32-Channel High Voltage Sample and Hold Amplifier Array

Features

- 32 independent high voltage amplifiers
- 300 V operating voltage
- 295 V output voltage
- $2.2 \mathrm{~V} / \mu$ s typical output slew rate
- Adjustable output current source limit
- Adjustable output current sink limit
- Internal closed loop gain of $72 \mathrm{~V} / \mathrm{V}$
- $12 \mathrm{M} \Omega$ feedback impedance
- Layout ideal for die applications

Applications

- MEMS (microelectromechanical systems) driver
- Piezoelectric transducer driver
- Optical crosspoint switches (using MEMS technology)

General Description

The Supertex HV257 is a 32-channel, high voltage, sample and hold amplifier array integrated circuit. It operates on a single high voltage supply, up to 300 V , and two low voltage supplies, V_{DD} and $V_{\text {NN }}$.

All 32 sample and hold circuits share a common analog input, $\mathrm{V}_{\text {SIG }}$. The individual sample and hold circuits are selected by a 5 to 32 logic decoder. The sampled voltage on the holding capacitor is buffered by a low voltage amplifier and amplified by a high voltage amplifier with a closed loop gain of $72 \mathrm{~V} / \mathrm{V}$. The internal closed loop gain is set for an input voltage range of 0 to 4.096 V . The input voltage can be up to 5.0 V , but the output will saturate. The maximum output voltage swing is 5.0 V below the V_{PP} high voltage supply. The outputs can drive capacitive loads of up to 3000 pF .

The maximum output source and sink current can be adjusted by using two external resistors. An external $\mathrm{R}_{\text {SOURCE }}$ resistor controls the maximum sourcing current, and an external $\mathrm{R}_{\mathrm{SINK}}$ resistor controls the maximum sinking current. The current limit is approximately 12.5 V divided by the external resistor value. The setting is common for all 32 outputs. A low voltage silicon junction diode is made available to help monitor the die temperature.

Typical Application Circuit

Ordering Information

	100-Lead MQFP
Device	20.00x14.00mm body
	3.15mm height (max)
	0.65mm pitch
	3.20mm footprint
HV257	HV257FG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
V_{PP}, High voltage supply	310 V
$\mathrm{AV}_{\mathrm{DD}}$, Analog low voltage positive supply	8.0 V
$\mathrm{DV}_{\mathrm{DD}}$, Digital low voltage positive supply	8.0 V
$\mathrm{AV}_{\mathrm{NN}}$, Analog low voltage negative supply	-7.0 V
$\mathrm{DV}_{\mathrm{NN}}$, Digital low voltage negative supply	-7.0 V
Logic input voltage	-0.5 V to DV
V_{SI}, Analog input signal	0 V to 6.0 V
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum junction temperature	$150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Product Marking

YY = Year Sealed
WW = Week Sealed
L = Lot Number
C = Country of Origin
A = Assembler ID
___ = "Green" Packaging
Package may or may not include the following marks: Si or $3 i$ 100-Lead MQFP (FG)

Operating Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{PP}	High voltage positive supply	125	-	300	V	---
V_{DD}	Low voltage positive supply	6.0	-	7.5	V	---
V_{NN}	Low voltage negative supply	-4.5	-	-6.5	V	---
I_{PP}	V_{PP} supply current	-	-	0.8	mA	$\mathrm{~V}_{\mathrm{PP}}=300 \mathrm{~V}, \mathrm{All} \mathrm{HV}$
OUT						

Electrical Characteristics (over operating conditions, uness oftemises specified) High Voltage Amplifier

