1 Megabit

 $(128K \times 8)$

Erasable

CMOS

EPROM

UV

Features

- Fast Read Access Time 45 ns
- **Low Power CMOS Operation**

100 μA max. Standby

25 mA max. Active at 5 MHz (AT27C010L)

40 mA max. Active at 5 MHz (AT27C010)

Wide Selection of JEDEC Standard Packages 32-Lead 600-mil PDIP and Cerdip 32-Pad PLCC and LCC

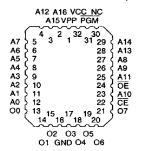
32-Lead TSOP

- 5 V ± 10% Supply
- **High Reliability CMOS Technology** 2000 V ESD Protection 200 mA Latchup Immunity
- Rapid Programming 100 µs/byte (typical)
- **Two-line Control**
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

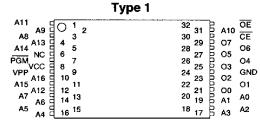
Description

The AT27C010/L chip family is a low-power, high performance 1,048,576 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized as 128K x 8 bits. They require only one 5 V power supply in normal read mode operation. Any byte can be accessed in less than 45 ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

Two power versions are offered. In read mode, the AT27C010 typically consumes 25 mA while the AT27C010L takes only 8 mA. Standby mode supply current for both parts is typically less than 10 µA. (continued)


Pin Configurations

Pin Name	Function
A0-A16	Addresses
00-07	Outputs
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Strobe
NC	No Connect


CDIP, PDIP Top View

VPP 0 0 A16 0 0 A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 5 6 7 8 9 10	32 31 30 29 28 27 26 25 24 23	assonasasasasasas	VCC PGM NC A14 A13 A8 A9 A11 OE A10 CE
A6 [2	27	F.	
A6 □	6	27	Þ	A8
A5 □		26	Þ	A9
A4 🗆	8	25	Þ	A11
A3 📮	9	24	Þ	OF
A2 [23	b	A10
A1 C		22	Ь	CE
AO 🗆	12	21 20 19	Ь	07
രാ	13	20	Ъ	06
00 0	14	19	Ь	05
O2 🗆	15	18	Ь	O5 O4
GND C	16	17	Ь	Оŝ
_			1	

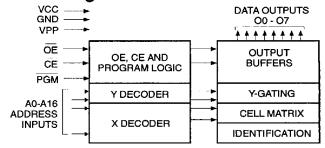
LCC, JLCC, PLCC Top

TSOP Top View Type 1

3-95

1074177 0008145 T14

Description (Continued)


The AT27C010/L comes in a choice of industry standard JEDEC-approved packages including: one-time programmable (OTP) plastic PDIP, PLCC, and TSOP, as well as windowed ceramic Cerdip and LCC. All devices feature two line control $(\overline{CE}, \overline{OE})$ to give designers the flexibility to prevent bus contention.

With high density 128K byte storage capability, the AT27C010/L allow firmware to be stored reliably and to be accessed by the system without the delays of mass storage media. Atmel's 27C010/L have additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C010/L is erased (all outputs read as VOH) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15 W-sec/cm2. To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C	;
Storage Temperature65°C to +150°C	;
Voltage on Any Pin with Respect to Ground2.0 V to +7.0 V ⁽¹⁾)
Voltage on A9 with Respect to Ground2.0 V to +14.0 V ⁽¹⁾)
V _{PP} Supply Voltage with Respect to Ground2.0 V to +14.0 V ⁽¹⁾)
Integrated UV Erase Dose7258 W•sec/cm ²	!

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. Minimum voltage is -0.6 V dc which may undershoot to -2.0 V for pulses of less than 20 ns. Maximum output pin voltage is $V_{CC} + 0.75 \text{ V}$ dc which may overshoot to +7.0 V for pulses of less than 20 ns.

