LT1937

White LED Step-Up Converter in SC70 and ThinSOT

feATURES

- Inherently Matched LED Current
- High Efficiency: 84\% Typical
- Drives Up to Four LEDs from a 3.2V Supply
- Drives Up to Six LEDs from a 5 V Supply
- 36V Rugged Bipolar Switch
- Fast 1.2 MHz Switching Frequency
- Uses Tiny 1 mm Tall Inductors
- Requires Only $0.22 \mu \mathrm{~F}$ Output Capacitor
- Low Profile SC70 and ThinSOT ${ }^{\text {TM }}$ Packaging

APPLICATIONS

- Cellular Phones
- PDAs, Handheld Computers
- Digital Cameras
- MP3 Players
- GPS Receivers

DESCRIPTION

The LT ${ }^{\circledR} 1937$ is a step-up DC/DC converter specifically designed to drive white LEDs with a constant current. The device can drive two, three or four LEDs in series from a Li-Ion cell. Series connection of the LEDs provides identical LED currents resulting in uniform brightness and eliminating the need for ballast resistors. The LT1937 switches at 1.2 MHz , allowing the use of tiny external components. The output capacitor can be as small as $0.22 \mu \mathrm{~F}$, saving space and cost versus alternative solutions. A low 95 mV feedback voltage minimizes power loss in the current setting resistor for better efficiency.
The LT1937 is available in low profile SC70 and ThinSOT packages.
$\mathbf{\boxed { C T }}$, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. Li-Ion Powered Driver for Three White LEDs

Conversion Efficiency

1937 TA01b

ABSOLUTE MAXIMUM RATINGS
 (Note 1)

Input Voltage (VIN) 10 V
SW Voltage 36 V
FB Voltage 10 V
SHDN Voltage 10 V
Extended Commercial
Operating Temperature Range (Note 2) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec).............. $300^{\circ} \mathrm{C}$

Extended Commercial
Operating Temperature Range (Note 2) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LT1937ES5		LT1937ESC6
	S5 PART MARKING		SC6 PART MARKING
$T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=256^{\circ} \mathrm{C} / \mathrm{W}$ II FREE AIR $\theta_{\mathrm{JA}}=120^{\circ} \mathrm{C}$ ON BOARD OVER GROUND PLANE	LTYN	$\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JJA}}=256^{\circ} \mathrm{C} / \mathrm{W}$ IN FREE AIR $\theta_{J A}=150^{\circ} \mathrm{CON}$ BOARD OVER GROUND PLANE	LAAB

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{SHDN}}}=3 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Operating Voltage		2.5			V
Maximum Operating Voltage				10	V
Feedback Voltage	ISW $=100 \mathrm{~mA}$, Duty Cycle $=66 \%$	86	95	104	mV
FB Pin Bias Current		10	45	100	nA
Supply Current	$\overline{\text { SHDN }}=0 \mathrm{~V}$		$\begin{aligned} & 1.9 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 1.0 \end{aligned}$	mA $\mu \mathrm{A}$
Switching Frequency		0.8	1.2	1.6	MHz
Maximum Duty Cycle		85	90		\%
Switch Current Limit			320		mA
Switch V ${ }_{\text {CESAT }}$	$\mathrm{I}_{\text {SW }}=250 \mathrm{~mA}$		350		mV
Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$		0.01	5	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Voltage High		1.5			V
SHDN Voltage Low				0.4	V
SHDN Pin Bias Current			65		$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Note 2: The LT1937E is guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

SW (Pin 1): Switch Pin. Connect inductor/diode here. Minimize trace area at this pin to reduce EMI.
GND (Pin 2): Ground Pin. Connect directly to local ground plane.
FB (Pin 3): Feedback Pin. Reference voltage is 95 mV . Connect cathode of lowest LED and resistor here. Calculate resistor value according to the formula:
$R_{F B}=95 \mathrm{mV} / \mathrm{L}_{\mathrm{LED}}$

SHDN (Pin 4): Shutdown Pin. Connect to 1.5 V or higher to enable device; 0.4 V or less to disable device.
GND (Pin 5, SC70 Package): Ground Pin. Connect to Pin 2 and to local ground plane
$V_{\text {IN }}$ (Pin 5/Pin 6 SC70 Package): Input Supply Pin. Must be locally bypassed.

