Supertex inc.

32-Channel High Voltage Sample and Hold Amplifier Array

Features

- 32 independent high voltage amplifiers
- 300V operating voltage
- 295V output voltage
- 2.2V/µs typical output slew rate
- Adjustable output current source limit
- Adjustable output current sink limit
- Internal closed loop gain of 72V/V
- 12MΩ feedback impedance
- Layout ideal for die applications

Applications

- MEMS (microelectromechanical systems) driver
- Piezoelectric transducer driver
- Optical crosspoint switches (using MEMS technology)

General Description

The Supertex HV257 is a 32-channel, high voltage, sample and hold amplifier array integrated circuit. It operates on a single high voltage supply, up to 300V, and two low voltage supplies, $V_{\rm DD}$ and $V_{\rm NN}$.

All 32 sample and hold circuits share a common analog input, $V_{_{SIG}}$. The individual sample and hold circuits are selected by a 5 to 32 logic decoder. The sampled voltage on the holding capacitor is buffered by a low voltage amplifier and amplified by a high voltage amplifier with a closed loop gain of 72V/V. The internal closed loop gain is set for an input voltage range of 0 to 4.096V. The input voltage can be up to 5.0V, but the output will saturate. The maximum output voltage swing is 5.0V below the V_{PP} high voltage supply. The outputs can drive capacitive loads of up to 3000pF.

The maximum output source and sink current can be adjusted by using two external resistors. An external $R_{_{SOURCE}}$ resistor controls the maximum sourcing current, and an external $R_{_{SINK}}$ resistor controls the maximum sinking current. The current limit is approximately 12.5V divided by the external resistor value. The setting is common for all 32 outputs. A low voltage silicon junction diode is made available to help monitor the die temperature.

Typical Application Circuit

Ordering Information

Device	100-Lead MQFP 20.00x14.00mm body 3.15mm height (max) 0.65mm pitch 3.20mm footprint								
HV257	HV257FG-G								
-G indicates package is RoHS compliant ('Green')									
	en Initias.								

Absolute Maximum Ratings

Parameter	Value
V _{PP} , High voltage supply	310V
AV _{DD} , Analog low voltage positive supply	8.0V
$\mathrm{DV}_{\mathrm{DD}}$, Digital low voltage positive supply	8.0V
$AV_{_{NN}}$, Analog low voltage negative supply	-7.0V
$\mathrm{DV}_{_{\mathrm{NN}}}$, Digital low voltage negative supply	-7.0V
Logic input voltage	-0.5V to DV_{DD}
V _{SIG} , Analog input signal	0V to 6.0V
Storage temperature range	-65°C to 150°C
Maximum junction temperature	150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Product Marking

Package may or may not include the following marks: Si or

100-Lead MQFP (FG)

Operating Conditions

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{PP}	High voltage positive supply	125	-	300	V	
V _{DD}	Low voltage positive supply	6.0	-	7.5	V	
V _{NN}	Low voltage negative supply	-4.5	-	-6.5	V	
I _{PP}	V _{PP} supply current	-	-	0.8	mA	V_{PP} = 300V, All HV _{OUT} = 0V No load
I _{DD}	V _{DD} supply current	-	-	5.0	mA	V _{DD} = 6.0 to 7.5V
I _{NN}	V _{NN} supply current	-6.0	-	-	mA	V _{NN} = -4.5 to -6.5V
TJ	Operating temperature range	-10	-	85	°C	

Electrical Characteristics (over operating conditions, unless otherwise specified) **High Voltage Amplifier**