Operating Modes

Mode \ Pin	CE	ŌĒ	PGM	Ai	VPP	Vcc	Outputs
Read	VIL	V _{tL}	X ⁽¹⁾	Ai	Х	Vcc	Dout
Output Disable	X	ViH	Х	X	Х	Vcc	High Z
Standby	ViH	Х	Х	Х	Х	Vcc	High Z
Rapid Program ⁽²⁾	ViL	ViH	VIL	Ai	V _{PP}	Vcc	DIN
PGM Verify	VIL	VIL	V _{IH}	Ai	VPP	Vcc	Dout
PGM Inhibit	VIH	Х	Х	Х	V_{PP}	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	ViL	Х	A9=VH (3) A0=VIH or VIL A1-A16=VIL	X	Vcc	Identification Code

Notes: 1. X can be V_{IL} or V_{IH}.

2. Refer to Programming characteristics.

3. $V_H = 12.0 \pm 0.5 \text{ V}.$

4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (VIL) to select the Manufacturer's Identification byte and high (VIH) to select the Device Code byte.

AT27C010/L 3-96

D.C. and A.C. Operating Conditions for Read Operation

	AT27C010 / AT27C010L											
		-45	-55	-70	-90	-12	-15	-20				
Operating	Com.	0°C - 70°C										
Temp.		-40°C - 85°C										
(Case)	Mil.		1	-55°C-125°C	-55°C-125°C	-55°C-125°C	-55°C-125°C	-55°C-125°C				
Vcc Suppl	.y	5 V ± 10%										

= Advance Information

D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		•	Min	Max	Units
ILI	Input Load Current	Viv 0 V to Voo		Com.,Ind.		±1	μА
1LI	Input Load Current	AIN = 0 A 10 AGG	$\begin{array}{c} A = 0 \text{ V to Vcc} & \frac{\text{Com.,Ind.}}{\text{Mil.}} \\ A = 0 \text{ V to Vcc} & \frac{\text{Com.,Ind.}}{\text{Mil.}} \\ A = 0 \text{ V to Vcc} & \frac{\text{Com.,Ind.}}{\text{Mil.}} \\ A = 0 \text{ V to Vcc} & \frac{\text{Com.,Ind.}}{\text{Mil.}} \\ A = 0 \text{ V to Vcc} \\$	±5	μΑ		
li o	Output Lookogo Current	Vous OV to Vos		Com.,Ind.		±5	μΑ
lio	Output Leakage Current	A001 = 0 A 10 ACC	;	Mil.	2	±10	μΑ
IPP1 (2)	V _{PP} ⁽¹⁾ Read/Standby Current	V _{PP} = V _{CC}				10	μА
la-	V _{CC} ⁽¹⁾ Standby Current	I _{SB1} (CMOS), CE	= Vcc ± 0.3 V		100	μΑ	
IsB	VCC - Standby Current	I _{SB2} (TTL), $\overline{\text{CE}} = 2$	2.0 to V _{CC+} 0.5 \		1	mA	
	Voc Active Current	f = 5 MHz, <u>lou</u> T = 0 mA, CE = V _{II}	AT0700101	Com.		25	mA
lee			A12/CUIUL	Ind.,Mil.		30	mA
,00	VCC Active Current		AT070010	Com.		40	mA
$I_{SB2} (TTL), CE = 2.0 \text{ to } V_{CC} + 0.5 \text{ V}$ $I_{CC} V_{CC} \text{ Active Current} \qquad \qquad f = 5 \text{ MHz}, \\ \qquad \qquad \frac{I_{OUT} = 0 \text{ mA},}{CE} = V_{IL} \qquad \qquad \frac{AT27C010L}{AT27C010} \qquad \frac{Com.}{Ind.,N}$ $V_{IL} \qquad \qquad I_{I} \text{ Input Low Voltage}$	Ind.,Mil.		50	mA			
VIL	Input Low Voltage				-0.6	0.8	٧
ViH	Input High Voltage				2.0	Vcc+0.5	V
VoL	Output Low Voltage	lol = 2.1 mA				.45	٧
		loн = -100 μA			Vcc-0.3		٧
V _{OH}	Output High Voltage	I _{OH} = -2.5 mA			3.5		٧
		loн = -400 μA			2.4		V