BLOCK DIAGRAM

Figure 2. LT1937 Block Diagram

OPERATION

The LT1937 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram in Figure 2. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of $A 2$, the $S R$ latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of 95 mV . In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered.

Minimum Output Current

The LT1937 can regulate three series LEDs connected at low output currents, down to approximately 4 mA from a 4.2 V supply, without pulse skipping, using the same external components as specified for 15 mA operation. As current is further reduced, the device will begin skipping
pulses. This will result in some low frequency ripple, although the LED current remains regulated on an average basis down to zero. The photo in Figure 3 details circuit operation driving three white LEDs at a 4mA load. Peak inductor current is less than 50 mA and the regulator operates in discontinuous mode, meaning the inductor current reaches zero during the discharge phase. After the inductor current reaches zero, the switch pin exhibits ringing due to the LC tank circuit formed by the inductor in combination with switch and diode capacitance. This ringing is not harmful; far less spectral energy is contained in the ringing than in the switch transitions. The ringing can be damped by application of a 300Ω resistor across the inductor, although this will degrade efficiency.

Figure 3. Switching Waveforms at $I_{\text {LED }}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}$

APPLICATIONS INFORMATION

Inductor Selection
A $22 \mu \mathrm{H}$ inductor is recommended for most LT1937 applications. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1.2 MHz and low DCR (copper wire resistance). Some inductors in this category with small size are listed in Table 1. The efficiency comparison of different inductors is shown in Figure 4.
Table 1. Recommended Inductors

PART NUMBER	DCR (Ω)	CURRENT RATING (mA)	MANUFACTURER
LQH3C220	0.71	250	Murata 814-237-1431 www.murata.com
ELJPC220KF	4.0	160	Panasonic 714-373-7334 www.panasonic.com
CDRH3D16-220	0.53	350	Sumida 847-956-0666 www.Sumida.com
LB2012B220M	1.7	75	Taiyo Yuden 408-573-4150 www.t-yuden.com
LEM2520-220	5.5	125	Taiyo Yuden 408-573-4150 www.t-yuden.com

Figure 4. Efficiency Comparison of Different Inductors

Capacitor Selection

The small size of ceramic capacitors makes them ideal for LT1937 applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Y5V or $\mathrm{Z5U}$. A $1 \mu \mathrm{~F}$ input capacitor and a $0.22 \mu \mathrm{~F}$ output capacitor are sufficient for most LT1937 applications.
Table 2. Recommended Ceramic Capacitor Manufacturers

MANUFACTURER	PHONE	URL
Taiyo Yuden	$408-573-4150$	www.t-yuden.com
AVX	$843-448-9411$	www.avxcorp.com
Murata	$814-237-1431$	www.murata.com
Kemet	$408-986-0424$	www.kemet.com

Diode Selection

Schottky diodes, with their low forward voltage drop and fast reverse recovery, are the ideal choices for LT1937 applications. The forward voltage drop of a Schottky diode represents the conduction losses in the diode, while the diode capacitance (C_{T} or C_{D}) represents the switching losses. For diode selection, both forward voltage drop and diode capacitance need to be considered. Schottky diodes with higher current ratings usually have lower forward voltage drop and larger diode capacitance, which can cause significant switching losses at the 1.2MHz switching frequency of the LT1937. A Schottky diode rated at 100 mA to 200 mA is sufficient for most LT1937 applications. Some recommended Schottky diodes are listed in Table 3.

