FEATURES

- Full multiplex over single fiber
- DC to 160 MHz link bandwidth
- Link budgets of 2 km [1.24 miles] or greater
- 40 dB isolation
- SC connector
- Other options available
- VCSEL is Class 1 eye safe

APPLICATIONS

- Full duplex data
transmission
- Multiplexing two signals to a single fiber
- LED and laser coupled power measurements and reflected power measurements (depending upon the configuration of the duplex module)

A pair of Honeywell HODXXXX-XXX/EBA series dual wavelength fiber duplex modules allows full duplex communications over a single fiber link. They may also be used where a dual fiber solution is neither possible nor economical.

Each duplex module consists of one on-axis port and one off-axis port, each configured with the appropriate devices. These devices are coupled to the single fiber via integral lenses and a 3 dB wavelength differentiating mirror within the duplex module body. In this configuration, two duplex modules can communicate in the same direction simultaneously and independently of each other. Depending upon the receiver circuitry used, links of 2 km [1.24 miles] or greater are possible.

The following catalog listings indicate the two devices used in each duplex module.

- HOD2294-111/EBA:
- 850 nm VCSEL (Vertical Cavity Surface Emitting Laser)
- 1300 nm laser
- HOD1121-411/EBA (corresponding duplex module):
- 850 nm LED
- 1300 nm LED

Other standard options are available on request. These include two LEDs in one duplex module for single fiber multiplexing, PIN diodes, VCSEL emitters or any other preferred devices. Housing options include SC and ST optical ports or a high profile housing for mounting duplex modules side by side. Future connectors will likely include SMA, FC, LC and E2000 options. See the catalog listing numbering scheme on the back page for a complete list of available configurations.

A WARNING

MISUSE OF DOCUMENTATION

- The information presented in this product sheet (or catalog) is for reference only. DO NOT USE this document as product installation information.
- Complete installation, operation and maintenance information is provided in the instructions supplied with each product.
Failure to comply with these instructions could result in death or serious injury.

A WARNING

PERSONAL INJURY

- DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Failure to comply with these instructions could result in death or serious injury.

ELECTRO-OPTICAL CHARACTERISTICS FOR THE HOD2294-111/EBA

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Continuous Forward Current	$20 \mathrm{~mA}(\mathrm{VCSEL}), 100 \mathrm{~mA}(850 \mathrm{~nm}$ LED $)$
Reverse Voltage	$5 \mathrm{~V}(\mathrm{VCSEL}), 1 \mathrm{~V}$ at $10 \mu \mathrm{~A}(850 \mathrm{~nm}$ LED $)$
Lead Solder Temperature	$260^{\circ} \mathrm{C}\left[500{ }^{\circ} \mathrm{F}\right], 10$ sec
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.212^{\circ} \mathrm{F}\right)$

CAUTION

STRESS DAMAGE

Functional operation of the device at or above "Absolute Maximum Ratings" for extended periods of time may affect reliability.
Failure to comply with these instructions may result in product damage.

Transmit: $\mathbf{1 3 0 0} \mathbf{n m}$ Laser (All tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Fiber Coupled Power	P_{OC}	$\begin{array}{c}200 \\ -7.0\end{array}$	$\begin{array}{c}280 \\ -5.5\end{array}$		$\mu \mathrm{CW}$	
dBm						

50 / 125 \mu \mathrm{~m} fiber\end{array}\right]\)

Transmit: 850 nm VCSEL (All tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	
Fiber Coupled Power	Poc	200	280		$\mu \mathrm{W}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA} \\ & 50 / 125 \mu \mathrm{~m} \text { fiber } \end{aligned}$	
Threshold Current	ITH		3.6	6	mA		
$1_{\text {TH }}$ Temperature Variation	$\Delta \\|_{\text {TH }}$	-1		1	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$	
Slope Efficiency	η	0.1	0.2	0.4	$\mathrm{mW} / \mathrm{mA}$	$\mathrm{Po}=1.3 \mathrm{~mW}$	
η Temperature Variation	$\Delta \eta$		-0.4		\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$	
Peak Wavelength	λp	820	850	860	nm	$\mathrm{I}_{\mathrm{F}=12 \mathrm{~mA} \mathrm{dc}}$	
λp Temperature Coefficient	$\Delta \lambda p / \Delta T$		0.06		$\mathrm{nm} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}=12 \mathrm{~mA}}$	
Spectral Bandwidth	$\Delta \lambda$			0.85	nm	$\mathrm{I}_{\mathrm{F}=12 \mathrm{~mA}}$	
Laser Forward Voltage	V_{F}	1.6	1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$	
Laser Reverse Voltage	$\mathrm{BVR}_{\mathrm{LD}}$	5	10		V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	
$\begin{array}{\|l\|} \hline \text { Response Time } \\ -40^{\circ} \mathrm{C}<\mathrm{T}<100^{\circ} \mathrm{C}, 10 \%-90 \% \\ -40^{\circ} \mathrm{C}<\mathrm{T}<100^{\circ} \mathrm{C}, 90 \%-10 \% \end{array}$	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \hline \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	Ps	bias above threshold	
Relative Intensity Noise	RIN		-128	-122	dB/Hz	1 GHz BW	
Series Resistance	R_{S}	15	25	50	Ohms	$\mathrm{I}_{\mathrm{F}=12 \mathrm{~mA}}$	
Monitor Current	IPD	0.020		0.044	mA	$\mathrm{Po}=1.3 \mathrm{~mW}$	
IPD Temperature Variation	$\Delta \mathrm{l}_{\mathrm{PD}} / \Delta \mathrm{T}$		0.2		\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{Po}=0.5 \mathrm{~mW}$	
Dark Current	I_{D}			20	nA	$\mathrm{Po}=0 \mathrm{~mW}, \mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}$	
PD Reverse Voltage	$\mathrm{BVR}_{\text {PD }}$	30	115		V	$\mathrm{Po}=0 \mathrm{~mW}, \mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	
PD Capacitance	C		$\begin{gathered} 100 \\ 55 \end{gathered}$		p	$\begin{aligned} & V_{\mathrm{R}}=0 \mathrm{~V}, \text { Freq }=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}, \text { Freq }=1 \mathrm{MHz} \end{aligned}$	

