

May 1999

LM2638

Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers

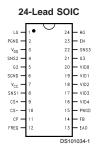
General Description

The LM2638 provides a comprehensive embedded power supply solution for motherboards hosting high performance MPUs such as Pentium™ II, M II™, K6™-2 and other similar high performance MPUs. The LM2638 incorporates a 5-bit programmable, synchronous buck switching controller and two high-speed linear regulator controllers in a 24-pin SO package. In a typical application, the switching controller supplies the MPU core, and the linear regulator controllers supply the GTL+ bus and the clock or graphics chip core. A charge pump pin helps provide the necessary voltage to power the linear sections when 12V is shut off during system standby such as STR mode.

Switching Section — The switching regulator controller features an Intel-compatible, 5-bit programmable output voltage, over-current and over-voltage protection, a power good signal, and a logic-controlled output enable. There are two user-selectable over-current protection methods. One provides accurate over-current protection with the use of an external sense resistor. The other saves cost by taking advantage of the $T_{\rm DS_ON}$ of the high-side FET. When there is an over voltage, the controller turns off the high side FET and turns on the low side.

Linear Section — The two linear regulator controllers feature wide control bandwidth, N-FET and NPN transistor driving capability and an adjustable output. The wide control bandwidth makes meeting the GTL+ bus transient response requirement an easy job. In minimum configuration, the two controllers default to 1.5V and 1.25V respectively.

Both linear controllers have under voltage latch-off.


Features

- Provides 3 regulated voltages
- Power Good flag and output enable
- Charge pump pin Switching Section
- Synchronous rectification
- 5-bit DAC programmable down to 1.3V
- Typical ±1% DAC tolerance
- Switching frequency: 50 kHz to 1 MHz
- Over-voltage protection
- Two methods of over-current protection
- Adaptive non-overlapping FET gate drives
- Soft start without external capacitor Linear Section
- N-FET and NPN drive capability
- Ultra fast response speed
- Under voltage latch-off at 0.63V
- Output voltages default to 1.5V and 2.5V yet adjustable

Applications

- Embedded power supplies for motherboards
- Triple DC/DC power supplies
- Programmable high current DC/DC power supply

Pin Configuration

Top View Order Number LM2638M See NS Package Number M24B

M II $^{\text{TM}}$ is a trademark of Cyrix Corporation a wholly owned subsidiary of National Semiconductor Corporation. Pentium $^{\text{TM}}$ is a trademark of Intel Corporation. K6 $^{\text{TM}}$ is a trademark of Advanced Micro Devices, Inc.

© 1999 National Semiconductor Corporation

DS101034

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V_{cc} 7V

V_{DD} 17V Junction Temperature 150°C Power Dissipation (Note 2) 1.6W Storage Temperature $$-65^{\circ}\text{C}$$ to +150°C ESD Susceptibility \$3\$ kV Soldering Time, Temperature (10 sec.) $$300^{\circ}\text{C}$$

Operating Ratings (Note 1)