Table 3. Recommended Schottky Diodes

PART NUMBER	FORWARD CURRENT (mA)	VOLTAGE DROP (V)	DIODE CAPACITANCE (pF)	MANUFACTURER
CMDSH-3	100	$\begin{aligned} & 0.58 \text { at } \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 7.0 \text { at } \\ & 10 \mathrm{~V} \end{aligned}$	Central 631-435-1110 www.centralsemi.com
CMDSH2-3	200	$\begin{aligned} & \hline 0.49 \mathrm{at} \\ & 200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \mathrm{at} \\ & 10 \mathrm{~V} \end{aligned}$	Central 631-435-1110 www.centralsemi.com
BAT54	200	$\begin{aligned} & 0.53 \mathrm{at} \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 10 \mathrm{at} \\ & 25 \mathrm{~V} \end{aligned}$	Zetex 631-543-7100 www.zetex.com

APPLICATIONS InFORMATION

LED Current Control

The LED current is controlled by the feedback resistor (R1 in Figure 1). The feedback reference is 95 mV . The LED current is $95 \mathrm{mV} / \mathrm{R} 1$. In order to have accurate LED current, precision resistors are preferred (1% is recommended). The formula and table for R1 selection are shown below.

$$
\begin{equation*}
\mathrm{R} 1=95 \mathrm{mV} / \mathrm{L}_{\mathrm{LED}} \tag{1}
\end{equation*}
$$

Table 4. R1 Resistor Value Selection

$\mathbf{l}_{\text {LED }}(\mathrm{mA})$	R1 (Ω)
5	19.1
10	9.53
12	7.87
15	6.34
20	4.75

Open-Circuit Protection

In the cases of output open circuit, when the LEDs are disconnected from the circuit or the LEDs fail, the feedback voltage will be zero. The LT1937 will then switch at a high duty cycle resulting in a high output voltage, which may cause the SW pin voltage to exceed its maximum 36 V rating. A zener diode can be used at the output to limit the voltage on the SW pin (Figure 5). The zener voltage should be larger than the maximum forward voltage of the LED string. The current rating of the zener should be larger than 0.1 mA .

Figure 5. LED Driver with Open-Circuit Protection

Dimming Control

There are four different types of dimming control circuits: 1. Using a PWM Signal to $\overline{\text { SHDN }}$ Pin

With the PWM signal applied to the $\overline{\text { SHDN }}$ pin, the LT1937 is turned on or off by the PWM signal. The LEDs operate at either zero or full current. The average LED current increases proportionally with the duty cycle of the PWM signal. A 0\% duty cycle will turn off the LT1937 and corresponds to zero LED current. A 100\% duty cycle corresponds to full current. The typical frequency range of the PWM signal is 1 kHz to 10 kHz . The magnitude of the PWM signal should be higher than the minimum SHDN voltage high. The switching waveforms of the SHDN pin PWM control are shown in Figures 6a and 6b.

Figure 6. PWM Dimming Control Using the $\overline{\text { SHDN }}$ Pin

APPLICATIONS INFORMATION

2. Using a DC Voltage

For some applications, the preferred method of brightness control is a variable DC voltage to adjust the LED current. The dimming control using a DC voltage is shown in Figure 7. As the DC voltage increases, the voltage drop on R2 increases and the voltage drop on R1 decreases. Thus, the LED current decreases. The selection of R2 and R3 will make the current from the variable DC source much smaller than the LED current and much larger than the FB pin bias current. For $V_{D C}$ range from 0 V to 2 V , the selection of resistors in Figure 7 gives dimming control of LED current from 0 mA to 15 mA .

3. Using a Filtered PWM Signal

The filtered PWM signal can be considered as an adjustable DC voltage. It can be used to replace the variable DC voltage source in dimming control. The circuit is shown in Figure 8.