CAUTION

PRODUCT DAMAGE DUE TO ESD

Ensure normal ESD (Electrostatic Discharge) precautions are followed when handling this product.
Failure to comply with these instructions may result in product damage.
HOD2294-111/EBA Duplex Module
Mounting and Dimensional Drawing (for reference only mm[in])

Infrared Products
Single Fiber Duplex Modules

CAUTION

STRESS DAMAGE

Functional operation of the device at or above "Absolute Maximum Ratings" for extended periods of time may affect reliability.
Failure to comply with these instructions may result in product damage.

ELECTRO-OPTICAL CHARACTERISTICS FOR THE HOD1121-411EBA

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Continuous Forward Current	$20 \mathrm{~mA}(\mathrm{VCSEL}), 100 \mathrm{~mA}(850 \mathrm{~nm}$ LED $)$
Reverse Voltage	$5 \mathrm{~V}(\mathrm{VCSEL}), 1 \mathrm{~V}$ at $10 \mu \mathrm{~A}(850 \mathrm{~nm}$ LED $)$
Lead Solder Temperature	$260^{\circ} \mathrm{C}\left[500^{\circ} \mathrm{F}\right], 10 \mathrm{sec}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.212^{\circ} \mathrm{F}\right)$

Transmit: $\mathbf{8 5 0} \mathbf{n m}$ LED (all tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Fiber Coupled Power	Poc		$\begin{gathered} 16 \\ -18.0 \\ \hline \end{gathered}$		$\begin{gathered} \mu \mathrm{W} \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & 62.5 / 125 \mu \mathrm{~m} \text { fiber } \end{aligned}$
Forward Voltage	V_{F}		1.5		V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Reverse voltage	BVR	1.0	5.0		V	$\mathrm{I}_{\mathrm{F}=10} \mu \mathrm{~A}$
Peak Wavelength	λp		850		nm	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \mathrm{dc}$
Spectral Bandwidth	$\Delta \lambda$		60		nm	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \mathrm{dc}$
$\begin{gathered} \hline \text { Response Time } \\ 10 \%-90 \% \\ 90 \%-10 \% \end{gathered}$	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	1 V prebias, 50 mA peak
Analog Bandwidth	BWE		70		MHz	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \mathrm{dc}$
Po Temperature Coefficient	$\Delta \mathrm{Po} / \Delta \mathrm{T}$		-0.007		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}=50 \mathrm{~mA}}$
Capacitance	C		70		pF	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz}$
Thermal Resistance			250		${ }^{\circ} \mathrm{C} / \mathrm{W}$	heatsinked

Transmit: 1300 nm LED (All tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Fiber Coupled Power	Poc		$\begin{gathered} \hline 16 \\ -18.0 \end{gathered}$		$\begin{gathered} \mu \mathrm{W} \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \hline I_{F}=40 \mathrm{~mA} \\ & 62.5 / 125 \mu \mathrm{~m} \text { fiber } \end{aligned}$
Forward Voltage	V_{F}		1.4	1.7	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Reverse voltage	V_{R}			2.0		$\mathrm{I}_{\mathrm{F}=2} \mu_{\mathrm{A}}$
Peak Wavelength	λp	1290		1350	nm	$\mathrm{I}_{\mathrm{F}=100 \mathrm{~mA} \mathrm{dc}}$
Spectral Bandwidth	$\Delta \lambda$			170	nm	$\mathrm{I}_{\mathrm{F}=}=100 \mathrm{~mA} \mathrm{dc}$
$\begin{gathered} \hline \text { Response Time } \\ 10 \%-90 \% \\ 90 \%-10 \% \end{gathered}$	$\begin{aligned} & \mathrm{tr}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, 50 \% \\ & \text { duty cycle, } \mathrm{f}=12.5 \mathrm{MHz} \end{aligned}$
Analog Bandwidth	BWE		115		MHz	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Po Temperature Coefficient	$\Delta \mathrm{PO} / \Delta T$		-0.03		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Capacitance	C		15	50	pF	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

CAUTION

PRODUCT DAMAGE DUE TO ESD

Ensure normal ESD (Electrostatic Discharge) precautions are followed when handling this product.
Failure to comply with these instructions may result in product damage.

HOD1121-411/EBA Duplex Module
Mounting and Dimensional Drawing (for reference only mm[in])

Infrared Products
Single Fiber Duplex Modules

Duplex Module Catalog Listing Numbering Scheme

HOD	XX*	XX*	-	X	X	X	//	X	X	X
	Port 1 Device	Port 2 Device		Port 1 Speed (Rise/Fall Time)	Port 2 Speed (Rise/Fall Time)	Optical Budget		Connector	Mounting	Leads
	$\begin{array}{\|ll\|} \hline \mathbf{1 x} & \begin{array}{l} 850 \mathrm{~nm} \\ \text { LED } \end{array} \\ \hline \end{array}$	$\begin{array}{\|ll} \hline \mathbf{1 x} & \begin{array}{l} 850 \mathrm{~nm} \\ \text { LED } \end{array} \\ \hline \end{array}$		$1<3 \mathrm{~ns}$	$1<3 \mathrm{~ns}$	$1<10 \mathrm{~dB}$		A SMA	B PCB	A Normal
	$\begin{array}{\|ll\|} \hline \mathbf{2 x} & 1300 \mathrm{~nm} \\ & \text { LED/Laser } \end{array}$	$\begin{array}{\|ll\|} \hline 2 x & 1300 \mathrm{~nm} \\ & \text { LED/Laser } \end{array}$		$2<6 \mathrm{~ns}$	$2<6 \mathrm{~ns}$	$2<20 \mathrm{~dB}$		B $\begin{aligned} & \text { ST Low } \\ & \text { Profile }\end{aligned}$	X Special	B Formed
	$3 x$ 850 nm PIN $4 x$ 1300	$3 x$ 850 nm PIN		$3<10 \mathrm{~ns}$	$3<10 \mathrm{~ns}$	$3<30 \mathrm{~dB}$		C FC		C Special
	$\begin{array}{\|ll\|} \hline 4 \mathbf{x} & 1300 \mathrm{~nm} \\ & \text { PIN } \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 \mathbf{x} & \begin{array}{l} 1300 \mathrm{~nm} \\ \\ \text { PIN } \end{array} \\ \hline \end{array}$		$4<20 \mathrm{~ns}$	$4<20 \mathrm{~ns}$	$4<40 \mathrm{~dB}$		D ST Close Mount		
	$\begin{array}{\|ll\|} \hline 5 x & 850 \mathrm{~nm} \\ & \mathrm{P}+\mathrm{P} \\ \hline \end{array}$	$5 x$ $850 n m$ $P+P$ $6 x$ $1300 n m$						E SC		
	$\begin{array}{\|ll} \hline 6 \mathbf{x} & 1300 \mathrm{~nm} \\ & \mathrm{P}+\mathrm{P} \end{array}$	$\begin{array}{\|cl} \hline 6 \mathbf{x} & \begin{array}{l} 1300 \mathrm{~nm} \\ \\ \mathrm{P}+\mathrm{P} \end{array} \\ \hline \end{array}$						F LC		
	$7 \mathrm{x} \quad$ Future	7x Future						G E2000		
	$8 \mathrm{x} \quad$ Future	8 x Future						X Special		
	9x Honeywell	9x Honeywell								

*The second digit of each pair of port device numbers corresponds to the specific device used.
Example: HOD5721-412/EBA defines:

$\mathbf{5 7}$	850 nm P+P in Port 1 (on axis)
$\mathbf{2 1}$	1300 nm LED in Port 2 (perpendicular axis)
-	
$\mathbf{4}$	$<20 \mathrm{~ns}$ Rise/Fall Time (850 nm P+P)
$\mathbf{1}$	<3 ns Rise/Fall Time (1300 nm LED)
$\mathbf{2}$	20 dB link budget when used with corresponding duplex module
I	
E	SC connector
\mathbf{B}	PCB mounting
\mathbf{A}	Normal leads

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.
While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.
For application assistance, current specifications, or name of the nearest Authorized Distributor, check the Honeywell web site or call:

1-800-537-6945 USA
1-800-737-3360 Canada
441698481481 Europe
1-815-235-6847 International

FAX

1-815-235-6545 USA
INTERNET
www.honeywell.com/sensing info.sc@honeywell.com

Control Products

Honeywell
11 West Spring Street
Freeport, Illinois 61032