 V_{CC} 4.75V to 5.25V Junction Temperature Range 0°C to +125°C

Electrical Characteristics V_{CC} = 5V, V_{DD} = 12V unless otherwise specified. Typicals and limits appearing in plain type apply for T_A = T_J = +25°C. Limits appearing in **boldface** type apply over the 0°C to +70°C range.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
I _{EN}	EN Pin Internal Pull-up Current		60	90	140	μΑ	
I _{cc}	Operating V _{CC} Current	EN = 5V, VID = 10111		6	7.5	mA	
I _{Q_VCC}	V _{CC} Shutdown Current	EN = 0V, VID Pins Floating		1.5	3	mA	
I _{Q_VDD}	V _{DD} Shutdown Current	EN = 0V, VID Pins Floating		4		μΑ	
R _{DS_CP}	CP Pin Resistance	High Side FET		100		Ω	
		Low Side FET		10		22	
SWITCHING	SECTION						
V _{DACOUT}	5-Bit DAC Output Voltage	(Note 3)	N-1.5%	N	N+1.5%	V	
I _{VID}	VID Pins Internal Pull-up Current		60	90	140	μΑ	
f _{osc}	Oscillator Frequency	RT = 100 kΩ	204	245	286	<u> </u>	
		RT = 25 kΩ		1000		kHz	
D _{MAX}	Maximum Duty Cycle			100		%	
D _{MIN}	Minimum Duty Cycle			0		%	
R _{SNS1}	SNS1 Pin Resistance to Ground		8.5	10	13	kΩ	
R _{DS_SRC}	Gate Driver Resistance When Sourcing Current			6		Ω	
R _{DS_SINK}	Gate Driver Resistance When Sinking Current			1.5		Ω	
V _{CC_TH1}	V _{CC} Power-On-Reset Threshold			4.0	4.3	V	
V _{CC_TH2}	V _{CC} Shutdown Threshold		3.0	3.6		V	
V_{DAC_IH}	DAC Input High Voltage		3.5			V	
V_{DAC_IL}	DAC Input Low Voltage				1.3	V	
GA	Error Amplifier DC Gain			76		dB	
BW _{EA}	Error Amplifier Unity Gain Bandwidth			5		MHz	
V _{RAMP_L}	Ramp Signal Valley Voltage			1.25		V	
V_{RAMP_H}	Ramp Signal Peak Voltage			3.25		V	
t _{ss}	Soft Start Time			4096		Clock Cycles	
D _{STEP_SS}	Duty Cycle Step Change during Soft Start			12.5		%	
t _{PWGD}	PWGD Response Time	SNS1 Rises from 0V to Rated Output Voltage	2	8.4	15	μs	
t _{PWBAD}	PWGD Response Time	SNS1 Falls from Rated Output Voltage to 0V	2	3.4	10	μs	

Electrical Characteristics V_{CC} = 5V, V_{DD} = 12V unless otherwise specified. Typicals and limits appearing in plain type apply for T_A = T_J = +25°C. Limits appearing in **boldface** type apply over the 0°C to +70°C range. (Continued)

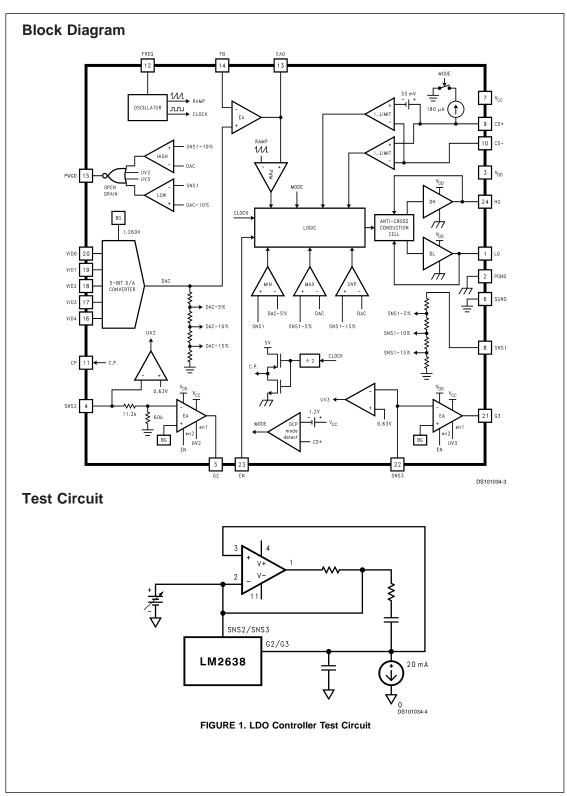
Symbol	Parameter	Conditions	Min	Тур	Max	Units
SWITCHING	SECTION				•	
V_{PWGD_HI}	PWGD High Trip Point	% Above Rated Output Voltage When Output Voltage		11.5	13	
		% Above Rated Output Voltage When Output Voltage↓ (Note 4)	5	7	9	%
V_{PWGD_LO}	PWGD Low Trip Point	% Below Rated Output Voltage When Output Voltage		2.6	6	
		% Below Rated Output Voltage When Output Voltage↓ (Note 4)	6	9.5	13	%
V _{OVP_TRP}	Over-Voltage Trip Point	% SNS1 Above Rated Output	15	25	35	%
I _{CS+}	CS+ Pin Sink Current	CS+ = 5V, CS- = 4.8V	126	185	244	μΑ
V _{OCP}	Over-Current Trip Point (CS+ and CS- Differential Voltage)	CS+ = 2V, CS- Drops from 2V	41	55	69	mV
1.5V LDO C	ONTROLLER SECTION				'	
V _{SNS2}	SNS2 Voltage	V_{DD} = 12V, V_{CC} = 4.75V to 5.25V, I_{G2} = 0 mA to 20 mA	1.463	1.5	1.538	V
R _{OUT2}	Output Resistance			200		Ω
I _{SNS2}	SNS2 Pin Bias Current	When Regulating		21		μΑ
V _{PWGD_HI}	PWGD High Trip Point	(Note 4)		0.63		V
V_{PWGD_LO}	PWGD Low Trip Point	(Note 4)		0.44		V
1.25V LDO	CONTROLLER SECTION					
V _{SNS3}	SNS3 Voltage	V_{DD} = 12V, V_{CC} = 4.75V to 5.25V, I_{G3} = 0 mA to 20 mA	1.219	1.25	1.281	V
R _{OUT3}	Output Resistance			200		Ω
I _{SNS3}	SNS3 Pin Bias Current	When Regulating		0		μΑ
V_{PWGD_HI}	PWGD High Trip Point	(Note 4)		0.63		V
V _{PWGD_LO}	PWGD Low Trip Point	(Note 4)		0.44		V