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{HV}_{\text {OUT }}$	$\mathrm{HV}_{\text {out }}$ voltage swing	0	-	$\mathrm{V}_{\mathrm{PP}}-5.0$	V	---
$\mathrm{V}_{\text {INOS }}$	Input offset	-	-	± 40	mV	Input referred
SR	$\mathrm{HV}_{\text {OUT }}$ slew rate rise	-	2.2	-	V/us	No Load
	$\mathrm{HV}_{\text {OUT }}$ slew rate fall	-	2.0	-	V/ $\mu \mathrm{s}$	No Load
BW	$\mathrm{HV}_{\text {OUT }}-3 \mathrm{~dB}$ channel bandwidth	-	4.0	-	KHz	$\mathrm{V}_{\mathrm{PP}}=300 \mathrm{~V}$
A_{0}	Open loop gain	70	100	-	dB	---
A	Closed loop gain	68.4	72	75.6	V/V	---
$\mathrm{R}_{\text {FB }}$	Feedback resistance from $\mathrm{HV}_{\text {out }}$ to ground	9.6	12	-	$\mathrm{M} \Omega$	---
$\mathrm{C}_{\text {LOAD }}$	$\mathrm{HV}_{\text {OUT }}$ capacitive load	0	-	3000	pF	---
$\mathrm{I}_{\text {SOURCE }}$	$\mathrm{HV}_{\text {OUT }}$ sourcing current limiting range	50	-	500	$\mu \mathrm{A}$	$\mathrm{I}_{\text {SOURCE }}=12.5 \mathrm{~V} / \mathrm{R}_{\text {SOURCE }}$
$\mathrm{I}_{\text {SINK }}$	$\mathrm{HV}_{\text {OUT }}$ sinking current limiting range	50	-	500	$\mu \mathrm{A}$	$\mathrm{I}_{\text {SINK }}=12.5 \mathrm{~V} / \mathrm{R}_{\text {SINK }}$
$\mathrm{R}_{\text {SOURCE }}$	External resistance range for setting maximum current source	25	-	250	$\mathrm{K} \Omega$	---
$\mathrm{R}_{\text {SINK }}$	External resistance range for setting maximum current sink	25	-	250	$\mathrm{K} \Omega$	---
$C T_{\text {DC }}$	DC channel to channel crosstalk	-80	-	-	dB	---
PSRR	Power supply rejection ratio for $\mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{NN}}$	-40	-	-	dB	---

Sample and Hold

t_{AQ}	Acquisition time	-	4.0	-	$\mu \mathrm{s}$	---
$\mathrm{V}_{\mathrm{PED}}$	Pedestal voltage	-	1.0	-	mV	Input referred
R_{SW}	Sample and hold switch resistance	-	5.0	-	$\mathrm{k} \Omega$	---
C_{H}	Sample and hold capacitor	-	10	12	pF	---
$\mathrm{V}_{\text {DRoop }}$	Voltage droop rate during hold time relative to input	-	6.0	-	V / s	Output referred
$\mathrm{V}_{\text {SIG }}$	Input signal voltage range	0	-	5.0	V	---
$\mathrm{C}_{\mathrm{SIG}}$	$\mathrm{V}_{\text {SIG }}$ input capacitance	-	33	-	pF	---

Logic Decoder

t_{su}	Set-up time-address to enable	75	-	-	ns	---
t_{H}	Hold time-address to enable bar	75	-	-	ns	---
V_{IH}	Input logic high voltage	2.4	-	V_{DD}	V	---
V_{IL}	Input logic low voltage	0	-	1.2	V	---
I_{IH}	Input logic high current	-	-	1.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$
I_{IL}	Input logic low current	-1.0	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
C_{IN}	Logic input capacitance	-	-	15	pF	---

Decoder Truth Table

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	EN	Selected S/H
L	L	L	L	L	H	0
L	L	L	L	H	H	1
L	L	L	H	L	H	2
L	L	L	H	H	H	3
\uparrow						
H	H	H	H	L	H	30
H	H	H	H	H	H	31
X	X	X	X	X	L	All Open

Sample and Hold Timing

Temperature Diode

Sym	Parameter	Min	Typ	Max	Units	Conditions
PIV	Peak inverse voltage	-	-	5.0	V	cathode to anode
V_{F}	Forward diode drop	-	0.6	-	V	$\mathrm{I}_{\mathrm{F}}=100 \mu \mathrm{~A}$, anode to cathode at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{F}	Forward diode current	-	-	100	$\mu \mathrm{~A}$	anode to cathode
T_{C}	V_{F} temperature coefficient	-	-2.2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	anode to cathode

Block Diagram

Power Up/Down Issues

External Diode Protection

The device can be damaged due to improper power up / down sequence. To prevent damage, please follow the acceptable power up / down sequences, and add two external diodes as shown in the diagram on the right. The first diode is a high voltage diode across VPP and VDD, where the anode of the diode is connected to VDD and the cathode of the diode is connected to VPP. Any low current, high voltage diode, such as a 1 N4004, will be adequate. The second diode is a Schottky diode across VNN and DGND, where the anode of the Schottky diode is connected to VNN, and the cathode is connected to DGND. Any low current Schottky diode such as a 1 N5817 will be adequate.

Acceptable Power Up Sequences

The HV257 can be powered up with any of the following sequences listed below.

1) VPP
2) VNN
3) VDD
4) Inputs and Anode
5) VNN
6) VDD
7) VPP
8) Inputs and Anode
9) VDD \& VNN
10) Inputs
11) VPP 4) Anode

Acceptable Power Down Sequences

The HV257 can be powered down with any of the following sequences listed below.

1) Inputs and Anode
2) VDD
3) VNN
4) VPP
5) Inputs and Anode
6) VPP
7) VDD 4) VNN
8) Anode
9) VPP
10) Inputs
11) VNN \& VDD

External Diode Protection Connection

Suggested Power Up/Down Sequence

The HV257 needs all power supplies to be fully up and all channels refreshed with $\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}$ to force all high voltage outputs to 0 V . Before that time, the high voltage outputs may have temporary voltage excursions above or below GND level depending on selected power up sequence. To minimize the excursions:

1. The VDD and VNN power supplies should be applied at the same time (or within a few nanoseconds).
2. All channels should be continuously refreshed with $\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}$, just before, and while the VPP is ramping up. Suggested VPP ramp up speed should be 10 msec or longer and ramp down to be 1 msec or longer.

Recommended Power Up/Down Timing

$\mathrm{HV}_{\text {out }}$ Level at Power Up

Power Up Sequence

RSINK / RSOURCE

The VDD_BYP, VDD_BYP, and VNN_BYP pins are internal, high impedance current, mirror gate nodes, brought out to mantain stable opamp biasing currents in noisy power supply environments. $0.1 \mathrm{uF} / 25 \mathrm{~V}$ bypass capacitors, added from VPP_BYP pin to VPP, from VDD_BYP pin to VDD, and from

VNN BYP to VNN, will force the high impedance gate nodes to follow fluctuation of power lines. The expected voltages at the VDD_BYP, and VNN_BYP pins are typically 1.5 volts from their respectful power supply. The expected voltage at VPP_BYP is typically 3 V below VPP.

Ground Isolation (AGND/DGND Isolation)

It is important that the AGND pin is connected to a clean ground. The hold capacitors are internally connected to the AGND, and any ground noise will directly couple to the high voltage outputs (with a gain of 72). The analog and digital
ground traces on the PCB should be physically separated to reduce digital switching noise degrading the signal to noise performance.

Typical Characteristics

Temperature Diode vs Temperature
$\left(V_{P P}=300 \mathrm{~V}, V_{D D}=6.5 \mathrm{~V}, V_{N N}=5.5 \mathrm{~V}\right)$

HV ${ }_{\text {out }}$ Droop

Typical Characteristics (cont.)

Pad Configuration (not drawn to scale)

Pad Coordinates
Chip size: $17160 \mu \mathrm{~m} \times 5830 \mu \mathrm{~m}$
Center of die is $(0,0)$

