

Internally Trimmed Precision IC Multiplier

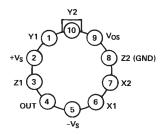
AD632

FEATURES

Pretrimmed to $\pm 0.5\%$ Max 4-Quadrant Error All Inputs (X, Y and Z) Differential, High Impedance for $[(X_1-X_2)(Y_1-Y_2)/10] + Z_2$ Transfer Function Scale-Factor Adjustable to Provide up to X10 Gain Low Noise Design: 90 μ V rms, 10 Hz–10 kHz Low Cost, Monolithic Construction Excellent Long-Term Stability

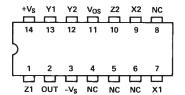
APPLICATIONS

High Quality Analog Signal Processing
Differential Ratio and Percentage Computations
Algebraic and Trigonometric Function Synthesis
Accurate Voltage Controlled Oscillators and Filters


PRODUCT DESCRIPTION

The AD632 is an internally-trimmed monolithic four-quadrant multiplier/divider. The AD632B has a maximum multiplying error of $\pm 0.5\%$ without external trims.

Excellent supply rejection, low temperature coefficients and long term stability of the on-chip thin film resistors and buried zener reference preserve accuracy even under adverse conditions. The simplicity and flexibility of use provide an attractive alternative approach to the solution of complex control functions.


The AD632 is pin-for-pin compatible with the industry standard AD532 with improved specifications and a fully differential high impedance Z-input. The AD632 is capable of providing gains of up to X10, frequently eliminating the need for separate instrumentation amplifiers to precondition the inputs. The AD632 can be effectively employed as a variable gain differential input amplifier with high common-mode rejection. The effectiveness of the variable gain capability is enhanced by the inherent low noise of the AD632: 90 $\mu V\ rms$.

PIN CONFIGURATIONS H-Package TO-100

TOP VIEW

D-Package

TOP VIEW

PRODUCT HIGHLIGHTS

Guaranteed Performance Over Temperature

The AD632A and AD632B are specified for maximum multiplying errors of $\pm 1.0\%$ and $\pm 0.5\%$ of full scale, respectively at $+25^{\circ}\text{C}$ and are rated for operation from -25°C to $+85^{\circ}\text{C}$. Maximum multiplying errors of $\pm 2.0\%$ (AD632S) and $\pm 1.0\%$ (AD632T) are guaranteed over the extended temperature range of -55°C to $+125^{\circ}\text{C}$.

High Reliability

The AD632S and AD632T series are also available with MIL-STD-883 Level B screening and all devices are available in either the hermetically-sealed TO-100 metal can or ceramic DIP package.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

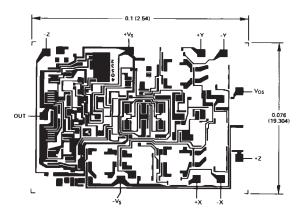
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: www.analog.com Fax: © Analog Devices, Inc.,

$\label{eq:AD632-SPECIFICATIONS} \textbf{(@ +25°C, V}_S = \pm 15~\text{V, R} \geq 2~\text{k}\Omega~\text{unless otherwise noted)}$

		AD632A			AD632B			AD632S			AD632T			
Model	Min	Typ	Max	Min	Typ	Max	M	lin T	уp	Max	Min	Typ	Max	Units
MULTIPLIER PERFORMANCE														
Transfer Function	$(X_1 - X_2)$	$(X_2)(Y_1 - X_2)(Y_1 - X_2)(Y_1$	$\frac{Y_2)}{} + Z_2$	$(X_1 -$	$X_2)(Y_1 - 10V)$	$\frac{(Y_2)}{(Y_2)} + Z_2$	(2	$X_1 - X_2$	$(Y_1 - V_1)$	$\frac{Y_2)}{} + Z_2$	(X ₁ -	$\frac{X_2}{10V}$	$\frac{(Y_2)}{(Y_2)} + Z_2$	
Total Error ¹ ($-10 \text{ V} \le X, Y \le +10 \text{ V}$)		10,	±1.0		107	±0.5		10	•	±1.0		107	±0.5	%
$T_A = Min \text{ to } Max$		±1.5			±1.0					± 2.0			±1.0	%
Total Error vs. Temperature		± 0.02	22		± 0.0	15				± 0.02			± 0.01	%/°C
Scale Factor Error														
$(SF = 10.000 \text{ V Nominal})^2$		± 0.25	5		± 0.1			±	0.25	5		± 0.1		%
Temperature-Coefficient of		10.00							0.0				. 0. 00.	%/°C
Scaling-Voltage Supply Rejection (±15 V ± 1 V)		± 0.02 ± 0.01			± 0.0 ± 0.0				0.0	İ		±0.0	±0.005	% C
Nonlinearity, X (X = 20 V p-p, Y = 10 V)		± 0.4				±0.3			0.4				±0.3	%
Nonlinearity, Y (Y = 20 V p-p , X = 10 V)		±0.2				±0.1			0.2				±0.1	%
Feedthrough ³ , X (Y Nulled,														
X = 20 V p-p 50 Hz)		± 0.3			± 0.1	5 ± 0.3		±	0.3			± 0.15	5 ± 0.3	%
Feedthrough ³ , Y (X Nulled,														0.4
Y = 20 V p-p 50 Hz		± 0.01				1 ± 0.1			0.0				1 ±0.1	%
Output Offset Voltage Output Offset Voltage Drift		±5 200	±30		±2 100	±15		Ι	:5	±30 500		±2	±15 300	mV μV/°C
		200			100		\vdash			300			300	μν/ C
DYNAMICS		1			1			1				1		NATE.
Small Signal BW, $(V_{OUT} = 0.1 \text{ rms})$ 1% Amplitude Error $(C_{LOAD} = 1000 \text{ pF})$		1 50			1 50			1	0			1 50		MHz kHz
Slew Rate (V _{OUT} 20 p-p)		20			20				0			20		V/µs
Settling Time (to 1%, $\Delta V_{OUT} = 20 \text{ V}$)		2			2			2				2		μs
NOISE							\vdash							•
Noise Spectral-Density SF = 10 V		0.8			0.8			0	.8			0.8		μV/√ Hz
$SF = 3 V^4$		0.4			0.4				.4			0.4		$\mu V/\sqrt{Hz}$
Wideband Noise $A = 10 \text{ Hz}$ to 5 MHz		1.0			1.0			1	.0			1.0		mV rms
P = 10 Hz to 10 kHz		90			90			9	0			90		μV/rms
OUTPUT														
Output Voltage Swing	±11			±11			±	11			±11			V
Output Impedance (f ≤ 1 kHz)		0.1			0.1			0	.1			0.1		Ω
Output Short Circuit Current		20			20			2	0			20		4
$(R_L = 0, T_A = Min \text{ to } Max)$ Amplifier Open Loop Gain $(f = 50 \text{ Hz})$		30 70			30 70				0			30 70		mA dB
	1	10			10		-	- '				10		ub
INPUT AMPLIFIERS (X, Y and Z) ⁵		±10			±10			_	.10			±10		V
Signal Voltage Range (Diff. or CM Operating Diff.)		±10 ±12			±10 ±12				10			±10 ±12		V
Offset Voltage X, Y		±5	±20		±2	±10			:5	±20		±2	±10	mV
Offset Voltage Drift X, Y		100			50				00			150		μV/°C
Offset Voltage Z		±5	±30		± 2	±15		<u>+</u>	5	±30		± 2	±15	mV
Offset Voltage Drift Z		200			100					500			300	μV/°C
CMRR	60	80	2.0	70	90	2.0	60		0	2.0	70	90	2.0	dB
Bias Current Offset Current		0.8	2.0		0.8 0. I	2.0			.8 .1	2.0		0.8	2.0	μA μA
Differential Resistance		10			10				0			10		$M\Omega$
DIVIDER PERFORMANCE							+							
Transfer Function $(X_1 > X_2)$	10 V	$\frac{(Z_2 - Z_1)}{(X_1 - X_2)}$	$\frac{Y_1}{Y_1} + Y_1$	101	$V \frac{(Z_2 - Z_2)}{(X_1 - Z_2)}$	(Z_1)		$10V\frac{(2)}{(2)}$	$Z_2 - Z$	$\frac{Y_1}{Y_1} + Y_2$	101	$\frac{(Z_2-Z_1)}{(X_1-X_1)}$	$(X_1) + Y_1$	
Total Error ¹		$(X_1 - X$	2)		$(X_1 - X_2)$	$(X_2)^{-1}$		(2	$X_1 - X$	2)		$(X_1 - X_1)$	$(\zeta_2)^{\frac{1}{1}}$	
$(X = 10 \text{ V}, -10 \text{ V} \le Z \le +10 \text{ V})$		±0.75	5		±0.3	5		±	0.75	5		±0.3	5	%
$(X = 1 V, -1 V \le Z \le +1 V)$		± 2.0			± 1.0			<u>+</u>	2.0			± 1.0		%
$(0.1 \text{ V} \le \text{X} \le 10 \text{ V}, -10 \text{ V} \le \text{Z} \le 10 \text{ V})$		±2.5			±1.0			±	2.5			±1.0		%
SQUARER PERFORMANCE						,		-,			-		_ 	
Transfer Function	(X	$\frac{(1-X_2)^2}{10V}$	$+Z_2$	(2	$\frac{X_1 - X_2}{10 V}$ ± 0.3	$-+Z_{2}$		$\frac{(X_1 - X_2)}{10}$	$(X_2)^2$	$+Z_2$	(2	$\frac{(X_1 - X_2)^2}{10 V} \pm 0.3$	$-+Z_{2}$	
Total Error ($-10 \text{ V} \le \text{X} \le 10 \text{ V}$)		±0.6			±0.3			±	0.6			±0.3		%
SQUARE-ROOTER PERFORMANCE														
Transfer Function, $(Z_1 \le Z_2)$	$\sqrt{10 V}$	$(Z_2 - Z_1)$) + X ₂	√101	$V(Z_2 - Z_2)$	$(1) + X_2$		$\sqrt{10 V(Z)}$	$z_2 - Z_1$) + X ₂	√10 J	$V(Z_2-Z_1)$	$(1) + X_2$	
Total Error ¹ (1 $V \le Z \le 10 V$)	1 '	±1.0	-	1 '	±0.5	-	1		1.0	-	1 '	±0.5		%

-2- Rev. B

		AD632	A		AD632	В		AD632	S		AD63	2 T	
Model	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Units
POWER SUPPLY SPECIFICATIONS													
Supply Voltage													
Rated Performance		±15			±15			±15			±15		V
Operating	±8		±18	±8		±18	±8		±22	±8		±22	V
Supply Current													
Quiescent		4	6		4	6		4	6		4	6	mA


NOTES

All min and max specifications are guaranteed.

Specifications shown in **boldface** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. Specifications subject to change without notice.

CHIP DIMENSIONS AND PAD LAYOUT

Dimensions shown in inches and (mm). (Contact factory for latest dimensions.)

For further information, consult factory.

Thermal Characteristics

Thermal Resistance	$\theta_{\rm IC} = 25^{\circ} \text{C/W for H-10}$
	$\theta_{\rm JA} = 150^{\circ} \text{C/W for H-10}$
	$\theta_{\rm JC} = 25^{\circ} \text{C/W for D-14}$
	$\theta_{\rm JA} = 95^{\circ} \text{C/W for D-14}$

Rev. B -3-

 $^{^1}Figures$ given are percent of full-scale, $\pm 10~V$ (i.e., 0.01% = 1 mV).

 $^{^2\}mbox{May}$ be reduced to 3 V using external resistor between $-\mbox{V}_{S}$ and SF.

³Irreducible component due to nonlinearity: excludes effect of offsets.

⁴Using external resistor adjusted to give SF = 3 V.

⁵See functional block diagram for definition of sections.

AD632

Typical Performance Curves

(typical @ $+25^{\circ}$ C with $\pm V_S = 15 \text{ V}$)

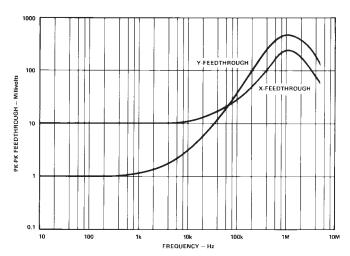


Figure 1. AC Feedthrough vs. Frequency

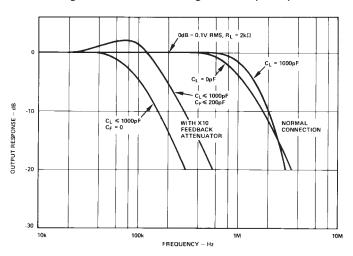


Figure 2. Frequency Response as a Multiplier

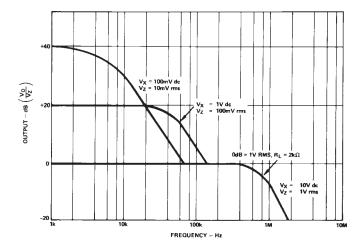


Figure 3. Frequency Response vs. Divider Denominator Input Voltage

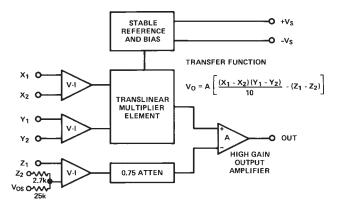


Figure 4. AD632 Functional Block Diagram

OPERATION AS A MULTIPLIER

Figure 5 shows the basic connection for multiplication. Note that the circuit will meet all specifications without trimming.

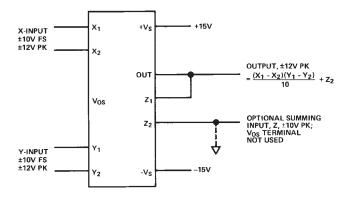


Figure 5. Basic Multiplier Connection

In some cases the user may wish to reduce ac feedthrough to a minimum (as in a suppressed carrier modulator) by applying an external trim voltage (± 30 mV range required) to the X or Y input. Curve 1 shows the typical ac feedthrough with this adjustment mode. Note that the feedthrough of the Y input is a factor of 10 lower than that of the X input and should be used in applications where null suppression is critical.

The Z_2 terminal of the AD632 may be used to sum an additional signal into the output. In this mode the output amplifier behaves as a voltage follower with a 1 MHz small signal bandwidth and a 20 V/µs slew rate. This terminal should always be referenced to the ground point of the driven system, particularly if this is remote. Likewise the differential inputs should be referenced to their respective signal common potentials to realize the full accuracy of the AD632.

A much lower scaling voltage can be achieved without any reduction of input signal range using a feedback attenuator as shown in Figure 6. In this example, the scale is such that V_{OUT} = XY, so that the circuit can exhibit a maximum gain of 10. This connection results in a reduction of bandwidth to about 80 kHz without the peaking capacitor C_F . In addition, the output offset voltage is increased by a factor of 10 making external adjustments necessary in some applications.

-4- Rev. B

Feedback attenuation also retains the capability for adding a signal to the output. Signals may be applied to the Z terminal, where they are amplified by -10, or to the common ground connection where they are amplified by -1. Input signals may also be applied to the lower end of the 2.7 k Ω resistor, giving a gain of +9.

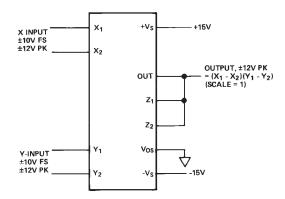


Figure 6. Connections for Scale-Factor of Unity

OPERATION AS A DIVIDER

Figure 7 shows the connection required for division. Unlike earlier products, the AD632 provides differential operation on both numerator and denominator, allowing the ratio of two floating variables to be generated. Further flexibility results from access to a high impedance summing input to Y_1 . As with all dividers based on the use of a multiplier in a feedback loop, the bandwidth is proportional to the denominator magnitude, as shown in Figure 3.

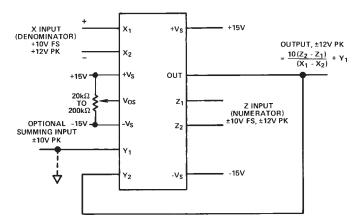
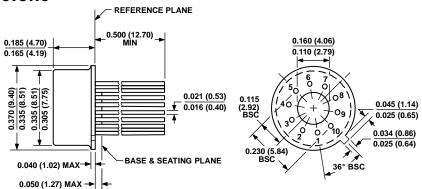


Figure 7. Basic Divider Connection

Without additional trimming, the accuracy of the AD632B is sufficient to maintain a 1% error over a 10 V to 1 V denominator range (The AD535 is functionally equivalent to the AD632 and has guaranteed performance in the divider and square-rooter configurations and is recommended for such applications).

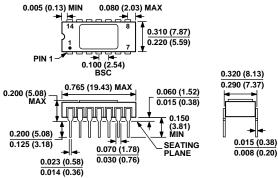
This range may be extended to 100:1 by simply reducing the X offset with an externally generated trim voltage (range required is ± 3.5 mV max) applied to the unused X input. To trim, apply a ramp of +100 mV to +V at 100 Hz to both X_1 and Z_1 (if X_2 is used for offset adjustment, otherwise reverse the signal polarity) and adjust the trim voltage to minimize the variation in the output.*


Since the output will be near +10 V, it should be ac-coupled for this adjustment. The increase in noise level and reduction in bandwidth preclude operation much beyond a ratio of 100 to 1.

Rev. B -5-

^{*}See the AD535 data sheet for more details.

AD632


OUTLINE DIMENSIONS

DIMENSIONS PER JEDEC STANDARDS MO-006-AF
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 8. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP] (D-14)

Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 9. 10-Pin Metal Header Package [TO-100] (H-10) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD632AD	−25°C to +85°C	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD632ADZ	−25°C to +85°C	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD632AH	−25°C to +85°C	10-Pin Metal Header Package [TO-100]	H-10
AD632AHZ	−25°C to +85°C	10-Pin Metal Header Package [TO-100]	H-10
AD632BD	−25°C to +85°C	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD632BDZ	-25°C to +85°C	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD632BH	−25°C to +85°C	10-Pin Metal Header Package [TO-100]	H-10
AD632BHZ	-25°C to +85°C	10-Pin Metal Header Package [TO-100]	H-10
AD632SD	−55°C to +125°C	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD632SH	−55°C to +125°C	10-Pin Metal Header Package [TO-100]	H-10
AD632SH/883B	−55°C to +125°C	10-Pin Metal Header Package [TO-100]	H-10
AD632TD	−55°C to +125°C	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD632TD/883B	−55°C to +125°C	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD632TH	−55°C to +125°C	10-Pin Metal Header Package [TO-100]	H-10
AD632TH/883B	−55°C to +125°C	10-Pin Metal Header Package [TO-100]	H-10

 $^{^{1}}$ Z = RoHS Compliant Part.

-6- Rev. B

022306-A

REVISION HISTORY

Changes to Pin Configurations and Product Highlights	
Section	1
Changes to Thermal Characteristics Section	3
Updated Outline Dimensions	6
Changes to Ordering Guide	6

Rev. B