SHARP GP1FD210TP

°C

°C

-30 to +80

240

GP1FD210TP

■ Features

- 1. Compact (adoption of compact jack for mini plug) JIS C6560
- Optical digital signal and electric analog signal can be discriminated and transmitted
- High speed data transmission
 Signal transmission speed:MAX.8Mb/s (NRZ signal)
- Low voltage operation Operating Voltage: 2.3 to 2.8V

■ Applications

- 1. MD players
- 2. Portable CD players

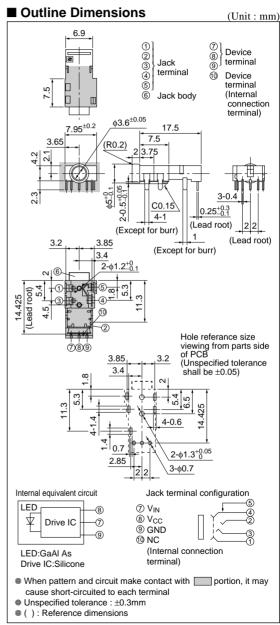
Storage temperature

Soldering temperature (Reflow)

■ Absolute Maximum Ratings Parameter Symbol Rating Unit V_{CC} v Supply voltage -0.5 to +7.0Input voltage V_{IN} -0.5 to V_{CC} +0.5 V Operating temperature T_{opr} -10 to +70°C

*1 For 10s (according to reflow profile in the specification sheet)

■ Absolut	e Maximum	Ratings	(Jack	$(T_a=25^{\circ}C)$
-----------	-----------	---------	-------	---------------------


 T_{stg}

 T_{sol}

Parameter	Symbol	Rating	Unit
Total power dissipation	P _{tot}	D.C. 12V, 1A	_
Operating temperature	T_{opr}	-20 to +70	°C
Storage temperature	T_{stg}	-30 to +80	°C
*1 Soldering temperature (Reflow)	T_{sol}	240	°C
*2 Isolation voltage	V _{iso (rms)}	A.C. 500V	_

^{*2} For 1minute

Low Voltage Operation and Thin Type Optical Mini-jack for Digital Audio Equipment

[&]quot;OPIC" (Optical IC) is a trademark of the SHARP Corporation.

An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet address for Electronic Components Group http://sharp-world.com/ego/

	Recommended	Operating	Conditions
_		Operating	Odilalions

$(T_a=25^{\circ}C)$					
	Unit				

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage	V _{CC}	2.3	2.5	2.8	V
Operating transfer rate	T	_	ı	8	Mb/s

■ Electro-optical Characteristics

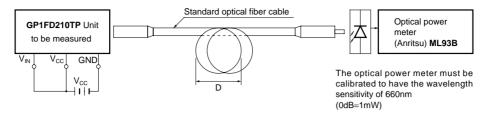
 $(T_a=25^{\circ}C, V_{CC}=2.5V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	λ_{p}	-	630	660	690	nm
Optical power output coupling with fiber	P _C	Refer to Fig.1	-21	-17	-15	dBm
High level dissipation current	I_{CCH}	Refer to Fig.2	_	6	10	mA
Low level dissipation current	I_{CCL}	Refer to Fig.2	_	0.6	1	mA
High level input voltage	V_{IH}	Refer to Fig.2	1.9	_	_	V
Low level input voltage	$V_{\rm IL}$	Refer to Fig.2	_	_	0.7	V
Low→High delay time	t_{pLH}	Refer to Fig.3	_	_	180	ns
High→Low delay time	t_{pHL}	Refer to Fig.3	_	_	180	ns
Pulse width distortion	Δt_{w}	Refer to Fig.3	-30	_	+30	ns
Jitter	Δt_j	Refer to Fig.3	_	1	30	ns

■ Mechanical Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Insertion force, withdrawal force	F_p	*3	5	-	35	N
Contact resistance	R _{con}	*4	_	-	30	mΩ
Isolation resistance	Riso	D.C.500V, 1minute	100	-	_	ΜΩ

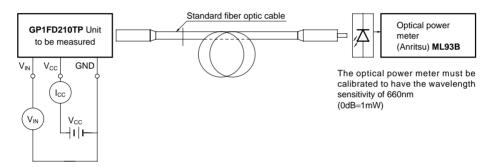
Note) This jack is designed for applicable to \$\phi 3.5\$ compact single head plug (JIS C6560)


^{*3} Measuring method of insertion force and withdrawal force

Insertion and withdrawal force shall be measured after inserting and withdrawing 3 times by using JIS C6560 standard plug for test

^{*4} Measuring method of contact resistance

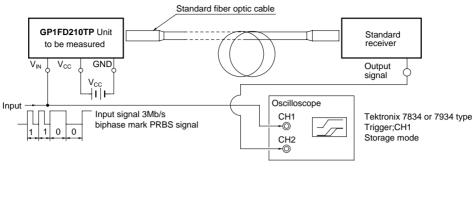
It measures at 100mA or less and 1 000Hz at the condition of inserting JIS C6560 standard plug for test in which movable contact terminal and contact point are described

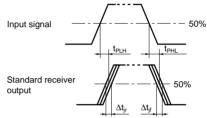

Fig.1 Measuring Method of Optical Output Coupling with Fiber

Note (1) V_{CC} =2.5V (State of operating)

(2) To bundle up the standard fiber optic cable, make it into a loop with the diameter D=10cm or more (The standard fiber optic cable will be specified elsewhere)

Fig.2 Measuring Method of Intput Voltage and Supply Current




Input conditions and judgement method

Conditions	Judgement method
V _{IN} =1.9V or more	$-21 \le P_C \le -15 dBm$, $I_{CC} = 10 mA$ or less
V _{IN} =0.7V or less	$P_C \le -36 dBm$, $I_{CC} = 1.0 mA$ or less

Note V_{CC}=2.5V (State of operating)

Fig.3 Measuring Method of Pulse Response and Jitter

Parameter	Symbol	Conditions
Low→High delay time	t_{pLH}	Refer to the above mentioned prescription
High→Low delay time	t_{pHL}	Refer to the above mentioned prescription
Pulse width distortion	Δt_{w}	$\Delta t_{ m w} = t_{ m pHL} - t_{ m pHL}$
Low→High jitter	Δt_{jr}	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→Low jitter	Δt_{jf}	Set the trigger on the fall of input signal to measure the jitter of the fall of output

Notes (1) The waveform write time shall be 4s. But do not allow the waveform to be distorted by increasing the brightness too much

- (2) V_{CC}=2.5V (State of operating)
- (3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP
 devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
 no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
 SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
 reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
 described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
 also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
 caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
 specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.
 - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.