

64Mbit (x8/ x16, Multiple Bank, Boot Block) Flash Memory and 16Mbit Pseudo SRAM, 3V Supply, Multiple Memory Product

PRELIMINARY DATA

FEATURES SUMMARY

- MULTIPLE MEMORY PRODUCT
- 64Mbit (8M x8 or 4M x16), Multiple Bank, Page, Boot Block, Flash Memory
- 16Mbit (1M x 16) Pseudo Static RAM
- SUPPLY VOLTAGE
 - $V_{CCF} = V_{CCP} = 2.7 \text{ to } 3.3 \text{V}$
 - V_{PPF} = 12V for Fast Program (optional)
- ACCESS TIME: 70, 90ns
- LOW POWER CONSUMPTION
- ELECTRONIC SIGNATURE
 - Manufacturer Code: 0020h
 - Device Code: 227Eh + 2202h + 2201h

FLASH MEMORY

- ASYNCHRONOUS PAGE READ MODE
- Page Width: 4 Words
- Page Access: 25, 30ns
- PROGRAMMING TIME
 - 10µs per Byte/Word typical
 - 4 Words/ 8 Bytes at-a-time Program
- MEMORY BLOCKS
 - Quadruple Bank Memory Array: 8Mbits + 24Mbits + 24Mbits + 8Mbits
 - Parameter Blocks (at both Top and Bottom)
- **DUAL OPERATIONS**
 - While Program or Erase in a group of banks (from 1 to 3), Read in any of the other banks
- PROGRAM/ERASE SUSPEND and RESUME **MODES**
 - Read from any Block during Program Suspend
 - Read and Program another Block during **Erase Suspend**
- UNLOCK BYPASS PROGRAM COMMAND
 - Faster Production/Batch Programming

Figure 1. Package

- V_{PP}/WP PIN for FAST PROGRAM and WRITE **PROTECT**
- TEMPORARY BLOCK UNPROTECTION MODE
- COMMON FLASH INTERFACE
 - 64 bit Security Code
- EXTENDED MEMORY BLOCK
 - Extra block used as security block or to store additional information
- 100,000 PROGRAM/ERASE CYCLES per **BLOCK**

PSRAM

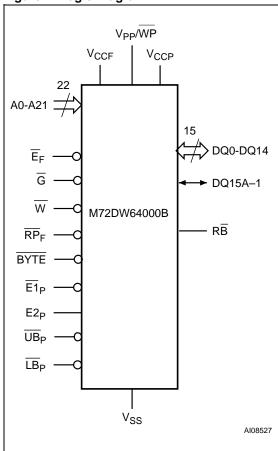
- ACCESS TIME: 70ns
- DEEP POWER DOWN CURRENT: 10µA
- LOW V_{CC} DATA RETENTION: 2.3V
- LOW STANDBY CURRENT: 70µA

October 2003 1/19

т	Δ	R	ı	F	0	F	C	O	N	TF	= N	J٦	ГS

SUMMARY DESCRIPTION	4
Figure 2. Logic Diagram	
Table 1. Signal Names	
Figure 3. LFBGA Connections (Top view through package)	
SIGNAL DESCRIPTION	
Address Inputs (A0-A21).	6
Data Inputs/Outputs (DQ0-DQ7).	
Data Inputs/Outputs (DQ8-DQ14).	
Data Input/Output or Address Input (DQ15A-1)	
Flash-1 Chip Enable (EF)	
Output Enable (G).	
Write Enable (W).	
V _{PP/} Write Protect (V _{PP/} WP).	
Reset/Block Temporary Unprotect (RPF)	
Ready/Busy Output (RB).	
Byte/Word Organization Select (BYTE)	
PSRAM Chip Enable inputs (E1P, E2P)	
PSRAM Upper Byte Enable (UBP)	
PSRAM Lower Byte Enable (LBP)	
V _{CCF} Supply Voltage (2.7 to 3.3V).	
V _{CCP} Supply Voltage (2.7 to 3.3V)	
VSS Ground	/
FUNCTIONAL DESCRIPTION	8
Table 2. Main Operation Modes	8
Figure 4. Functional Block Diagram	9
FLASH MEMORY DEVICES	10
PSRAM DEVICE	10
MAXIMUM RATING	11
Table 3. Absolute Maximum Ratings	11
DC AND AC PARAMETERS	12
Table 4. Operating and AC Measurement Conditions	12
Figure 5. AC Measurement I/O Waveform	
Figure 6. AC Measurement Load Circuit	
Table 5. Device Capacitance	
Table 6. Flash DC Characteristics	13
Table 7. PSRAM DC Characteristics	14