Sym	Parameter	Min	Тур	Max	Units	Conditions
HV _{out}	HV _{out} voltage swing	0	-	V _{PP} -5.0	V	
V _{INOS}	Input offset	-	-	±40	mV	Input referred
	HV _{out} slew rate rise	-	2.2	-	V/µs	No Load
SR	HV _{out} slew rate fall	-	2.0	-	V/µs	No Load
BW	HV _{out} -3dB channel bandwidth	-	4.0	-	KHz	V _{PP} = 300V
A _o	Open loop gain	70	100	-	dB	
A	Closed loop gain	68.4	72	75.6	V/V	
R _{FB}	Feedback resistance from HV_{OUT} to ground	9.6	12	-	MΩ	
CLOAD	HV _{out} capacitive load	0	-	3000	pF	
	HV _{out} sourcing current limiting range	50	-	500	μA	I _{SOURCE} = 12.5V/R _{SOURCE}
I _{SINK}	HV _{out} sinking current limiting range	50	-	500	μA	I _{SINK} = 12.5V/R _{SINK}
R _{SOURCE}	External resistance range for setting maximum current source	25	-	250	KΩ	
R _{SINK}	External resistance range for setting maximum current sink	25	-	250	KΩ	
CT _{DC}	DC channel to channel crosstalk	-80	-	-	dB	
PSRR	Power supply rejection ratio for $V_{_{PP}},V_{_{DD}},V_{_{NN}}$	-40	-	-	dB	
Sample	and Hold					
t _{AQ}	Acquisition time	-	4.0	-	μs	
V _{PED}	Pedestal voltage	-	1.0	-	mV	Input referred
R _{sw}	Sample and hold switch resistance	-	5.0	-	kΩ	
C _H	Sample and hold capacitor	-	10	12	pF	
V _{DROOP}	Voltage droop rate during hold time relative to input	-	6.0	-	V/s	Output referred
V _{SIG}	Input signal voltage range	0	-	5.0	V	
C _{SIG}	V _{SIG} input capacitance	-	33	-	pF	
	ecoder					
t _{su}	Set-up time-address to enable	75	-	-	ns	
t _H	Hold time-address to enable bar	75	-	-	ns	
V _{IH}	Input logic high voltage	2.4	-	V _{DD}	V	
V _{IL}	Input logic low voltage	0	-	1.2	V	
I _{IH}	Input logic high current	-	-	1.0	μA	V _{IH} = V _{DD}
I	Input logic low current	-1.0	-	-	μA	V _{IL} = 0V
C _{IN}	Logic input capacitance	-	-	15	pF	

HV257

Decoder Truth Table

A ₄	A ₃	A ₂	A ₁	A ₀	EN	Selected S/H
L	L	L	L	L	Н	0
L	L	L	L	Н	Н	1
L	L	L	Н	L	Н	2
L	L	L	Н	Н	Н	3
\$	\$	\$	\$	\$	\$	\$
Н	Н	н	Н	L	Н	30
н	Н	Н	Н	Н	Н	31
X	Х	Х	Х	Х	L	All Open

Sample and Hold Timing

Temperature Diode

Sym	Parameter	Min	Тур	Max	Units	Conditions
PIV	Peak inverse voltage	-	-	5.0	V	cathode to anode
V _F	Forward diode drop	-	0.6	-	V	I_{F} = 100µA, anode to cathode at T_{A} = 25°C
I _F	Forward diode current	-	-	100	μA	anode to cathode
T _c	V _F temperature coefficient	-	-2.2	-	mV/°C	anode to cathode

Block Diagram

Power Up/Down Issues

External Diode Protection

The device can be damaged due to improper power up / down sequence. To prevent damage, please follow the acceptable power up / down sequences, and add two external diodes as shown in the diagram on the right. The first diode is a high voltage diode across VPP and VDD, where the anode of the diode is connected to VDD and the cathode of the diode is connected to VPP. Any low current, high voltage diode, such as a 1N4004, will be adequate. The second diode is a Schottky diode is connected to VNN, and the cathode is connected to DGND. Any low current Schottky diode such as a 1N5817 will be adequate.

Acceptable Power Up Sequences

The HV257 can be powered up with any of the following sequences listed below.

1) VPP 2) VNN 3) VDD 4) Inputs and Anode 1) VNN 2) VDD 3) VPP 4) Inputs and Anode 1) VDD & VNN 2) Inputs 3) VPP 4) Anode

Acceptable Power Down Sequences

The HV257 can be powered down with any of the following sequences listed below.

1) Inputs and Anode 2) VDD 3) VNN 4) VPP

1) Inputs and Anode 2) VPP 3) VDD 4) VNN

1) Anode 2) VPP 3) Inputs 4) VNN & VDD

External Diode Protection Connection

Suggested Power Up/Down Sequence

The HV257 needs all power supplies to be fully up and all channels refreshed with V_{SIG} = 0V to force all high voltage outputs to 0V. Before that time, the high voltage outputs may have temporary voltage excursions above or below GND level depending on selected power up sequence. To minimize the excursions:

1. The VDD and VNN power supplies should be applied at the same time (or within a few nanoseconds).

2. All channels should be continuously refreshed with V_{SIG} = 0V, just before, and while the VPP is ramping up. Suggested VPP ramp up speed should be 10msec or longer and ramp down to be 1msec or longer.