Pad Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)
VPP	-8338.5	2708.5
$\mathrm{HV}_{\text {out }} 0$	-7895.0	2305.5
$\mathrm{HV}_{\text {out }} 1$	7448.5	2305.5
$\mathrm{HV}_{\text {out }}{ }^{2}$	-7001.5	2305.5
$\mathrm{HV}_{\text {OUT }}{ }^{3}$	-6554.5	2305.5
$\mathrm{HV}_{\text {OUT }} 4$	-6107.5	2305.5
$\mathrm{HV}_{\text {out }} 5$	-5660.5	2305.5
$\mathrm{HV}_{\text {out }} 6$	-5213.5	2305.5
HV out 7	-4776.5	2305.5
$\mathrm{HV}_{\text {OUT }} 8$	-4319.5	2305.5
$\mathrm{HV}_{\text {OUT }} 9$	-3872.5	2305.5
$\mathrm{HV}_{\text {OUT }} 10$	-3425.5	2305.5
HV ${ }_{\text {Out }} 11$	-2978.5	2305.5
$\mathrm{HV}_{\text {out }} 12$	-2513.5	2305.5
$\mathrm{HV}_{\text {OUT }} 13$	-2084.5	2305.5
$\mathrm{HV}_{\text {OUT }} 14$	-1637.5	2305.5
$\mathrm{HV}_{\text {OUT }} 15$	-1190.5	2305.5
HV ${ }_{\text {OUT }} 16$	-743.5	2305.5
HV ${ }_{\text {OUT }} 17$	-296.5	2305.5
$\mathrm{HV}_{\text {Out }} 18$	150.0	2305.5
$\mathrm{HV}_{\text {OUT }} 19$	597.5	2305.5
$\mathrm{HV}_{\text {OUT }} 20$	1044.5	2305.5
$\mathrm{HV}_{\text {OUT }} 21$	1491.5	2305.5
$\mathrm{HV}_{\text {OUT }} 22$	1938.5	2305.5
$\mathrm{HV}_{\text {OUT }} 23$	2385.5	2305.5
$\mathrm{HV}_{\text {Out }} 24$	2832.5	2305.5
$\mathrm{HV}_{\text {Out }} 25$	3279.5	2305.5
$\mathrm{HV}_{\text {OUT }} 26$	3726.5	2305.5
HV ${ }_{\text {OUT }}{ }^{27}$	4173.5	2305.5
$\mathrm{HV}_{\text {Out }} 28$	4620.5	2305.5
HV ${ }_{\text {OUT }} 29$	5067.5	2305.5

Pad Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)
HV ${ }_{\text {OUT }} 30$	5514.5	2305.5
$\mathrm{HV}_{\text {OUT }} 31$	5961.5	2305.5
VPP	6659.0	2709.0
BYP-VPP	7045.0	2709.0
RSOURCE	7489.0	2709.0
RSINK	7969.0	2709.0
CATHODE	8366.0	2709.0
ANODE	8366.0	2199.0
AVNN	8047.0	425.0
BYP-AVDD	8047.0	125.5
BYP-AVNN	8047.0	-135.5
AVDD	8047.0	-704.5
VSIG	8047.0	-1072.5
AGND	8047.0	-1424.5
DVNN	8066.5	-1590.0
DVDD	8066.5	-1958.5
DGND	7867.0	-2192.0
A4	7723.0	-2684.0
A3	7319.0	-2684.0
A2	6913.0	-2684.0
A1	6508.5	-2684.0
A0	6103.5	-2684.0
EN	5698.0	-2684.0
N/C	5043.5	-2686.0
N/C	4638.5	-2686.0
N/C	4233.5	-2686.0
N/C	3828.5	-2686.0
N/C	3423.5	-2686.0
N/C	3018.5	-2686.0
N/C	2613.5	-2686.0
N/C	2208.5	-2686.0

Pad Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)
N/C	1803.5	-2686.0
N/C	1398.5	-2686.0
N/C	993.5	-2686.0
N/C	588.5	-2686.0
N/C	183.5	-2686.0
N/C	-221.5	-2686.0
N/C	-626.5	-2686.0
N/C	-1031.5	-2686.0
N/C	-1436.5	-2686.0
N/C	-2412.0	-2686.0
N/C	-2817.0	-2686.0
N/C	-3222.0	-2686.0
N/C	-3627.0	-2686.0
N/C	-4032.0	-2686.0
N/C	-4437.0	-2686.0
N/C	-4842.0	-2686.0
N/C	-5247.0	-2686.0
N/C	-5652.0	-2686.0
N/C	-6052.0	-2686.0
N/C	-6462.0	-2686.0
N/C	-6867.0	-2686.0
N/C	-7272.0	-2686.0
N/C	-7677.0	-2686.0
N/C	-8082.0	-2686.0
DVDD	-8373.0	-2250.5
DVNN	-8373.0	-1949.0
AGND	-8367.0	-1561.0
AVDD	-8387.0	-1143.0
AVNN	-8338.5	577.5
AGND	-8341.0	916.5