PACKAGE MECHANICAL	15
Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Packa Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanica	•
PART NUMBERING	17
Table 9. Ordering Information Scheme	17
REVISION HISTORY	18
Table 10. Document Revision History	18


SUMMARY DESCRIPTION

The M72DW64000B is a low voltage Multiple Memory Product which combines two memory devices; a 64 Mbit Multiple Bank, Boot Block Flash memory (M29DW640D) and a 16 Mbit Pseudo SRAM. This document should be read in conjunction with the M29DW640D and M69AW024B datasheets.

Recommended operating conditions do not allow more than one of the internal memory devices to be active at the same time.

The memory is offered in an LFBGA73 (8 x 11.6mm, 0.8 mm pitch) package and is supplied with all the bits erased (set to '1').

Figure 2. Logic Diagram

Table 1. Signal Names

Table 1. Signal Names					
A0-A19	Address Inputs common to the Flash Memory and PSRAM Components				
DQ0-DQ7	Data Inputs/Outputs				
DQ8-DQ14	Data Inputs/Outputs				
DQ15A-1	Data Input/Output or Address Input				
G	Output Enable Input				
\overline{W}	Write Enable Input				
VCCF	Flash Memory Power Supply				
V _{PP} /WP	V _{PP} /Write Protect				
V _{SS}	Ground				
V _{CCP}	PSRAM Power Supply				
NC	Not Connected Internally				
Flash Memory	Control Functions				
A20-A21	Address Inputs				
Ē _F	Flash-1 Chip Enable Input				
RP _F	Reset/Block Temporary Unprotect				
RB̄	Ready/Busy Output				
BYTE	Byte/Word Organization Select				
PSRAM Contro	ol Functions				
E1 _P , E2 _P	Chip Enable Inputs				
UB _P	Upper Byte Enable Input				
LB _P	Lower Byte Enable Input				

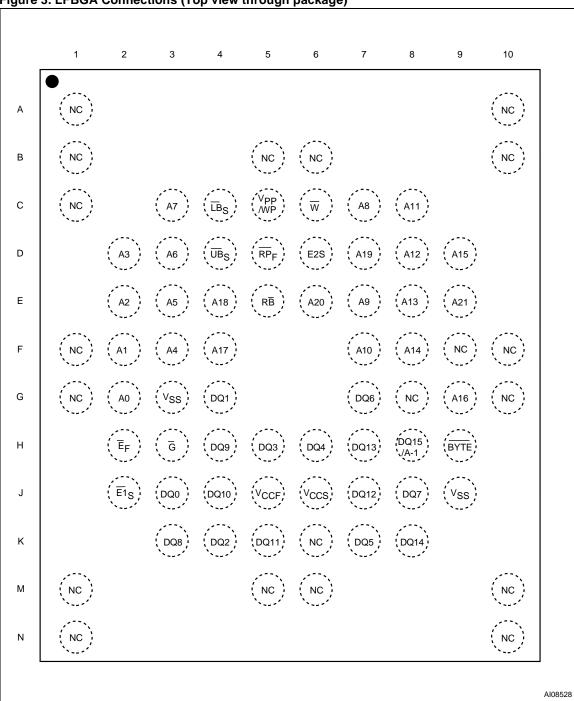


Figure 3. LFBGA Connections (Top view through package)

SIGNAL DESCRIPTION

See Figure 2 Logic Diagram and Table 1,Signal Names, for a brief overview of the signals connected to this device.

Address Inputs (A0-A21). Address lines A0-A19 are common inputs for the Flash Memory and PSRAM components. Address line A20-A21 are inputs for the Flash Memory component. The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. The Flash memory is accessed through the Chip Enable ($\overline{\mathbb{E}}_F$) and Write Enable ($\overline{\mathbb{W}}$) signals, while the PSRAM is accessed through two Chip Enable signals ($\overline{\mathbb{E}}_1$ s and $\overline{\mathbb{E}}_2$ s) and the Write Enable signal ($\overline{\mathbb{W}}$).