RSINK / RSOURCE

The VDD_BYP, VDD_BYP, and VNN_BYP pins are internal, high impedance current, mirror gate nodes, brought out to mantain stable opamp biasing currents in noisy power supply environments. 0.1uF/25V bypass capacitors, added from VPP_BYP pin to VPP, from VDD_BYP pin to VDD, and from

VNN_BYP to VNN, will force the high impedance gate nodes to follow fluctuation of power lines. The expected voltages at the VDD_BYP, and VNN_BYP pins are typically 1.5 volts from their respectful power supply. The expected voltage at VPP_BYP is typically 3V below VPP.

Ground Isolation (AGND/DGND Isolation)

It is important that the AGND pin is connected to a clean ground. The hold capacitors are internally connected to the AGND, and any ground noise will directly couple to the high voltage outputs (with a gain of 72). The analog and digital

ground traces on the PCB should be physically separated to reduce digital switching noise degrading the signal to noise performance.

HV257

250k

25°C

85°C

100µA

280

80µA

Typical Characteristics

-2

150

HV_{OUT} Level (V)

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

0

V_{SIG} Level (V)

Typical Characteristics (cont.)

Pad Configuration (not drawn to scale)

Pad Coordinates Chip size: 17160µm x 5830µm Center of die is (0,0)

Pad Name	X (µm)	Υ (μm)	Pad Name	Χ (μm)	Y (µm)	Pad Name	X (μm)	Y (µm)
VPP	-8338.5	2708.5	HV _{out} 30	5514.5	2305.5	N/C	1803.5	-2686.0
HV _{OUT} 0	-7895.0	2305.5	HV _{out} 31	5961.5	2305.5	N/C	1398.5	-2686.0
HV _{OUT} 1	7448.5	2305.5	VPP	6659.0	2709.0	N/C	993.5	-2686.0
HV _{out} 2	-7001.5	2305.5	BYP-VPP	7045.0	2709.0	N/C	588.5	-2686.0
HV _{OUT} 3	-6554.5	2305.5	RSOURCE	7489.0	2709.0	N/C	183.5	-2686.0
HV _{OUT} 4	-6107.5	2305.5	RSINK	7969.0	2709.0	N/C	-221.5	-2686.0
HV _{OUT} 5	-5660.5	2305.5	CATHODE	8366.0	2709.0	N/C	-626.5	-2686.0
HV _{OUT} 6	-5213.5	2305.5	ANODE	8366.0	2199.0	N/C	-1031.5	-2686.0
HV _{OUT} 7	-4776.5	2305.5	AVNN	8047.0	425.0	N/C	-1436.5	-2686.0
HV _{OUT} 8	-4319.5	2305.5	BYP-AVDD	8047.0	125.5	N/C	-2412.0	-2686.0
HV _{OUT} 9	-3872.5	2305.5	BYP-AVNN	8047.0	-135.5	N/C	-2817.0	-2686.0
HV _{out} 10	-3425.5	2305.5	AVDD	8047.0	-704.5	N/C	-3222.0	-2686.0
HV _{out} 11	-2978.5	2305.5	VSIG	8047.0	-1072.5	N/C	-3627.0	-2686.0
HV _{OUT} 12	-2513.5	2305.5	AGND	8047.0	-1424.5	N/C	-4032.0	-2686.0
HV _{OUT} 13	-2084.5	2305.5	DVNN	8066.5	-1590.0	N/C	-4437.0	-2686.0
HV _{OUT} 14	-1637.5	2305.5	DVDD	8066.5	-1958.5	N/C	-4842.0	-2686.0
HV _{OUT} 15	-1190.5	2305.5	DGND	7867.0	-2192.0	N/C	-5247.0	-2686.0
HV _{OUT} 16	-743.5	2305.5	A4	7723.0	-2684.0	N/C	-5652.0	-2686.0
HV _{OUT} 17	-296.5	2305.5	A3	7319.0	-2684.0	N/C	-6052.0	-2686.0
HV _{out} 18	150.0	2305.5	A2	6913.0	-2684.0	N/C	-6462.0	-2686.0
HV _{out} 19	597.5	2305.5	A1	6508.5	-2684.0	N/C	-6867.0	-2686.0
HV _{OUT} 20	1044.5	2305.5	A0	6103.5	-2684.0	N/C	-7272.0	-2686.0
HV _{OUT} 21	1491.5	2305.5	EN	5698.0	-2684.0	N/C	-7677.0	-2686.0
HV _{OUT} 22	1938.5	2305.5	N/C	5043.5	-2686.0	N/C	-8082.0	-2686.0
HV _{OUT} 23	2385.5	2305.5	N/C	4638.5	-2686.0	DVDD	-8373.0	-2250.5
HV _{OUT} 24	2832.5	2305.5	N/C	4233.5	-2686.0	DVNN	-8373.0	-1949.0
HV _{OUT} 25	3279.5	2305.5	N/C	3828.5	-2686.0	AGND	-8367.0	-1561.0
HV _{OUT} 26	3726.5	2305.5	N/C	3423.5	-2686.0	AVDD	-8387.0	-1143.0
HV _{OUT} 27	4173.5	2305.5	N/C	3018.5	-2686.0	AVNN	-8338.5	577.5
HV _{OUT} 28	4620.5	2305.5	N/C	2613.5	-2686.0	AGND	-8341.0	916.5
HV _{OUT} 29	5067.5	2305.5	N/C	2208.5	-2686.0			