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

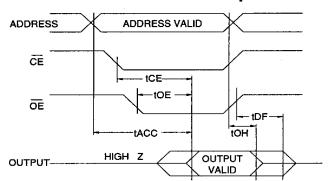
A.C. Characteristics for Read Operation

				AT27C010 / AT27C010L														
				-4	45	-5	5	-7	70	-6	90	-1	12	-1	15	-2	20	
Symbol	Parameter	Conditio	n	Min	Мах	Min	Мах	Min	Max	Units								
tacc (3)	Address to	CE = OE	Com., Ind.		45		55		70		90		120		150		200	ns
7,00	Output Delay	= V _{IL}	Mil.						70		90		120		150		200	ns
tcE (2)	CE to Output Delay	OE = VIL			45		55		70		90		120		150		200	ns
toE (2,3)	OE to Output Delay	CE = V _{IL}			20		25		30		35		35		40		70	ns
t _{DF} (4,5)	OE or CE High to Output Float				20		20		25		25		30		35		40	ns
tон	Output Hold from Address, CE or OE, whichever occurred f	irst		7		7		7		0		0		0		0		ns

Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

AMEL

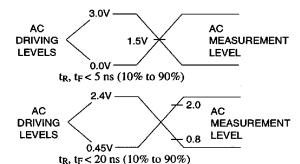
= Advance Information


3-97

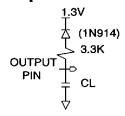
1074177 0008147 897 ■

VPP may be connected directly to V_{CC}, except during programming. The supply current would then be the sum of I_{CC} and I_{PP}.

A.C. Waveforms for Read Operation (1)


Notes:

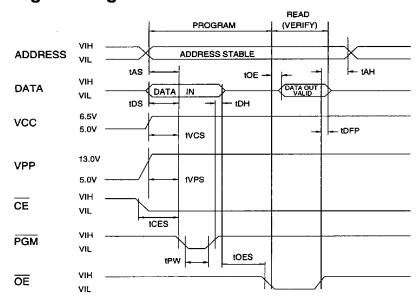
- Timing measurement references are 0.8 V and 2.0 V. Input AC driving levels are 0.45 V and 2.4 V, unless otherwise specified. Timing measurement reference is 1.5 V for -45 and -55 parts. Input AC driving levels are 0.0 V and 3.0 V for -45 and -55 parts, unless otherwise specified.
- OE may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.
- OE may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- 4. This parameter is only sampled and is not 100% tested.
- Output float is defined as the point when data is no longer driven.


Input Test Waveforms and Measurement Levels

For -45 and -55 devices only:

For -70, -90, -12, -15, and -20 devices:

Output Test Load


Note: C_L = 100 pF including jig capacitance, except for the -45 and -55 devices, where C_L = 30 pF.

Pin Capacitance $(f = 1 \text{ MHz}, T = 25^{\circ}\text{C})^{(1)}$

	Тур	Max	Units	Conditions
CiN	4	8	pF	V _{IN} = 0 V
Cout	8	12	pF	Vout = 0 V

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.8 V for V_{IL} and 2.0 V for $V_{IH}.$
- 2. toE and toFP are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27C010/L a 0.1-μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

3-98 AT27C010/L

1074177 0008148 723

D.C. Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$

Sym-		Test	Li	mits	
bol	Parameter	Conditions	Min	Max	Units
ł <u>L</u> I	Input Load Current	$V_{!N}=V_{1L},V_{1H}$		10	μА
VIL	Input Low Level	(All Inputs)	-0.6	8.0	٧
VIH	Input High Level		2.0	Vcc+1	٧
Vol	Output Low Volt.	loL=2.1 mA		.45	٧
Voн	Output High Volt.	I _{OH} =-400 μA	2.4		٧
lcc2	V _{CC} Supply Curren (Program and Veri			40	mA
IPP2	V _{PP} Supply Current	CE=PGM=V _{IL}	-	20	mA
VID	A9 Product Identification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