Data Inputs/Outputs (DQ0-DQ7). The Data I/O outputs the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the Program/Erase Controller.

Data Inputs/Outputs (DQ8-DQ14). The Data I/O outputs the data stored at the selected address during a Bus Read operation when \overline{BYTE} is High, V_{IH} . When \overline{BYTE} is Low, V_{IL} , these pins are not used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored.

Data Input/Output or Address Input (DQ15A–1). When \overline{BYTE} is High, V_{IH}, this pin behaves as a Data Input/Output pin (as DQ8-DQ14). When \overline{BYTE} is Low, V_{IL}, this pin behaves as an address pin; DQ15A–1 Low will select the LSB of the addressed Word, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data Input/Output to include this pin when \overline{BYTE} is High and references to the Address Inputs to include this pin when \overline{BYTE} is Low except when stated explicitly otherwise.

Flash-1 Chip Enable ($\overline{\mathbf{E}}_{\mathbf{F}}$). The Chip Enable input activates the memory to which it is attached, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is High, V_{IH} , all other pins are ignored.

Output Enable (\overline{G}) . The Output Enable, \overline{G} , controls the Bus Read operation of the Flash Memory and PSRAM components.

Write Enable (\overline{\mathbf{W}}). The Write Enable, $\overline{\mathbf{W}}$, controls the Bus Write operation of the Flash Memory and PSRAM components.

V_{PP}/Write Protect (V_{PP}/WP). The V_{PP}/Write Protect pin provides two functions. The V_{PP} function allows the Flash memory to use an external high voltage power supply to reduce the time re-

quired for Program operations. This is achieved by bypassing the unlock cycles and/or using the multiple Word (2 or 4 at-a-time) or multiple Byte Program (2, 4 or 8 at-a-time) commands. The Write Protect function provides a hardware method of protecting the four outermost boot blocks (two at the top, and two at the bottom of the address space).

When V_{PP}/Write Protect is Low, V_{IL}, the memory protects the four outermost boot blocks; Program and Erase operations in these blocks are ignored while V_{PP}/Write Protect is Low, even when RP_F is at V_{ID}.

When V_{PP}/Write Protect is High, V_{IH}, the memory reverts to the previous protection status of the four outermost boot blocks (two at the top, and two at the bottom of the address space). Program and Erase operations can now modify the data in these blocks unless the blocks are protected using Block Protection.

When V_{PP}/Write Protect is raised to V_{PP} the memory automatically enters the Unlock Bypass mode. When V_{PP}/Write Protect returns to V_{IH} or V_{IL} normal operation resumes. During Unlock Bypass Program operations the memory draws I_{PP} from the pin to supply the programming circuits. See the description of the Unlock Bypass command in the Command Interface section. The transitions from V_{IH} to V_{PP} and from V_{PP} to V_{IH} must be slower than t_{VHVPP}. See the M29DW640D datasheet for more details.

Never raise V_{PP}/Write Protect to V_{PP} from any mode except Read mode, otherwise the memory may be left in an indeterminate state.

The V_{PP}/Write Protect pin must not be left floating or unconnected or the device may become unreliable. A $0.1\mu F$ capacitor should be connected between the V_{PP}/Write Protect pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Unlock Bypass Program, I_{PP}.

Reset/Block Temporary Unprotect (RP_F). The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that have been protected.

Note that if V_{PP}/\overline{WP} is at V_{IL} , then the two outermost boot blocks will remain protected even if \overline{RP}_F is at V_{ID} .

A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, V_{IL}, for at least t_{PLPX}. After Reset/Block Temporary Unprotect goes High, V_{IH}, the memory will be ready for Bus Read and Bus Write operations after t_{PHEL} or

 t_{RHEL} , whichever occurs last. See the M29DW640D datasheet for more details.

Holding RP_F at V_{ID} will temporarily unprotect the protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from V_{IH} to V_{ID} must be slower than temperature.

Ready/Busy Output (RB). The Ready/Busy pin is an open-drain output that can be used to identify when the Flash memory is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, V_{OL}. Ready/Busy is high-impedance during Read mode, Auto Select mode and Erase Suspend mode.

After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy becomes high-impedance.

The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.