Din	Description	
ГШ	Description	

Pin #	Function	Description
1	HV _{out} 31	
2	HV _{out} 30	
3	HV _{out} 29	
4	HV _{out} 28	
5	HV _{out} 27	
6	HV _{out} 26	
7	HV _{out} 25	
8	HV _{out} 24	
9	HV _{out} 23	
10	HV _{out} 22	
11	HV _{out} 21	
12	HV _{out} 20	
13	HV _{out} 19	
14	HV _{out} 18	
15	HV _{out} 17	
16	HV _{out} 16	Amplifier outputs.
17	HV _{out} 15	
18	HV _{out} 14	
19	HV _{out} 13	
20	HV _{out} 12	
21	HV _{out} 11	
22	HV _{out} 10	
23	HV _{out} 9	
24	HV _{OUT} 8	
25	HV _{out} 7	
26	HV _{OUT} 6	
27	HV _{out} 5	
28	HV _{OUT} 4	
29	HV _{OUT} 3	
30	HV _{OUT} 2	
31	HV _{out} 1	
32	HV _{OUT} 0	
33	VPP	High voltage positive supply. There are two pads.

Pin Description (cont.)

34-38 NC No connect 39 AGND Analog ground. There are three pads. They need to be externally connected. 40 AVNN Analog low voltage negative supply. This should be at the same potential as DVNN. There are two pads. 41 NC No connect 42 AVDD Analog ground. There are three pads. They need to be externally connected. 43 AGND Analog ground. There are three pads. They need to be externally connected. 44 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 45 DVDD Digital low voltage negative supply. This should be at the same potential as AVDD. There are two pads. 46-79 NC No Connect 80 EN Active logic high input. Logic low will keep sample and hold switches open. 81 A0 Active logic high input. Logic low will keep sample and hold switch. Sample and hold switches for unaddressed channels are kept open. 84 A3 Active logic input. Addressed channel will close the same potential as AVDD. There are two pads. 86 DGND Digital low voltage positive supply. This should be at the same potential as AVNN. There are two pads. 87 DVDD Digital low voltage negative supply. This should be at the same potenti	Pin #	Function	Description
40 AVNN Analog low voltage negative supply. This should be at the same potential as DVNN. There are two pads. 41 NC No connect 42 AVDD Analog low voltage positive supply. This should be at the same potential as DVDD. There are two pads. 43 AGND Analog ground. There are three pads. They need to be externally connected. 44 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 45 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 46-79 NC No Connect 80 EN Active logic high input. Logic low will keep sample and hold switches open. 81 A0 asticle input. Addressed channels are kept open. 84 A3 asticle or unaddressed channels are kept open. 85 A4 bigital low voltage negative supply. This should be at the same potential as AVDD. There are two pads. 88 DVND Digital ground. 87 DVDD Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 88 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 91	34-38	NC	No connect
40 AVIN two pads. 41 NC No connect 42 AVDD Analog low voltage positive supply. This should be at the same potential as DVDD. There are two pads. 43 AGND Analog ground. There are three pads. They need to be externally connected. 44 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 45 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 46-79 NC No Connect 80 EN Active logic high input. Logic low will keep sample and hold switches open. 81 A0 82 A1 84 A3 85 A4 86 DGND Digital ground. 87 DVDD Digital low voltage negative supply. This should be at the same potential as AVDD. There are two pads. 88 DVNN Digital ground. 87 DVDD Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 89 AGND Analog ground. There are three pads. They need to be externally connected. 90 VSIG C	39	AGND	Analog ground. There are three pads. They need to be externally connected.
42 AVDD Analog low voltage positive supply. This should be at the same potential as DVDD. There are two pads. 43 AGND Analog ground. There are three pads. They need to be externally connected. 44 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 45 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 46-79 NC No Connect 80 EN Active logic high input. Logic low will keep sample and hold switches open. 81 A0 82 A1 83 A2 84 A3 85 A4 86 DGND 90 Digital ground. 87 DVDD 10/101 Digital low voltage negative supply. This should be at the same potential as AVDD. There are two pads. 88 DVNN 89 AGND 90 VSIG 60 Common input signal for all 32 sample and hold circuits. 91 AVDD 92 BYP-AVNN 10 Internally generated reference voltage. An external low voltage (1.0 - 10nF) capac	40	AVNN	
42 AVDD two pads. 43 AGND Analog ground. There are three pads. They need to be externally connected. 44 DVNN Digital low voltage negative supply. This should be at the same potential as AVDD. There are two pads. 45 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 46 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 80 EN Active logic high input. Logic low will keep sample and hold switches open. 81 A0 82 A1 83 A2 84 A3 85 A4 86 DGND Digital ground. 87 DVDD DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 88 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 89 AGND Analog ground. There are three pads. They need to be externally connected. 90 VSIG Common input signal for all 32 sample and hold circuits. 91 AVDD Analog low voltage positive su	41	NC	No connect
44 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 45 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 46-79 NC No Connect 80 EN Active logic high input. Logic low will keep sample and hold switches open. 81 A0 82 A1 83 A2 84 A3 85 A4 86 DGND Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 87 DVDD Digital ground. 87 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 88 DVNN DVNN Digital low voltage negative supply. This should be at the same potential as AVDD. There are two pads. 91 AGND AGND Analog ground. There are three pads. They need to be externally connected. 91 AVDD Analog low voltage positive supply. This should be at the same potential as DVDD. There are two pads. 92 BYP-AVNN Internally generated reference	42	AVDD	
44DVNNtwo pads.45DVDDDigital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.46-79NCNo Connect80ENActive logic high input. Logic low will keep sample and hold switches open.81A082A183A284A385A486DGND91Digital ground.87DVDD10Digital low voltage negative supply. This should be at the same potential as AVDD. There are two pads.88DVNN89AGND90VSIG91AVDDAvDDAnalog ground. There are three pads. They need to be externally connected.92BYP-AVNN93BYP-AVND94AVNN95Anode95Anode94Anode	43	AGND	Analog ground. There are three pads. They need to be externally connected.
43DVDDtwo pads.46-79NCNo Connect80ENActive logic high input. Logic low will keep sample and hold switches open.81A082A183A284A385A486DGND97DVDDDVDDDigital ground.87DVDDDVDDDigital ow voltage positive supply. This should be at the same potential as AVDD. There are two pads.88DVNN90VSIG91Analog ground. There are three pads. They need to be externally connected.92BYP-AVNN93BYP-AVDD94AvNNAvNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95Anode95Anode95Anode	44	DVNN	
80 EN Active logic high input. Logic low will keep sample and hold switches open. 81 A0 82 A1 83 A2 84 A3 85 A4 86 DGND Digital ground. 87 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 88 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 89 AGND 90 VSIG Common input signal for all 32 sample and hold circuits. 91 AVDD Analog low voltage positive supply. This should be at the same potential as DVDD. There are two pads. 92 BYP-AVNN Internally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN. 93 BYP-AVDD 94 AVNN 95 Anode	45	DVDD	
81 A0 82 A1 83 A2 84 A3 85 A4 86 DGND Digital ground. 87 DVDD Digital low voltage positive supply. This should be at the same potential as AVDD. There are two pads. 88 DVNN Digital low voltage negative supply. This should be at the same potential as AVNN. There are two pads. 89 AGND 90 VSIG Common input signal for all 32 sample and hold circuits. 91 AVDD Analog low voltage positive supply. This should be at the same potential as DVDD. There are two pads. 91 AVDD 81 DVDD 92 BYP-AVNN 93 BYP-AVDD 94 AVNN 95 Anode 95 Anode side of a low voltage silicon diode that can be used to monitor die temperature.	46-79	NC	No Connect
82A183A284A385A486DGNDDigital ground.87DVDDDigital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.88DVNNDigital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	80	EN	Active logic high input. Logic low will keep sample and hold switches open.
83A2Decoder logic input. Addressed channel will close the sample and hold switch. Sample and hold84A385A486DGNDDigital ground.87DVDDDigital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.88DVNNDigital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	81	A0	
33A2switches for unaddressed channels are kept open.84A385A486DGNDDigital ground.87DVDDDigital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.88DVNNDigital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	82	A1	
84A385A486DGNDDigital ground.87DVDDDigital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.88DVNNDigital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	83	A2	
86DGNDDigital ground.87DVDDDigital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.88DVNNDigital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	84	A3	
87DVDDDigital low voltage positive supply. This should be at the same potential as AVDD. There are two pads.88DVNNDigital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	85	A4	
87DVDDtwo pads.88DVNNDigital low voltage negative supply. This should be at the same potential as AVNN. There are two pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	86	DGND	Digital ground.
88DVNNtwo pads.89AGNDAnalog ground. There are three pads. They need to be externally connected.90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	87	DVDD	
90VSIGCommon input signal for all 32 sample and hold circuits.91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	88	DVNN	
91AVDDAnalog low voltage positive supply. This should be at the same potential as DVDD. There are two pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	89	AGND	Analog ground. There are three pads. They need to be externally connected.
91AVDDtwo pads.92BYP-AVNNInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	90	VSIG	Common input signal for all 32 sample and hold circuits.
92BYP-AVINIbe connected across AVNN and BYP-AVNN.93BYP-AVDDInternally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across AVDD and BYP-AVDD.94AVNNAnalog low voltage negative supply. This should be at the same potential as DVNN. There are two pads.95AnodeAnode side of a low voltage silicon diode that can be used to monitor die temperature.	91	AVDD	
93 BYP-AVDD be connected across AVDD and BYP-AVDD. 94 AVNN Analog low voltage negative supply. This should be at the same potential as DVNN. There are two pads. 95 Anode Anode side of a low voltage silicon diode that can be used to monitor die temperature.	92	BYP-AVNN	
94 AVNN two pads. 95 Anode Anode side of a low voltage silicon diode that can be used to monitor die temperature.	93	BYP-AVDD	
	94	AVNN	
96 Cathode Cathode side of a low voltage silicon diode that can be used to monitor die temperature.	95	Anode	Anode side of a low voltage silicon diode that can be used to monitor die temperature.
	96	Cathode	Cathode side of a low voltage silicon diode that can be used to monitor die temperature.