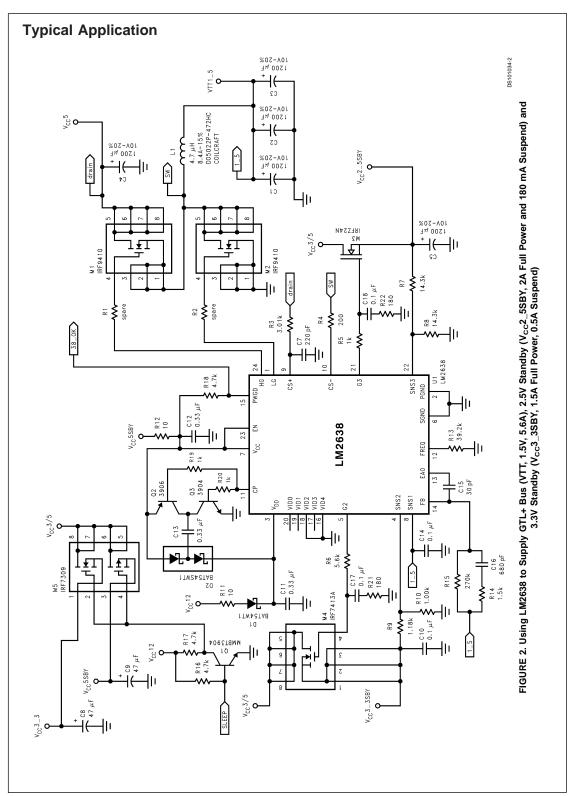
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating ratings are conditions under which the device operates correctly. Operating Ratings do not imply guaranteed performance limits.

Note 2: Maximum allowable power dissipation is a function of the maximum junction temperature, T_{JMAX} , the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{MAX} = (T_{JMAX} - T_A)/\theta_{JA}$. The junction-to-ambient thermal resistance, θ_{JA} , for LM2638 is 78°C/W. For a T_{JMAX} of 150°C and T_A of 25°C, the maximum allowable power dissipation is 1.6W.

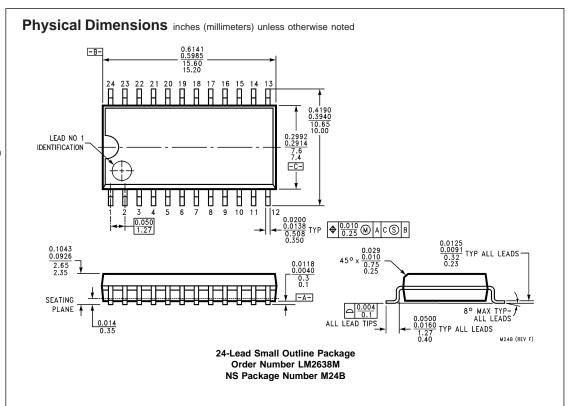
Note 3: The letter N stands for the typical output voltages appearing in *italic boldface* type in *Table 1*.