Byte/Word Organization Select ($\overline{\text{BYTE}}$). The Byte/Word Organization Select pin is used to switch between the x8 and x16 Bus modes of the Flash memory. When Byte/Word Organization Select is Low, V_{IL}, the Flash memory is in x8 mode, when it is High, V_{IH}, the Flash memory is in x16 mode.

PSRAM Chip Enable inputs (E1p, E2p). The Chip Enable inputs activate the PSRAM control logic, input buffers and decoders. E1p at V_{IH} with E2p at V_{IH} deselects the memory, reducing the power consumption to the standby level, whereas E2p at V_{IL} deselects the memory and reduces the power consumption to the Power-down level, re-

gardless of the level of $\overline{E1}_P$. $\overline{E1}_P$ and $E2_P$ can also be used to control writing to the PSRAM memory array, while \overline{W}_P remains at V_{IL} . It is not allowed to set \overline{E}_{F1} at V_{IL} , $\overline{E1}_P$ at V_{IL} and $E2_P$ at V_{IH} at the same time.

PSRAM Upper Byte Enable (UBp). The Upper Byte Enable input enables the upper byte for PSRAM (DQ8-DQ15). UBp is active low.

PSRAM Lower Byte Enable (\overline{LBp}). The Lower Byte Enable input enables the lower byte for PSRAM (DQ0-DQ7). \overline{LBp} is active low.

V_{CCF} Supply Voltage (2.7 to 3.3V). V_{CCF} provides the power supply for Flash memory operations (Read, Program and Erase).

The Command Interface is disabled when the V_{CCF} Supply Voltage is less than the Lockout Voltage, V_{LKO} . This prevents Bus Write operations from accidentally damaging the data during power up, power down and power surges. If the Program/ Erase Controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid.

A 0.1 μ F capacitor should be connected between the V_{CCF} Supply Voltage pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Program and Erase operations, I_{CC3}.

VccP Supply Voltage (2.7 to 3.3V). VccP provides the power supply for the PSRAM.

V_{SS} Ground. V_{SS} is the ground reference for all voltage measurements in the Flash and PSRAM chips.

FUNCTIONAL DESCRIPTION

The Flash Memory and PSRAM components have a common power supply. The components are distinguished by four chip enable inputs: \overline{E}_F for the Flash memory, and $\overline{E1}_P$ and $E2_P$ for the PSRAM.

Recommended operating conditions do not allow more than one component (Flash Memory or PSRAM) to be in active mode at the same time. The most common example is simultaneous read operations on the Flash Memory and PSRAM components which would result in a data bus contention. Therefore it is recommended, when reading from one memory component, to put the other in the high impedance state (see Table 2 Main Operation Modes for details).

Table 2. Main Operation Modes

Operation Mode ⁽³⁾		E _{F1}	RP _F	G	w	E1 _P	E2 _P	UB _P , LB _P (2)	DQ15-DQ0	
	Read		V _{IH}	V _{IL}	V _{IH}	PSRAM must be in Standby			Flash Memory Data Output	
Flash Memory	Write	V _{IL}	V _{IH}	V _{IH}	V _{IL}	1 OKA	ivi iliust i	de in Glandby	Flash Memory Data Input	
Ä	Output Disable	Х	V_{IH}	V _{IH}	V _{IH}					
Flas	Standby	V _{IH}	V _{CC} ±0.3	Х	Х	Any PS	SRAM m	ode is allowed	Flash Memory Hi-Z	
	Reset	Х	V _{IL}	Х	Х					
	Read		Memory	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{IL}	PSRAM Data Output	
Σ	Write	must be in Standby		V _{IH}	V _{IL}	VIL	V _{IH}	V _{IL}	PSRAM Data Input	
PSRAM	Output Disable	Δην	Flach	V _{IH}	V _{IH}	VIL	V _{IH}	Х		
۵	Standby	Any Flash Memory mode is allowable		Х	Х	V _{IH}	V _{IH}	Х	PSRAM Hi-Z	
	Deep Power Down			Х	Х	Х	V _{IL}	Х		

Note: 1. $X = Don't Care (V_{IL} or V_{IH})$.