Figure 7. Dimming Control Using a DC Voltage

Figure 8. Dimming Control Using a Filtered PWM Signal

4. Using a Logic Signal

For applications that need to adjust the LED current in discrete steps, a logic signal can be used as shown in Figure 9. R1 sets the minimum LED current (when the NMOS is off). RINC sets how much the LED current increases when the NMOS is turned on. The selection of R1 and RINC follows formula (1) and Table 4.

Start-up and Inrush Current

To achieve minimum start-up delay, no internal soft-start circuit is included in LT1937. When first turned on without an external soft-start circuit, inrush current is about 200 mA as shown in Figure 10. If soft-start is desired, the recommended circuit and the waveforms are shown in Figure 11. If both soft-start and dimming are used, a 10kHz PWM signal on SHDN is not recommended. Use a lower frequency or implement dimming through the FB pin as shown in Figures 7, 8 or 9.

Figure 9. Dimming Control Using a Logic Signal

Figure 10. Start-Up Waveforms Without Soft-Startup Circuit

APPLICATIONS INFORMATION

(11a) Recommended Soft-Startup Circuit

(11b) Soft-Startup Waveforms

Figure 11. Recommended Soft-Startup Circuit and Waveforms

Board Layout Consideration

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To maximize efficiency, switch rise and fall times are made as short as possible. To prevent electromagnetic interference (EMI) problems, proper layout of the high frequency switching path is essential. The voltage signal of the SW pin has sharp rise and fall edges. Minimize the length and
area of all traces connected to the SW pin and always use a ground plane under the switching regulator to minimize interplane coupling. In addition, the ground connection for the feedback resistor R1 should be tied directly to the GND pin and not shared with any other component, ensuring a clean, noise-free connection. Recommended component placement is shown in Figure 12.

Figure 12. Recommended Component Placement

TYPICAL APPLICATIONS

Li-Ion to Two White LEDs

Li-Ion to Three White LEDs

Two LED Efficiency

1937 TA05a

Three LED Efficiency

1937 TA01b

TYPICAL APPLICATIONS

Li-Ion to Five White LEDs

5V to Seven White LEDs

Five LED Efficiency

Seven LED Efficiency

S5 Package
 5-Lead Plastic TSOT-23

(Reference LTC DWG \# 05-08-1635)

SC6 Package
6-Lead Plastic SC70
(Reference LTC DWG \# 05-08-1638)

\qquad

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR

TYPICAL APPLICATION

Li-Ion to Four White LEDs

1937 TA02b

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1615	Micropower Step-Up Converter in ThinSOT	Up to 36 V Output; $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}, \mathrm{V}_{\mathrm{IN}}$: 1 V to 15 V , Can Drive Up to Six LEDs, ThinSOT Package
LT1618	Constant Current/Voltage Step-Up DC/DC	1.4MHz, Drives Up to 20 LEDs, MS10 Package
LT1932	White LED Step-Up Converter in ThinSOT	$1.2 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$ to 10 V , Drives Up to Eight LEDs from 3V Input, ThinSOT Package
LT1944/LT1944-1	Dual Micropower Step-Up Converter	$V_{I N}=1.2 \mathrm{~V}$ to 15 V , Two Independent DC/DCs, Up to $36 \mathrm{~V}_{\text {OUT }}, 20 \mu \mathrm{~A} \mathrm{I}_{Q}$, MS10 Package
LTC ${ }^{\circledR} 3200 /$ LTC3200-5	Low Noise White LED Charge Pump Converter For up to 6 LEDs	2MHz, 100mA, No Inductor Required, MS8/ThinSOT Packages
LTC3201	Ultralow Noise White LED Charge Pump Converter For up to 6 LEDs	$1.8 \mathrm{MHz}, 100 \mathrm{~mA}$, No Inductor Required, DAC Brightness Adj, MS8 Package
LTC3202	Low Noise White LED Fractional Charge Pump Converter For up to 6 LEDs	1.5MHz, 125 mA , No Inductor Required, Digital Brightness Adjust, MS8 Package