Pin Description (cont.)

Pin #	Function	Description
97	RSINK	External resistor from RSINK to VNN sets output current sinking limit. Current limit is approximately 12.5V divided by RSINK resistor value.
98	RSOURCE	External resistor from RSOURCE to VNN sets output current sourcing limit. Current limit is approximately 12.5V divided by RSOURCE resistor value.
99	BYP-VPP	Internally generated reference voltage. An external low voltage (1.0 - 10nF) capacitor needs to be connected across VPP and BYP-VPP.
100	VPP	High voltage positive supply. There are two pads.

HV257

100-Lead MQFP Package Outline (FG) 20.00x14.00mm body, 3.15mm height (max), 0.65mm pitch, 3.20mm footprint

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ	θ1	
Dimension (mm)	MIN	2.50*	0.00	2.50	0.22	22.95*	19.80*	16.95*	13.80*	0.65 BSC			0.73	0.05	0 0	5 °
	NOM	-	-	2.70	-	23.20	20.00	17.20	14.00		0.88	1.60	0.25 BSC	-	-	
(((((((((((((((((((((((((((((((((((((((MAX	3.15	0.25	2.90	0.40	23.45*	20.20*	17.45*	14.20*		1.03		DOO	7 °	16 ⁰	

JEDEC Registration MS-022, Variation GC-2, Issue B, Dec. 1996.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.

Supertex Doc. #: DSPD-100MQFPFG, Version F041309.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http://www.supertex.com.

©2009 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

Tel: 408-222-8888

www.supertex.com