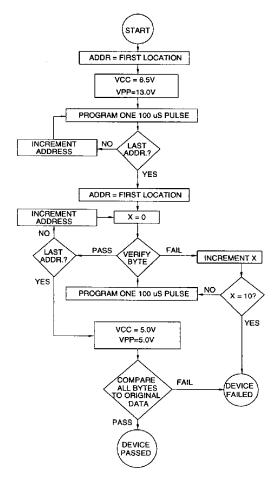
 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$

Sym-	_	Test Conditions*	Lir		
bol	Parameter	(see Note 1)	Min	Max	Units
tas	Address Setup Tir	me	2		μS
tces	CE Setup Time		2		μS
toes	OE Setup Time		2		μS
tos	Data Setup Time		2		μS
tah	Address Hold Tim	e	0		μS
tDH	Data Hold Time		2		μS
tDFP	OE High to Output Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	V _{CC} Setup Time		2		μS
tpw	PGM Program Pulse Width	(Note 3)	95	105	μS
toE	Data Valid from O	Ē		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20 ns
Input Pulse Levels 0.45 V to	2.4 V
Input Timing Reference Level 0.8 V to	2.0 V
Output Timing Reference Level 0.8 V to	2.0 V

Notes:


- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is 100 μ sec \pm 5%.

Atmel's 27C010/L Integrated Product Identification Code

		Pins								Hex
Codes	A0	07	O 6	O 5	04	ОЗ	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	0	1	0	1	05

Rapid Programming Algorithm

A 100 µs PGM pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5 V and V_{PP} is raised to 13.0 V. Each address is first programmed with one 100 µs PGM pulse without verification. Then a verification / reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 µs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0 V and V_{CC} to 5.0 V. All bytes are read again and compared with the original data to determine if the device passes or fails.

AIMEL

3-99

1074177 0008149 66T I

= Advance Information

tacc	Icc (mA)			B - 1	On and an Bours	
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
45	40	0.1	AT27C010-45DC AT27C010-45JC AT27C010-45LC AT27C010-45PC AT27C010-45TC	32DW6 32J 32LW 32P6 32T	Commercial (0°C to 70°C)	
45	50	0.1	AT27C010-45DI AT27C010-45JI AT27C010-45LI AT27C010-45PI AT27C010-45TI	32DW6 32J 32LW 32P6 32T	Industrial (-40°C to 85°C)	
55	40	0.1	AT27C010-55DC AT27C010-55JC AT27C010-55LC AT27C010-55PC AT27C010-55TC	32DW6 32J 32LW 32P6 32T	Commercial (0°C to 70°C)	
55	50	0.1	AT27C010-55DI AT27C010-55JI AT27C010-56LI AT27C010-55PI AT27C010-55TI	32DW6 32J 32LW 32P6 32T	Industrial (-40°C to 85°C)	
70	40	0.1	AT27C010-70DC AT27C010-70JC AT27C010-70LC AT27C010-70PC AT27C010-70TC	32DW6 32J 32LW 32P6 32T	Commercial (0°C to 70°C)	
70	50	0.1	AT27C010-70DI AT27C010-70JI AT27C010-70LI AT27C010-70PI AT27C010-70DM	32DW6 32J 32LW 32P6 32T	Industrial (-40°C to 85°C) Military	
90	40	0.1	AT27C010-70LM AT27C010-90DC AT27C010-90JC AT27C010-90KC AT27C010-90LC AT27C010-90PC AT27C010-90TC	32LW 32DW6 32J 32KW 32LW 32P6 32T	(-55°C to 125°C) Commercial (0°C to 70°C)	
90	50	0.1	AT27C010-90DI AT27C010-90JI AT27C010-90KI AT27C010-90LI AT27C010-90PI AT27C010-90TI	32DW6 32J 32KW 32LW 32P6 32T	Industrial (-40°C to 85°C)	
			AT27C010-90DM AT27C010-90KM AT27C010-90LM	32DW6 32KW 32LW	Military (-55°C to 125°C)	