- 2. UB_P and LB_P are tied together.
- 3. This table is valid when BYTE = V_{IH}. This table is also valid when BYTE = V_{IL}, with the only difference that DQ15-DQ8 are always high impedance when the Flash Memory components are being accessed.
- 4. For the Block Protect and Unprotect features, refer to the M29DW640D datasheet. Only the In-System Technique is available in the stacked product.
- 5. To read the Manufacturer Code, the Device Code, the Block Protection Status and the Extended Block indicator bit, refer to the "Auto Select Command" in the M29DW640D datasheet.

AI08529

Figure 4. Functional Block Diagram V_{PPF}/WP V_{CCF} A20-A21 = E_F -64 Mbit Flash Memory RB_F $\overline{\mathsf{RP}}_\mathsf{F}$ $\overline{\mathsf{BYTE}}_\mathsf{F}$ A0-A19 DQ15/A-1 to DQ0 V_{DDP} E1_P 16 Mbit PSRAM E2_P $\overline{\mathsf{UB}}_\mathsf{P}$ $\overline{\mathsf{LB}}_\mathsf{P}$

9/19

 V_{SS}

FLASH MEMORY DEVICES

The M72DW64000B contains a 64Mbit Flash memory. For detailed information on how to use it, see the M29DW640D datasheet, which is avail-

able on the STMicroelectronics web site, www.st.com.

PSRAM DEVICE

The M72DW64000B contains a 16Mbit Pseudo SRAM. For detailed information on how to use it, see the M69AW024B datasheet, which is avail-

able from your local STMicroelectronics distributor

MAXIMUM RATING

Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-

plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 3. Absolute Maximum Ratings

Symbol	Parameter	Valu	Value			
Symbol	Farameter	Min	Max	Unit		
T _A	Ambient Operating Temperature (1)	-40	85	°C		
T _{BIAS}	Temperature Under Bias	-50	125	°C		
T _{STG}	Storage Temperature	-65	150	°C		
V _{IO}	Input or Output Voltage	-0.5	V _{CCF} +0.3	V		
V _{CCF}	Flash Supply Voltage	-0.6	4	V		
V _{ID}	Identification Voltage	-0.6	13.5	V		
V _{PPF}	Program Voltage	-0.6	13.5	V		
V _{CCP}	PSRAM Supply Voltage	-0.5	3.6	V		

Note: 1. Depends on range.

DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 4, Operating and AC Measurement Conditions. Designers should check that the operating conditions

in their circuit match the measurement conditions when relying on the quoted parameters.

The operating and AC measurement parameters given in this section (see Table 4 below) correspond to those of the stand-alone Flash Memory and PSRAM components. For compatibility purposes, the M29DW640D voltage range is restricted to V_{CCS} in the stacked product.

Table 4. Operating and AC Measurement Conditions

Parameter	Flash N	lemory	PSF	Units	
rai ailletei	Min	Max	Min	Max	Units
V _{CCF} Supply Voltage	2.7	3.6	-	-	V
V _{CCS} Supply Voltage	-	_	2.7	3.3	V
Ambient Operating Temperature	-40	85	-30	85	°C
Load Capacitance (C _L)	30		50		pF
Input Rise and Fall Times		10		4	ns
Input Pulse Voltages	0 to V _{CCF}		0 to V _{CCP}		V
Input and Output Timing Ref. Voltages	V _{CCF} /2		Vcc	V	

Figure 5. AC Measurement I/O Waveform

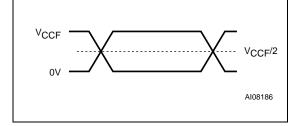
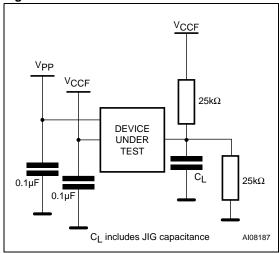



Figure 6. AC Measurement Load Circuit

Table 5. Device Capacitance

Symbol	Parameter	Test Condition	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V, f=1 MHz		12	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V, f=1 MHz		15	pF

Note: Sampled only, not 100% tested.