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222 -4895 • www.supertex.com

Pin Description

Pin \#	Function	Description
1	$\mathrm{HV}_{\text {out }} 31$	
2	$\mathrm{HV}_{\text {OUT }} 30$	
3	$\mathrm{HV}_{\text {out }} 29$	
4	$\mathrm{HV}_{\text {out }} 28$	
5	$\mathrm{HV}_{\text {out }} 27$	
6	HV ${ }_{\text {out }} 26$	
7	HV OUT 25	
8	$\mathrm{HV}_{\text {out }} 24$	
9	$\mathrm{HV}_{\text {out }} 23$	
10	$\mathrm{HV}_{\text {out }} 22$	
11	$\mathrm{HV}_{\text {out }} 21$	
12	HV ${ }_{\text {out }} 20$	
13	HV ${ }_{\text {out }} 19$	
14	HV ${ }_{\text {OUT }} 18$	
15	HV ${ }_{\text {OUT }} 17$	
16	$\mathrm{HV}_{\text {out }} 16$	Amplifier outputs.
17	$\mathrm{HV}_{\text {OUT }} 15$	
18	HV ${ }_{\text {OUT }} 14$	
19	HV ${ }_{\text {out }} 13$	
20	HV ${ }_{\text {out }} 12$	
21	HV ${ }_{\text {out }} 11$	
22	$\mathrm{HV}_{\text {OUT }} 10$	
23	$\mathrm{HV}_{\text {OUT }} 9$	
24	$\mathrm{HV}_{\text {OUT }} 8$	
25	$\mathrm{HV}_{\text {OUT }} 7$	
26	$\mathrm{HV}_{\text {OUT }} 6$	
27	$\mathrm{HV}_{\text {OUT }}{ }^{5}$	
28	$\mathrm{HV}_{\text {OUT }} 4$	
29	$\mathrm{HV}_{\text {OUT }} 3$	
30	$\mathrm{HV}_{\text {out }}{ }^{2}$	
31	HV ${ }_{\text {out }} 1$	
32	$\mathrm{HV}_{\text {OUT }} 0$	
33	VPP	High voltage positive supply. There are two pads.

Pin Description (cont.)

Pin \#	Function	Description		
$34-38$	NC	No connect		
39	AGND	Analog ground. There are three pads. They need to be externally connected.		
40	AVNN	Analog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.		
41	NC	No connect		
42	AVDD	Analog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.		
43	AGND	Analog ground. There are three pads. They need to be externally connected.		
44	DVNN	Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.		
45	DVDD	Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.		
$46-79$	NC	No Connect		
80	EN	Active logic high input. Logic low will keep sample and hold switches open.		
81	A0	A1		Decoder logic input. Addressed channel will close the sample and hold switch. Sample and hold
:---				
82				

Supertex İnc. • 1235 Bordeaux Drive, Sunnyvale, CA $94089 \cdot$ Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

Pin Description (cont.)

Pin \#	Function	Description
97	RSINK	External resistor from RSINK to VNN sets output current sinking limit. Current limit is approximately 12.5V divided by RSINK resistor value.
98	RSOURCE	External resistor from RSOURCE to VNN sets output current sourcing limit. Current limit is approximately 12.5V divided by RSOURCE resistor value.
99	BYP-VPP	Internally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across VPP and BYP-VPP.
100	VPP	High voltage positive supply. There are two pads.

100-Lead MQFP Package Outline (FG)

$20.00 \times 14.00 \mathrm{~mm}$ body, 3.15 mm height (max), 0.65 mm pitch, 3.20 mm footprint

View B

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ	$\theta 1$
Dimension (mm)	MIN	2.50*	0.00	2.50	0.22	22.95*	19.80*	16.95*	13.80*	$\begin{aligned} & 0.65 \\ & \text { BSC } \end{aligned}$	0.73	$\begin{aligned} & 1.60 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	2.70	-	23.20	20.00	17.20	14.00		0.88				-
	MAX	3.15	0.25	2.90	0.40	23.45*	20.20*	17.45*	14.20*		1.03			7°	16°

JEDEC Registration MS-022, Variation GC-2, Issue B, Dec. 1996.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-100MQFPFG, Version F041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