3-100

AT27C010/L

1074177 0008150 381 **=**

†ACC	lcc	(mA)	Ordering Code	Package	
(ns)	Active	Standby			Operation Range
90	50	0.1	AT27C010-90DM/883 AT27C010-90KM/883 AT27C010-90LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
120	40	0.1	AT27C010-12DC AT27C010-12JC AT27C010-12KC AT27C010-12LC AT27C010-12PC AT27C010-12TC	32DW6 32J 32KW 32LW 32P6 32T	Commercial (0°C to 70°C)
120	50	0.1	AT27C010-12DI AT27C010-12JI AT27C010-12KI AT27C010-12LI AT27C010-12PI AT27C010-12TI	32DW6 32J 32KW 32LW 32P6 32T	Industrial (-40°C to 85°C)
			AT27C010-12DM AT27C010-12KM AT27C010-12LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010-12DM/883 AT27C010-12KM/883 AT27C010-12LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	40	0.1	AT27C010-15DC AT27C010-15JC AT27C010-15KC AT27C010-15LC AT27C010-15PC AT27C010-15TC	32DW6 32J 32KW 32LW 32P6 32T	Commercial (0°C to 70°C)
150	50	0.1	AT27C010-15DI AT27C010-15JI AT27C010-15KI AT27C010-15LI AT27C010-15PI AT27C010-15TI	32DW6 32J 32KW 32LW 32P6 32T	Industrial (-40°C to 85°C)
			AT27C010-15DM AT27C010-15KM AT27C010-15LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010-15DM/883 AT27C010-15KM/883 AT27C010-15LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	40	0.1	AT27C010-20DC AT27C010-20JC AT27C010-20KC AT27C010-20LC AT27C010-20PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)

3-101

tacc	lcc	(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby			
200	50	0.1	AT27C010-20DI AT27C010-20JI AT27C010-20KI AT27C010-20LI AT27C010-20PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)
			AT27C010-20DM AT27C010-20KM AT27C010-20LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010-20DM/883 AT27C010-20KM/883 AT27C010-20LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	50	0.1	5962-89614 07 M XX 5962-89614 07 M YX	32DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
120	50	0.1	5962-89614 06 M XX 5962-89614 06 M YX	32DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	50	0.1	5962-89614 05 M XX 5962-89614 05 M YX	32DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
170	50	0.1	5962-89614 04 M XX 5962-89614 04 M YX	32DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	50	0.1	5962-89614 03 M XX 5962-89614 03 M YX	32DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	50	0.1	5962-89614 02 M XX 5962-89614 02 M YX	32DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	50	0.1	5962-89614 01 M XX 5962-89614 01 M YX	32DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

AT27C010/L

1074177 0008152 154 **=**

tacc	Icc (mA)				
(ns)	Active	Standby	Ordering Code	Package	Operation Range
45	25	0.1	AT27C010L-45DC AT27C010L-45JC AT27C010L-45LC AT27C010L-45PC AT27C010L-45TC	32DW6 32J 32LW 32P6 32T	Commercial (0°C to 70°C)
45	30	0.1	AT27C010L-45DI AT27C010L-45JI AT27C010L-46LI AT27C010L-45PI AT27C010L-45TI	32DW6 32J 32LW 32P6 32T	Industrial (-48°C to 85°C)
55	25	0.1	AT27C010L-55DC AT27C010L-55JC AT27C010L-55LC AT27C010L-55PC AT27C010L-55TC	32DW6 32J 32LW 32P6 32T	Commercial (0°C to 70°C)
55	30	0.1	AT27C010L-55DI AT27C010L-65JI AT27C010L-65LI AT27C010L-55PI AT27C010L-55TI	32DW6 32J 32LW 32P6 32T	Industrial (-40°C to 85°C)
70	25	0.1	AT27C010L-70DC AT27C010L-70JC AT27C010L-70KC AT27C010L-70LC AT27C010L-70PC AT27C010L-70TC	32DW6 32J 32KW 32LW 32P6 32T	Commercial (0°C to 70°C)
			AT27C010L-70DM AT27C010L-70LM	32DW6 32LW	Military (-55°C to 125°C)
70	30	0.1	AT27C010L-70DI AT27C010L-70JI AT27C010L-70KI AT27C010L-70LI AT27C010L-70PI AT27C010L-70TI	32DW6 32J 32KW 32LW 32P6 32T	Industrial (-40°C to 85°C)
90	25	0.1	AT27C010L-90DC AT27C010L-90JC AT27C010L-90KC AT27C010L-90LC AT27C010L-90PC AT27C010L-90TC	32DW6 32J 32KW 32LW 32P6 32T	Commercial (0°C to 70°C)