Table 6. Flash DC Characteristics

Symbol	Parameter	Test Condition		Min	Max	Unit				
ILI	Input Leakage Current	0V ≤ V _{IN}	$0V \le V_{IN} \le V_{CC}$		±1	μA				
I _{LO}	Output Leakage Current	0V ≤ V _{OU}	JT ≤ V _{CC}		±1	μΑ				
I _{CC1} ⁽²⁾	Supply Current (Read)	$\overline{E}_F = V_{IL},$ f = 6N	** **		10	mA				
I _{CC2}	Supply Current (Standby)	$\frac{\overline{E}_F = V_{CC}}{\overline{RP}_F = V_C}$			100	μA				
I _{CC3} (1,2)	Supply Current (Program/	Program/Erase Controller active	V _{PP} /WP = V _{IL} or V _{IH}		20	mA				
000	Erase)	Controller active	$V_{PP}/\overline{WP} = V_{PP}$		20	mA				
V _{IL}	Input Low Voltage			-0.5	0.8	V				
V _{IH}	Input High Voltage				V _{CC} +0.3	V				
V _{PP}	Voltage for Vpp/WP Program Acceleration	V _{CC} = 3.0)V ±10%	11.5	12.5	V				
I _{PP}	Current for Vpp/WP Program Acceleration	V _{CC} = 3.0V ±10%			15	mA				
V _{OL}	Output Low Voltage	I _{OL} = 1.8mA			0.45	V				
VoH	Output High Voltage	I _{OH} = -	100µA	V _{CC} -0.4		V				
V _{ID}	Identification Voltage			11.5	12.5	V				
V_{LKO}	Program/Erase Lockout Supply Voltage							1.8	2.3	V

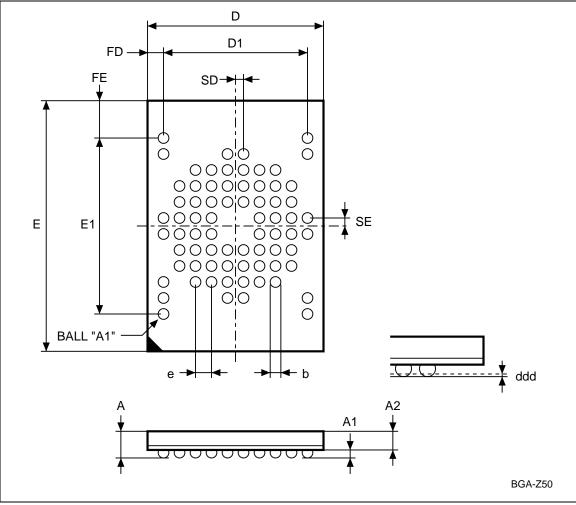
Note: 1. Sampled only, not 100% tested.
2. In Dual operations the Supply Current will be the sum of I_{CC1}(read) and I_{CC3} (program/erase).

Table 7. PSRAM DC Characteristics

Symbol	Parameter	Test Condition	Min	Max	Unit	
I _{DD1} ⁽¹⁾	Operating Supply	$V_{DDP} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} ,		20	mA	
Current	$\overline{E1}_P = V_{IL}, E2_P = V_{IH}, I_{OUT} = 0mA$	t _{RC} /t _{WC} = 1µs		3.0	mA	
lμ	Input Leakage Current	$0V \le V_{IN} \le V_{DDP}$		-1	1	μA
I _{LO}	Output Leakage Current	$0V \le V_{OUT} \le V_{DDP}$		-1	1	μΑ
I _{PD}	Deep Power Down Current	$\begin{split} V_{DDP} &= 3.3 \text{V,} \\ V_{\text{IN}} &= V_{\text{IH}} \text{ or } V_{\text{IL}}, \\ E2_P &\leq 0.2 \text{V} \end{split}$		10	μА	
		$3.1V \leq V_{DDP} \leq 3.3V, \\ V_{IN} = V_{IH} \text{ or } V_{IL}, \\ \overline{E1}_P = V_{IH} \text{ and } E2_P = V_{IH}, I_{OUT} = 0.00$		1.5	mA	
		$2.7V \le V_{DDP} \le 3.1V, \\ V_{IN} = V_{IH} \text{ or } V_{IL}, \\ \overline{E1}_P = V_{IH} \text{ and } E2_P = V_{IH}, \ I_{OUT} = 0.000$		1	mA	
	Standby Supply Current CMOS	$\begin{array}{c} 3.1 V \leq V_{DDP} \leq 3.3 V, \\ V_{IN} \leq 0.2 V \text{ or } \geq V_{DDP} - 0.2 V, \\ \overline{E1}_P \geq V_{DDP} - 0.2 V \text{ and} \\ E2_P \geq V_{DDP} - 0.2 V), \ I_{OUT} = 0 \text{ or } \end{array}$		100	μΑ	
		$2.7V \le V_{DDP} \le 3.1V$, $V_{IN} \le 0.2V$ or $\ge V_{DDP} - 0.2V$, $E1_P \ge V_{DDP} - 0.2V$ and $E2_P \ge V_{CC} - 0.2V$, $I_{OUT} = 0$ m		70	μΑ	
v (2)	Input Ligh Voltage	$3.1V \le V_{DDP} \le 3.3V$		2.6	V _{CC} + 0.3	V
V _{IH} ⁽²⁾	Input High Voltage	$2.7V \le V_{DDP} \le 3.1V$	2.2	V _{CC} + 0.3	V	
v (3)	In most I most Valta a -	$3.1V \le V_{DDP} \le 3.3V$	-0.3	0.6	V	
V _{IL} ⁽³⁾	Input Low Voltage	2.7V ≤ V _{DDP} ≤ 3.1V			0.5	V
V _{OH}	$3.1 \text{V} \le \text{V}_{DDP} \le 3.3 \text{V}, \text{I}_{OH} = -0.5 \text{mA}$		5mA	2.5		٧
∨ OH	Output High Voltage	$2.7V \le V_{DDP} \le 3.1V$, $I_{OH} = -0.5$	5mA	2.2		V
V _{OL}	Output Low Voltage	$V_{DDP} = 3V$, $I_{OL} = 1mA$		0.4	V	

