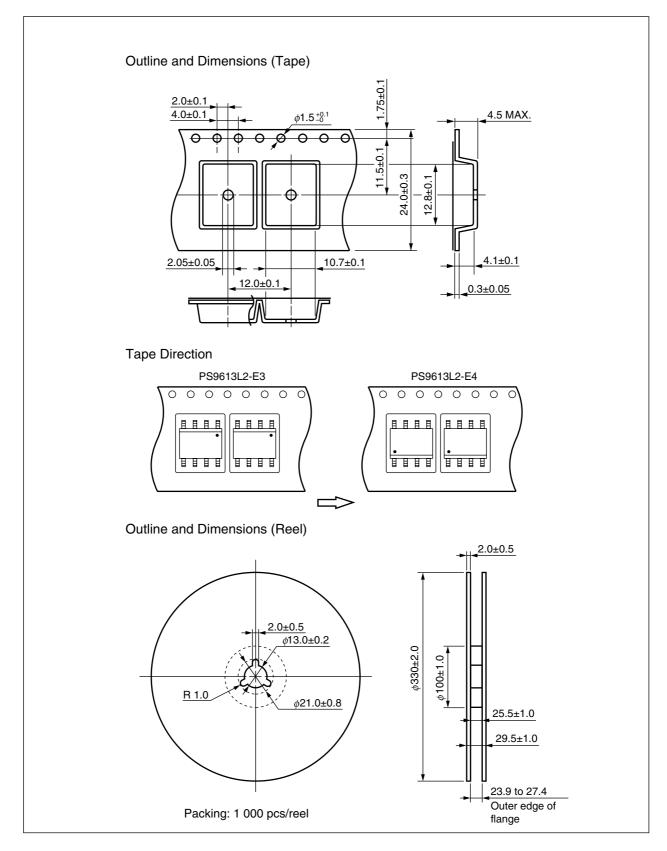
PROPAGATION DELAY TIME vs. LOAD CAPACITANCE


Remark The graphs indicate nominal characteristics.

PROPAGATION DELAY TIME, MAXIMUM PROPAGATION DELAYS vs. LOAD RESISTANCE



Remark The graphs indicate nominal characteristics.


PROPAGATION DELAY TIME, MAXIMUM PROPAGATION DELAYS vs. LOAD RESISTANCE

TAPING SPECIFICATIONS (UNIT: mm)

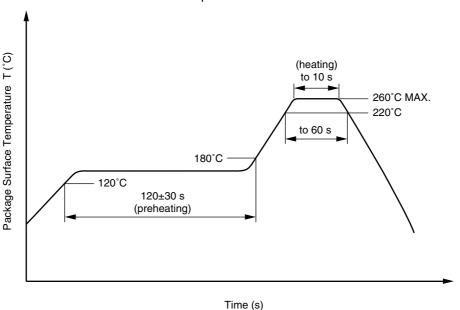
<R>

NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

Peak reflow temperature
 260°C or below (package surface temperature)


Time of peak reflow temperature
 Time of temperature higher than 220°C
 60 seconds or less

Time to preheat temperature from 120 to 180°C 120±30 s
 Number of reflows Three

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

• Temperature 260°C or below (molten solder temperature)

• Time 10 seconds or less

Preheating conditions 120°C or below (package surface temperature)

Number of times
 One (Allowed to be dipped in solder including plastic mold portion.)

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt% is recommended.)

<R> (3) Soldering by soldering iron

Peak temperature (lead part temperature) 350°C or below
 Time (each pins) 3 seconds or less

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead.

(b) Please be sure that the temperature of the package would not be heated over 100°C.

(4) Cautions

• Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between collector-emitters at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

- The information in this document is current as of May, 2006. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
 products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
 - 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

▶ For further information, please contact

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: contact@ncsd-hk.necel.com

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.eu.necel.com/

TEL: +49-211-6503-0 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279

Compound Semiconductor Devices Division NEC Electronics Corporation URL: http://www.ncsd.necel.com/