3-103

1074177 0008153 090

tacc	Icc (mA)		Oudoring Code	Dealman	Oncertion Donne	
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
90	30	0.1	AT27C010L-90DI AT27C010L-90JI AT27C010L-90KI AT27C010L-90LI AT27C010L-90PI AT27C010L-90TI	32DW6 32J 32KW 32LW 32P6 32T	Industrial (-40°C to 85°C)	
			AT27C010L-90DM AT27C010L-90KM AT27C010L-90LM	32DW6 32KW 32LW	Military (-55°C to 125°C)	
			AT27C010L-90DM/883 AT27C010L-90KM/883 AT27C010L-90LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
120	25	0.1	AT27C010L-12DC AT27C010L-12JC AT27C010L-12KC AT27C010L-12LC AT27C010L-12PC AT27C010L-12TC	32DW6 32J 32KW 32LW 32P6 32T	Commercial (0°C to 70°C)	
120	30	0.1	AT27C010L-12DI AT27C010L-12JI AT27C010L-12KI AT27C010L-12LI AT27C010L-12PI AT27C010L-12TI	32DW6 32J 32KW 32LW 32P6 32T	Industrial (-40°C to 85°C)	
			AT27C010L-12DM AT27C010L-12KM AT27C010L-12LM	32DW6 32KW 32LW	Military (-55°C to 125°C)	
			AT27C010L-12DM/883 AT27C010L-12KM/883 AT27C010L-12LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
150	25	0.1	AT27C010L-15DC AT27C010L-15JC AT27C010L-15LC AT27C010L-15KC AT27C010L-15PC AT27C010L-15TC	32DW6 32J 32LW 32KW 32P6 32T	Commercial (0°C to 70°C)	
150	30	0.1	AT27C010L-15DI AT27C010L-15JI AT27C010L-15KI AT27C010L-15LI AT27C010L-15PI AT27C010L-15TI	32DW6 32J 32KW 32LW 32P6 32T	Industrial (-40°C to 85°C)	
			AT27C010L-15DM AT27C010L-15KM AT27C010L-15LM	32DW6 32KW 32LW	Military (-55°C to 125°C)	
		·	AT27C010L-15DM/883 AT27C010L-15KM/883 AT27C010L-15LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125)	

3-104

AT27C010/L =

■ 1074177 0008154 T27 ■

tacc	lcc (mA)		Oudovin a Condo	D. 1		
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
200	25	0.1	AT27C010L-20DC AT27C010L-20JC AT27C010L-20KC AT27C010L-20LC AT27C010L-20PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)	
200	30	0.1	AT27C010L-20DI AT27C010L-20JI AT27C010L-20KI AT27C010L-20LI AT27C010L-20PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)	
			AT27C010L-20DM AT27C010L-20KM AT27C010L-20LM	32DW6 32KW 32LW	Military (-55°C to 125°C)	
			AT27C010L-20DM/883 AT27C010L-20KM/883 AT27C010L-20LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

Package Type					
32DW6	32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)				
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)				
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)				
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)				
32P6	32 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)				
32T	32 Lead, Plastic Thin Small Outline Package OTP (TSOP)				

3-105

■ 1074177 0008155 963 |