Note: 1. Average AC current, Outputs open, cycling at t_{AVAX} (min).

2. Maximum DC voltage on input and I/O pins is V_{DDP} + 0.3V.

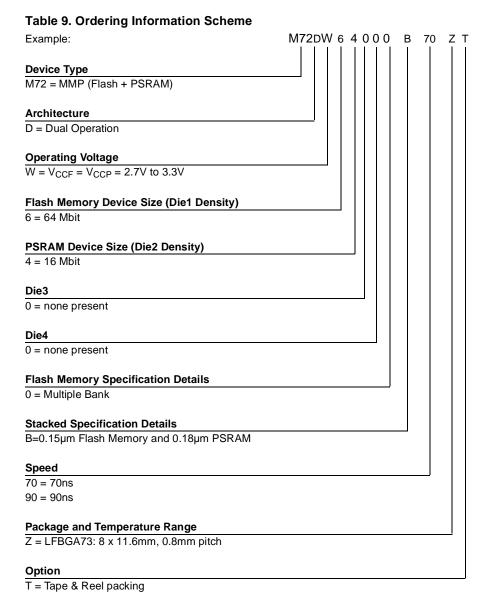

During voltage transitions, input may positive overshoot to V_{DDP} + 1.0V for a period of up to 5ns.

3. Minimum DC voltage on input or I/O pins is -0.3V.

During voltage transitions, input may positive overshoot to V_{SS} + 1.0V for a period of up to 5ns.

PACKAGE MECHANICAL

Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Package Outline



Note: Drawing is not to scale.

Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanical Data

Cumbal		millimeters		inches			
Symbol	Тур	Min	Max	Тур	Min	Max	
Α			1.400			0.0551	
A1		0.250			0.0098		
A2	0.910			0.0358			
b	0.400	0.350	0.450	0.0157	0.0138	0.0177	
D	8.000	7.900	8.100	0.3150	0.3110	0.3189	
D1	7.200			0.2835			
ddd			0.100			0.0039	
Е	11.600	11.500	11.700	0.4567	0.4528	0.4606	
E1	8.800			0.3465			
е	0.800	_	-	0.0315	_	_	
FD	0.400			0.0157			
FE	1.400			0.0551			
SD	0.400	-	-	0.0157	-	-	
SE	0.400	_	-	0.0157	-	_	

PART NUMBERING

Note: This product is also available with the Extended Block factory locked. For further details and ordering information contact your nearest ST sales office.

Devices are shipped from the factory with the memory content bits erased to '1'.

For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

REVISION HISTORY

Table 10. Document Revision History

Date	Version	Revision Details
26-May-2003	1.0	First Issue
24-Sep-2003 1.1		Voltage supply range extended 2.7V working at all speed options

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

A