Note 4: The output level of the PWGD pin is a logic AND of the power good function of the switching section, the 1.5V section and the 1.25V section. For the switching section, the power good is a window. For the two linear sections, the power good is a threshold with some hysteresis.


Electrical Characteristics V_{CC} = 5V, V_{DD} = 12V unless otherwise specified. Typicals and limits appearing in plain type apply for T_A = T_J = +25°C. Limits appearing in **boldface** type apply over the 0°C to +70°C range. (Continued)


TABLE 1. 5-Bit DAC Output Voltage Table

 $(V_{CC} = 5V, V_{DD} = 12V \pm 5\%, T_A = 25^{\circ}C, Test Mode)$


Symbol	Parameter	Conditions	Typical	Units
V _{DACOUT}	5-Bit DAC Output Voltages for Different VID Codes	VID4:0 = 01111	1.30	V
		VID4:0 = 01110	1.35	
		VID4:0 = 01101	1.40	
		VID4:0 = 01100	1.45	
		VID4:0 = 01011	1.50	
		VID4:0 = 01010	1.55	
		VID4:0 = 01001	1.60	
		VID4:0 = 01000	1.65	
		VID4:0 = 00111	1.70	
		VID4:0 = 00110	1.75	
		VID4:0 = 00101	1.80	
		VID4:0 = 00100	1.85	
		VID4:0 = 00011	1.90	
		VID4:0 = 00010	1.95	
		VID4:0 = 00001	2.00	
		VID4:0 = 00000	2.05	
		VID4:0 = 11111	(shutdown)	
		VID4:0 = 11110	2.1	
		VID4:0 = 11101	2.2	
		VID4:0 = 11100	2.3	
		VID4:0 = 11011	2.4	
		VID4:0 = 11010	2.5	
		VID4:0 = 11001	2.6	
		VID4:0 = 11000	2.7	
		VID4:0 = 10111	2.8	
		VID4:0 = 10110	2.9	
		VID4:0 = 10101	3.0	
		VID4:0 = 10100	3.1	
		VID4:0 = 10011	3.2	
		VID4:0 = 10010	3.3	
		VID4:0 = 10001	3.4	
		VID4:0 = 10000	3.5	

Pin Description			
Pin	Pin Name	Pin Function	
1	LG	Low side N-FET gate driver output.	
2	PGND	Ground for the two FET drivers of the switching section.	
3	V _{DD}	Supply for the FET gate drivers. Usually tied to +12V.	
4	SNS2	Feedback pin for the 1.5V linear regulator.	
5	G2	Gate drive output for the external N-MOS of the fast 1.5V linear regulator.	
6	SGND	Ground for internal signal circuitry and system ground reference.	
7	V _{cc}	Supply voltage. Usually +5V.	
8	SNS1	Output voltage monitor input for the switching regulator.	
9	CS+	Switching regulator current sense input, positive node.	
10	CS-	Switching regulator current sense input, negative node.	
11	СР	Charge pump. Output is a square wave with 50% duty cycle. Amplitude is close to $V_{\rm CC}$ voltage.	
12	FREQ	Switching frequency adjustment pin. An external resistor is needed to set the desired frequency.	
13	EAO	Output of the error amplifier. Used for compensating the switching regulator.	
14	FB	Inverting input of the error amplifier. Used for compensating the switching regulator.	
15	PWGD	Open collector Power Good signal.	
16	VID4	5-Bit DAC input, MSB.	
17	VID3	5-Bit DAC input.	
18	VID2	5-Bit DAC input.	
19	VID1	5-Bit DAC input.	
20	VID0	5-Bit DAC input, LSB.	
21	G3	Gate drive pin for the external N-MOS of the 1.25V linear regulator.	
22	SNS3	Feedback pin for the 1.25V linear regulator.	
23	EN	Output Enable. A logic low shuts the whole chip down.	
24	HG	High side N-FET gate driver output.	
	-	·	

Controllers wo Linear Regulator

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: sea.support@nsc.com

Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications