## LM2742

N-Channel FET Synchronous Buck Regulator Controller for Low Output Voltages

## General Description

The LM2742 is a high-speed, synchronous, switching regulator controller. It is intended to control currents of 0.7 A to 20 A with up to $95 \%$ conversion efficiencies. Power up and down sequencing is achieved with the power-good flag, adjustable soft-start and output enable features. The LM2742 operates from a low-current 5 V bias and can convert from a 1 V to 16 V power rail. The part utilizes a fixed-frequency, voltage-mode, PWM control architecture and the switching frequency is adjustable from 50 kHz to 2 MHz by setting the value of an external resistor. Current limit is achieved by monitoring the voltage drop across the on-resistance of the low-side MOSFET, which enables on-times on the order of 40 ns , one of the best in the industry. The wide range of operating frequencies gives the power supply designer the flexibility to fine-tune component size, cost, noise and efficiency. The adaptive, non-overlapping MOSFET gate-drivers and high-side bootstrap structure helps to further maximize efficiency. The highside power FET drain voltage can be from 1 V to 16 V and the output voltage is adjustable down to 0.6 V .

## Features

- Input power from 1 V to 16 V
- Output voltage adjustable down to 0.6 V
- Power Good flag, adjustable soft-start and output enable for easy power sequencing
- Reference Accuracy: $1.5 \%\left(0^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}\right)$
- Current limit without sense resistor
- Soft start
- Switching frequency from 50 kHz to 2 MHz
- 40ns typical minimum on-time
- TSSOP-14 package


## Applications

- POL power supply modules
- Cable Modems
- Set-Top Boxes/ Home Gateways
- DDR Core Power
- High-Efficiency Distributed Power
- Local Regulation of Core Power

Typical Application


20087510

## Connection Diagram



## Ordering Information

| Order Number | Package Type | NSC Package Drawing | Supplied As |
| :---: | :---: | :---: | :---: |
| LM2742MTC | TSSOP-14 | MTC14 | 94 Units, Raill |
| LM2742MTCX | TSSOP-14 | MTC14 | 2500 Units on Tape and Reel |

## Pin Descriptions

BOOT (Pin 1) - Supply rail for the N-channel MOSFET gate drive. The voltage should be at least one gate threshold above the regulator input voltage to properly turn on the high-side N FET.
LG (Pin 2) - Gate drive for the low-side N-channel MOSFET. This signal is interlocked with HG to avoid shoot-through problems.
PGND (Pins 3, 13) - Ground for FET drive circuitry. It should be connected to system ground.
SGND (Pin 4) - Ground for signal level circuitry. It should be connected to system ground.
$\mathbf{V}_{\text {cc }}$ (Pin 5) - Supply rail for the controller.
PWGD (Pin 6) - Power Good. This is an open drain output. The pin is pulled low when the chip is in UVP, OVP, or UVLO mode. During normal operation, this pin is connected to $\mathrm{V}_{\mathrm{CC}}$ or other voltage source through a pull-up resistor.
ISEN (Pin 7) - Current limit threshold setting. This sources a fixed $50 \mu \mathrm{~A}$ current. A resistor of appropriate value should be connected between this pin and the drain of the low-side FET. EAO (Pin 8) - Output of the error amplifier. The voltage level on this pin is compared with an internally generated ramp
signal to determine the duty cycle. This pin is necessary for compensating the control loop.
SS (Pin 9) - Soft start pin. A capacitor connected between this pin and ground sets the speed at which the output voltage ramps up. Larger capacitor value results in slower output voltage ramp but also lower inrush current.
FB (Pin 10) - This is the inverting input of the error amplifier, which is used for sensing the output voltage and compensating the control loop.
FREQ (Pin 11) - The switching frequency is set by connecting a resistor between this pin and ground.
$\overline{\mathbf{S D}}$ (Pin 12) - IC Logic Shutdown. When this pin is pulled low the chip turns off both the high side and low side switches. While this pin is low, the IC will not start up. An internal $20 \mu \mathrm{~A}$ pull-up connects this pin to $\mathrm{V}_{\mathrm{CC}}$. For a device which turns on the low side switch during shutdown, see the pin compatible LM2737.
HG (Pin 14) - Gate drive for the high-side N-channel MOSFET. This signal is interlocked with LG to avoid shoot-through problems.

## Absolute Maximum Ratings <br> (Note 1) <br> If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

```
VC
BOOTV
LG and HG to GND (Note 3)
Junction Temperature
Storage Temperature
Soldering Information
```

Lead Temperature
(soldering, 10sec)
$260^{\circ} \mathrm{C}$
Infrared or Convection (20sec) $235^{\circ} \mathrm{C}$
ESD Rating 2 kV

## Operating Ratings

| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.5 V to 5.5 V |
| :--- | ---: |
| Junction Temperature Range | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ | $155^{\circ} \mathrm{C} / \mathrm{W}$ |

## Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise indicated. Typicals and limits appearing in plain type apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Limits appearing in boldface type apply over full Operating Temperature Range. Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {FB_ADJ }}$ | FB Pin Voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 0.591 | 0.6 | 0.609 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 0.591 | 0.6 | 0.609 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 0.591 | 0.6 | 0.609 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 0.589 | 0.6 | 0.609 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 0.589 | 0.6 | 0.609 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 0.589 | 0.6 | 0.609 |  |
| $\mathrm{V}_{\mathrm{ON}}$ | UVLO Thresholds | Rising <br> Falling |  | $\begin{aligned} & 4.2 \\ & 3.6 \end{aligned}$ |  | V |
| $\mathrm{I}_{\mathrm{Q} \text {-v5 }}$ | Operating $\mathrm{V}_{\mathrm{CC}}$ Current | $\begin{aligned} & \mathrm{SD}=5 \mathrm{~V}, \mathrm{FB}=0.55 \mathrm{~V} \\ & \mathrm{Fsw}=600 \mathrm{kHz} \end{aligned}$ | 1 | 1.5 | 2 | mA |
|  |  | $\begin{aligned} & \hline \mathrm{SD}=5 \mathrm{~V}, \mathrm{FB}=0.65 \mathrm{~V} \\ & \mathrm{Fsw}=600 \mathrm{kHz} \end{aligned}$ | 0.8 | 1.7 | 2.2 |  |
|  | Shutdown $\mathrm{V}_{\mathrm{CC}}$ Current | SD = 0V | 0.15 | 0.4 | 0.7 | mA |
| $\mathrm{t}_{\text {PWGD1 }}$ | PWGD Pin Response Time | FB Voltage Going Up |  | 6 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {PWGD2 }}$ | PWGD Pin Response Time | FB Voltage Going Down |  | 6 |  | $\mu \mathrm{s}$ |
| $\mathrm{I}_{\text {SD }}$ | SD Pin Internal Pull-up Current |  |  | 20 |  | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {SS-ON }}$ | SS Pin Source Current | $\begin{aligned} & \text { SS Voltage }=2.5 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 8 \\ & 5 \end{aligned}$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {ss-oc }}$ | SS Pin Sink Current During Over Current | SS Voltage $=2.5 \mathrm{~V}$ |  | 95 |  | $\mu \mathrm{A}$ |
| $I_{\text {SEN-TH }}$ | $\mathrm{I}_{\text {SEN }}$ Pin Source Current Trip Point | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 35 \\ & 28 \end{aligned}$ | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 65 \\ & 65 \end{aligned}$ | $\mu \mathrm{A}$ |

ERROR AMPLIFIER

| GBW | Error Amplifier Unity Gain Bandwidth |  |  | 5 |  | MHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G | Error Amplifier DC Gain |  |  | 60 |  | dB |
| SR | Error Amplifier Slew Rate |  |  | 6 |  | V/ $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {FB }}$ | FB Pin Bias Current | $\begin{aligned} & \mathrm{FB}=0.55 \mathrm{~V} \\ & \mathrm{FB}=0.65 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 15 \\ & 30 \end{aligned}$ | $\begin{aligned} & 100 \\ & 155 \end{aligned}$ | nA |
| $I_{\text {EAO }}$ | EAO Pin Current Sourcing and Sinking | $\begin{aligned} & \mathrm{V}_{\text {EAO }}=2.5, \mathrm{FB}=0.55 \mathrm{~V} \\ & \mathrm{~V}_{\text {EAO }}=2.5, \mathrm{FB}=0.65 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 2.8 \\ & 0.8 \\ & \hline \end{aligned}$ |  | mA |
| $\mathrm{V}_{\text {EA }}$ | Error Amplifier Maximum Swing | Minimum Maximum |  | $\begin{aligned} & 1.2 \\ & 3.2 \end{aligned}$ |  | V |


| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GATE DRIVE |  |  |  |  |  |  |
| $\mathrm{I}_{\mathrm{Q} \text {-BOOT }}$ | BOOT Pin Quiescent Current | $\begin{aligned} & \mathrm{BOOT}=12 \mathrm{~V}, \mathrm{EN}=0 \\ & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 95 \\ & 95 \end{aligned}$ | $\begin{aligned} & 160 \\ & 215 \end{aligned}$ | $\mu \mathrm{A}$ |
| $\mathrm{R}_{\mathrm{DS} 1}$ | Top FET Driver Pull-Up ON resistance | BOOT-SW = 5V @ 350mA |  | 3 |  | $\Omega$ |
| $\mathrm{R}_{\text {DS2 }}$ | Top FET Driver Pull-Down ON resistance | BOOT-SW = 5V @ 350mA |  | 2 |  | $\Omega$ |
| $\mathrm{R}_{\text {DS3 }}$ | Bottom FET Driver Pull-Up ON resistance | BOOT-SW = 5V @ 350mA |  | 3 |  | $\Omega$ |
| $\mathrm{R}_{\mathrm{DS} 4}$ | Bottom FET Driver Pull-Down ON resistance | BOOT-SW = 5V @ 350mA |  | 2 |  | $\Omega$ |
| OSCILLATOR |  |  |  |  |  |  |
| $\mathrm{f}_{\text {OSC }}$ | PWM Frequency | $\mathrm{R}_{\text {FADJ }}=590 \mathrm{k} \Omega$ |  | 50 |  | kHz |
|  |  | $\mathrm{R}_{\text {FADJ }}=88.7 \mathrm{k} \Omega$ |  | 300 |  |  |
|  |  | $\mathrm{R}_{\text {FADJ }}=42.2 \mathrm{k} \Omega, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 500 | 600 | 700 |  |
|  |  | $\mathrm{R}_{\text {FADJ }}=42.2 \mathrm{k} \Omega,-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 490 | 600 | 700 |  |
|  |  | $\mathrm{R}_{\text {FADJ }}=17.4 \mathrm{k} \Omega$ |  | 1400 |  |  |
|  |  | $\mathrm{R}_{\text {FADJ }}=11.3 \mathrm{k} \Omega$ |  | 2000 |  |  |
| D | Max Duty Cycle | $\begin{aligned} & \mathrm{f}_{\mathrm{fWM}}=300 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{PWM}}=600 \mathrm{kHz} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 90 \\ & 88 \end{aligned}$ |  | \% |
| $\mathrm{t}_{\text {on-min }}$ | Minimum on-time |  |  | 40 |  | ns |
| LOGIC INPUTS AND OUTPUTS |  |  |  |  |  |  |
| $\mathrm{V}_{\text {SD-IH }}$ | SD Pin Logic High Trip Point |  |  | 2.6 | 3.5 | V |
| $\mathrm{V}_{\text {SD-IL }}$ | SD Pin Logic Low Trip Point | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | $\begin{gathered} 1.3 \\ 1.25 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$ |  | V |
| $\mathrm{V}_{\text {PWGD-Th-LO }}$ | PWGD Pin Trip Points | FB Voltage Going Down $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ | $\begin{aligned} & 0.413 \\ & 0.410 \end{aligned}$ | $\begin{aligned} & 0.430 \\ & 0.430 \end{aligned}$ | $\begin{aligned} & 0.446 \\ & 0.446 \end{aligned}$ | V |
| $\mathrm{V}_{\text {PWGD-TH-Hı }}$ | PWGD Pin Trip Points | FB Voltage Going Up $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ <br> $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\begin{aligned} & 0.691 \\ & 0.688 \end{aligned}$ | $\begin{aligned} & 0.710 \\ & 0.710 \end{aligned}$ | $\begin{aligned} & 0.734 \\ & 0.734 \end{aligned}$ | V |
| $\mathrm{V}_{\text {PWGD-HYS }}$ | PWGD Hysteresis | FB Voltage Going Down FB Voltage Going Up |  | $\begin{gathered} \hline 35 \\ 110 \\ \hline \end{gathered}$ |  | mV |

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device operates correctly. Operating Ratings do not imply guaranteed performance limits.
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin.
Note 3: The LG and HG pin can have -2 V to -0.5 V applied for a maximum duty cycle of $10 \%$ with a maximum period of 1 second. There is no duty cycle or maximum period limitation for a LG and HG pin voltage range of -0.5 V to 21 V .

## Typical Performance Characteristics

Efficiency ( $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$ )
$\mathrm{F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}$ Operating Current vs Temperature
$F_{\text {sw }}=600 \mathrm{kHz}$, No-Load


20087514
Bootpin Current vs Temperature with 5V Bootstrap $F_{\text {sw }}=600 \mathrm{kHz}$, Si4826DY FET, No-Load
 AMBIENT TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )

Efficiency ( $\mathrm{V}_{\mathrm{O}}=3.3 \mathrm{~V}$ )
$\mathrm{F}_{\mathrm{sw}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$


Bootpin Current vs Temperature for BOOTV $=12 \mathrm{~V}$ $\mathrm{F}_{\mathrm{Sw}}=600 \mathrm{kHz}$, Si4826DY FET, No-Load


20087515

PWM Frequency vs Temperature for $R_{\text {FADJ }}=\mathbf{4 3 . 2 k} \Omega$
 AMBIENT TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )
 PWM Frequency (Si4826DY FET, $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$ )





20087523



Start Up (No-Load, 10x C ${ }_{\text {ss }}$ )
$V_{I N}=10 \mathrm{~V}, V_{O}=1.2 \mathrm{~V}$
$C_{s s}=100 \mathrm{nF}, \mathrm{F}_{\mathrm{sw}}=300 \mathrm{kHz}$



Peak Current During Current Limit
$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{LIM}}=4 \mathrm{~A}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{L}=15 \mu \mathrm{H}$

$4 \mu \mathrm{~s} / \mathrm{DIV}$

$200 \mu \mathrm{~s} / \mathrm{DIV}$
20087553

## Block Diagram



## Application Information

## THEORY OF OPERATION

The LM2742 is a voltage-mode, high-speed synchronous buck regulator with a PWM control scheme. It is designed for use in set-top boxes, thin clients, DSL/Cable modems, and other applications that require high efficiency buck converters. It has power good (PWRGD), and output shutdown $(\overline{\mathrm{SD}})$. Current limit is achieved by sensing the voltage $\mathrm{V}_{\mathrm{DS}}$ across the low side FET. During current limit the high side gate is turned off and the low side gate turned on. The soft start capacitor is discharged by a $95 \mu \mathrm{~A}$ source (reducing the maximum duty cycle) until the current is under control.

## START UP

When $\mathrm{V}_{\mathrm{CC}}$ exceeds 4.2 V and the shutdown pin $\overline{\mathrm{SD}}$ sees a logic high the soft start capacitor begins charging through an internal fixed $10 \mu \mathrm{~A}$ source. During this time the output of the error amplifier is allowed to rise with the voltage of the soft start capacitor. This capacitor, $\mathrm{C}_{\mathrm{SS}}$, determines soft start time, and can be determined approximately by:

$$
C_{s s}=\frac{t_{s s}}{2.5 \times 10^{5}}
$$

An application for a microprocessor might need a delay of 3 ms , in which case $\mathrm{C}_{\mathrm{SS}}$ would be 12 nF . For a different device, a 100 ms delay might be more appropriate, in which case $\mathrm{C}_{\mathrm{SS}}$ would be 400nF. (390 10\%) During soft start the PWRGD flag is forced low and is released when the voltage reaches a set value. At this point this chip enters normal operation mode and the Power Good flag is released.
Since the output is floating when the LM2742 is turned off, it is possible that the output capacitor may be precharged to some positive value. During start-up, the LM2742 operates fully synchronous and will discharge the output capacitor to some extent depending on the output voltage, soft start capacitance, and the size of the output capacitor.

## NORMAL OPERATION

While in normal operation mode, the LM2742 regulates the output voltage by controlling the duty cycle of the high side and low side FETs. The equation governing output voltage is:

$$
V_{O}=0.6 \times\left(R_{F B 1}+R_{F B 2}\right) / R_{F B 1}
$$

The PWM frequency is adjustable between 50 kHz and 2 MHz and is set by an external resistor, $\mathrm{R}_{\text {FADJ }}$, between the FREQ pin and ground. The resistance needed for a desired frequency is approximately:

$$
R_{\text {FADJ }}=\left(\frac{20500}{\text { freq }[k H z]}\right)^{1.0526} \mathrm{k} \Omega
$$

## MOSFET GATE DRIVERS

The LM2742 has two gate drivers designed for driving N channel MOSFETs in a synchronous mode. Power for the drivers is supplied through the BOOT pin. For the high side gate (HG) to fully turn on the top FET, the BOOT voltage must be at least one $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ greater than Vin. ( $\mathrm{BOOT} \geq 2^{*} \mathrm{Vin}$ ) This voltage can be supplied by a separate, higher voltage source, or supplied from a local charge pump structure. In a system such as a desktop computer, both 5 V and 12 V are usually available. Hence if Vin was 5 V , the 12 V supply could be used for BOOT. 12 V is more than $2^{*} \mathrm{Vin}$, so the HG would operate
correctly. For a BOOT of 12 V , the initial gate charging current is 2 A , and the initial gate discharging current is typically 6 A .


FIGURE 1. BOOT Supplied by Charge Pump
In a system without a separate, higher voltage, a charge pump (bootstrap) can be built using a diode and small capacitor, Figure 1. The capacitor serves to maintain enough voltage between the top FET gate and source to control the device even when the top FET is on and its source has risen up to the input voltage level.
The LM2742 gate drives use a BiCMOS design. Unlike some other bipolar control ICs, the gate drivers have rail-to-rail swing, ensuring no spurious turn-on due to capacitive coupling.

## POWER GOOD SIGNAL

The power good signal is the or-gated flag representing overvoltage and under-voltage protection. If the output voltage is $18 \%$ over it's nominal value, $\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$, or falls $30 \%$ below that value, $\mathrm{V}_{\mathrm{FB}}=0.41 \mathrm{~V}$, the power good flag goes low. It will return to a logic high whenever the feedback pin voltage is between $70 \%$ and $118 \%$ of 0.6 V . The power good pin is an open drain output that can be pulled up to logic voltages of 5 V or less with a $10 \mathrm{k} \Omega$ resistor.

## UVLO

The 4.2V turn-on threshold on $\mathrm{V}_{\mathrm{CC}}$ has a built in hysteresis of 0.6 V . Therefore, if $\mathrm{V}_{\mathrm{CC}}$ drops below 3.6 V , the chip enters UVLO mode. UVLO consists of turning off the top FET, turning off the bottom FET, and remaining in that condition until $\mathrm{V}_{\mathrm{CC}}$ rises above 4.2 V . As with shutdown, the soft start capacitor is discharged through a FET, ensuring that the next start-up will be smooth.

## CURRENT LIMIT

Current limit is realized by sensing the voltage across the low side FET while it is on. The $R_{\text {DSoN }}$ of the FET is a known value, hence the current through the FET can be determined as:

$$
V_{D S}=1 * R_{D S O N}
$$

The current through the low side FET while it is on is also the falling portion of the triangle wave inductor current. The current limit threshold is determined by an external resistor, $R_{\text {CS }}$, connected between the switch node and the $I_{\text {SEN }}$ pin. $A$ constant current of $50 \mu \mathrm{~A}$ is forced through $\mathrm{R}_{\mathrm{CS}}$, causing a fixed voltage drop. This fixed voltage is compared against $\mathrm{V}_{\mathrm{DS}}$ and if the latter is higher, the current limit of the chip has
been reached. $\mathrm{R}_{\mathrm{CS}}$ can be found by using the following equation:

$$
\mathrm{R}_{\mathrm{CS}}=\mathrm{R}_{\mathrm{DSON}}(\mathrm{LOW}) * \mathrm{I}_{\mathrm{LIM}} / 50 \mu \mathrm{~A}
$$

For example, a conservative 15A current limit in a 10A design with a minimum $R_{D s o N}$ of $10 \mathrm{~m} \Omega$ would require a $3.3 \mathrm{k} \Omega$ resistor. Because current sensing is done across the low side FET, no minimum high side on-time is necessary. In the current limit mode the LM2727/37 will turn the high side off and the keep low side on for as long as necessary. The LM2727/37 enters current limit mode if the inductor current exceeds the current limit threshold at the point where the high side FET turns off and the low side FET turns on. (The point of peak inductor current. See .) Note that in normal operation mode the high side FET always turns on at the beginning of a clock cycle. In current limit mode, by contrast, the high side FET on pulse is skipped. This causes inductor current to fall. Unlike a normal operation switching cycle, however, in a current limit mode switching cycle the high side FET will turn on as soon as inductor current has fallen to the current limit threshold. The LM2727/37 will continue to skip high side FET pulses until the inductor current peak is below the current limit threshold, at which point the system resumes normal operation.


## FIGURE 2. Current Limit Threshold

Unlike a high side FET current sensing scheme, which limits the peaks of inductor current, low side current sensing is only allowed to limit the current during the converter off-time, when inductor current is falling. Therefore in a typical current limit plot the valleys are normally well defined, but the peaks are variable, according to the duty cycle. The PWM error amplifier and comparator control the off pulse of the high side FET, even during current limit mode, meaning that peak inductor current can exceed the current limit threshold. Assuming that the output inductor does not saturate, the maximum peak inductor current during current limit mode can be calculated with the following equation:

$$
I_{P K-C L}=I_{L I M}+\left(T_{O S C}-200 n s\right) \frac{V_{I N}-V_{O}}{L}
$$

Where $T_{\text {Osc }}$ is the inverse of switching frequency $f_{\text {osc }}$. The 200 ns term represents the minimum off-time of the duty cycle,
which ensures enough time for correct operation of the current sensing circuitry. See the plots entitled Peak Current During Current Limit in the Typical Performance Characteristics section.
In order to minimize the time period in which peak inductor current exceeds the current limit threshold, the IC also discharges the soft start capacitor through a fixed $95 \mu \mathrm{~A}$ source. The output of the LM2727/37 internal error amplifier is limited by the voltage on the soft start capacitor. Hence, discharging the soft start capacitor reduces the maximum duty cycle $D$ of the controller. During severe current limit this reduction in duty cycle will reduce the output voltage if the current limit conditions last for an extended time. Output inductor current will be reduced in turn to a flat level equal to the current limit threshold. The third benefit of the soft start capacitor discharge is a smooth, controlled ramp of output voltage when the current limit condition is cleared. During the first few nanoseconds after the low side gate turns on, the low side FET body diode conducts. This causes an additional 0.7 V drop in $\mathrm{V}_{\mathrm{DS}}$. The range of $V_{D S}$ is normally much lower. For example, if $R_{D S O N}$ were $10 \mathrm{~m} \Omega$ and the current through the FET was $10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}$ would be 0.1 V . The current limit would see 0.7 V as a 70 A current and enter current limit immediately. Hence current limit is masked during the time it takes for the high side switch to turn off and the low side switch to turn on.

## SHUT DOWN

If the shutdown pin $\overline{\mathrm{SD}}$ is pulled low, the LM2742 discharges the soft start capacitor through a MOSFET switch. The high side and low side switches are turned off. The LM2742 remains in this state until $\overline{\mathrm{SD}}$ is released.

## DESIGN CONSIDERATIONS

The following is a design procedure for all the components needed to create the circuit shown in Figure 4 in the Example Circuits section, a 5 V in to 1.2 V out converter, capable of delivering 10A with an efficiency of $85 \%$. The switching frequency is 300 kHz . The same procedures can be followed to create many other designs with varying input voltages, output voltages, and output currents.

## Input Capacitor

The input capacitors in a Buck switching converter are subjected to high stress due to the input current waveform, which is a square wave. Hence input caps are selected for their ripple current capability and their ability to withstand the heat generated as that ripple current runs through their ESR. Input rms ripple current is approximately:

$$
I_{\text {rms_rip }}=I_{0}^{*} \sqrt{D(1-D)}
$$

The power dissipated by each input capacitor is:

$$
P_{D}=\frac{I_{r m s \_r i p}^{2} E S R}{n^{2}}
$$

Here, n is the number of capacitors, and indicates that power loss in each cap decreases rapidly as the number of input caps increase. The worst-case ripple for a Buck converter occurs during full load, when the duty cycle $\mathrm{D}=50 \%$.
In the 5 V to 1.2 V case, $\mathrm{D}=1.2 / 5=0.24$. With a 10 A maximum load the ripple current is 4.3A. The Sanyo 10MV5600AX aluminum electrolytic capacitor has a ripple current rating of 2.35 A , up to $105^{\circ} \mathrm{C}$. Two such capacitors make a conservative design that allows for unequal current sharing between
individual caps. Each capacitor has a maximum ESR of $18 \mathrm{~m} \Omega$ at 100 kHz . Power loss in each device is then 0.05 W , and total loss is 0.1 W . Other possibilities for input and output capacitors include MLCC, tantalum, OSCON, SP, and POSCAPS.

## Input Inductor

The input inductor serves two basic purposes. First, in high power applications, the input inductor helps insulate the input power supply from switching noise. This is especially important if other switching converters draw current from the same supply. Noise at high frequency, such as that developed by the LM2742 at 1MHz operation, could pass through the input stage of a slower converter, contaminating and possibly interfering with its operation.
An input inductor also helps shield the LM2742 from high frequency noise generated by other switching converters. The second purpose of the input inductor is to limit the input current slew rate. During a change from no-load to full-load, the input inductor sees the highest voltage change across it, equal to the full load current times the input capacitor ESR. This value divided by the maximum allowable input current slew rate gives the minimum input inductance:

$$
\mathrm{L}_{\mathrm{in}}=\frac{\Delta V}{\left(\frac{\mathrm{di}}{\mathrm{dt}}\right)_{\max }}
$$

In the case of a desktop computer system, the input current slew rate is the system power supply or "silver box" output current slew rate, which is typically about $0.1 \mathrm{~A} / \mu \mathrm{s}$. Total input capacitor ESR is $9 \mathrm{~m} \Omega$, hence $\Delta \mathrm{V}$ is $10^{*} 0.009=90 \mathrm{mV}$, and the minimum inductance required is $0.9 \mu \mathrm{H}$. The input inductor should be rated to handle the DC input current, which is approximated by:

$$
I_{I N-D C}=\frac{I_{0}^{*} D}{\eta}
$$

In this case $I_{I N-D C}$ is about 2.8A. One possible choice is the TDK SLF12575T-1R2N8R2, a $1.2 \mu \mathrm{H}$ device that can handle 8.2Arms, and has a DCR of $7 \mathrm{~m} \Omega$.

## Output Inductor

The output inductor forms the first half of the power stage in a Buck converter. It is responsible for smoothing the square wave created by the switching action and for controlling the output current ripple. $\left(\Delta I_{0}\right)$ The inductance is chosen by selecting between tradeoffs in output ripple, efficiency, and response time. The smaller the output inductor, the more quickly the converter can respond to transients in the load current. If the inductor value is increased, the ripple through the output capacitor is reduced and thus the output ripple is reduced. As shown in the efficiency calculations, a smaller inductor requires a higher switching frequency to maintain the same level of output current ripple. An increase in frequency can mean increasing loss in the FETs due to the charging and discharging of the gates. Generally the switching frequency is chosen so that conduction loss outweighs switching loss. The equation for output inductor selection is:

$$
L=\frac{V_{\text {in }}-V_{0}}{\Delta i_{0} * F_{S W}} * D
$$

A good range for $\Delta I_{0}$ is 25 to $50 \%$ of the output current. In the past, $30 \%$ was considered a maximum value for output currents higher than about 2Amps, but as output capacitor technology improves the ripple current can be allowed to increase. Plugging in the values for output current ripple, input voltage, output voltage, switching frequency, and assuming a $40 \%$ peak-to-peak output current ripple yields an inductance of $1.5 \mu \mathrm{H}$. The output inductor must be rated to handle the peak current (also equal to the peak switch current), which is (lo + $0.5^{*} \Delta I_{o}$ ). This is 12 A for a 10 A design. The Coilcraft D05022-152HC is $1.5 \mu \mathrm{H}$, is rated to 15 Arms , and has a DCR of $4 \mathrm{~m} \Omega$.

## Output Capacitor

The output capacitor forms the second half of the power stage of a Buck switching converter. It is used to control the output voltage ripple ( $\Delta \mathrm{V}_{0}$ ) and to supply load current during fast load transients.
In this example the output current is 10A and the expected type of capacitor is an aluminum electrolytic, as with the input capacitors. (Other possibilities include ceramic, tantalum, and solid electrolyte capacitors, however the ceramic type often do not have the large capacitance needed to supply current for load transients, and tantalums tend to be more expensive than aluminum electrolytic.) Aluminum capacitors tend to have very high capacitance and fairly low ESR, meaning that the ESR zero, which affects system stability, will be much lower than the switching frequency. The large capacitance means that at switching frequency, the ESR is dominant, hence the type and number of output capacitors is selected on the basis of ESR. One simple formula to find the maximum ESR based on the desired output voltage ripple, $\Delta \mathrm{V}_{0}$ and the designed output current ripple, $\Delta \mathrm{I}_{0}$, is:

$$
\operatorname{ESR}_{\text {MAX }}=\frac{\Delta V_{0}}{\Delta I_{0}}
$$

In this example, in order to maintain a $2 \%$ peak-to-peak output voltage ripple and a $40 \%$ peak-to-peak inductor current ripple, the required maximum ESR is $6 \mathrm{~m} \Omega$. Three Sanyo 10MV5600AX capacitors in parallel will give an equivalent ESR of $6 \mathrm{~m} \Omega$. The total bulk capacitance of 16.8 mF is enough to supply even severe load transients. Using the same capacitors for both input and output also keeps the bill of materials simple.

## Mosfets

MOSFETS are a critical part of any switching controller and have a direct impact on the system efficiency. In this case the target efficiency is $85 \%$ and this is the variable that will determine which devices are acceptable. Loss from the capacitors, inductors, and the LM2742 itself are detailed in the Efficiency section, and come to about 0.54 W . To meet the target efficiency, this leaves 1.45 W for the FET conduction loss, gate charging loss, and switching loss. Switching loss is particularly difficult to estimate because it depends on many factors. When the load current is more than about 1 or 2 amps , conduction losses outweigh the switching and gate charging losses. This allows FET selection based on the $\mathrm{R}_{\text {DSON }}$ of the FET. Adding the FET switching and gate-charging losses to the equation leaves 1.2 W for conduction losses. The equation for conduction loss is:

$$
P_{\text {Cnd }}=D\left(I^{2}{ }_{o}^{*} R_{\text {DSON }} * k\right)+(1-D)\left(I^{2}{ }_{o}^{*} R_{\text {DSON }}{ }^{*} k\right)
$$

The factor k is a constant which is added to account for the increasing $R_{D S O N}$ of a FET due to heating. Here, $k=1.3$. The Si4442DY has a typical $R_{\text {DSON }}$ of $4.1 \mathrm{~m} \Omega$. When plugged into
the equation for $\mathrm{P}_{\mathrm{CND}}$ the result is a loss of 0.533 W . If this design were for a 5 V to 2.5 V circuit, an equal number of FETs on the high and low sides would be the best solution. With the duty cycle $D=0.24$, it becomes apparent that the low side FET carries the load current $76 \%$ of the time. Adding a second FET in parallel to the bottom FET could improve the efficiency by lowering the effective $\mathrm{R}_{\text {DSoN }}$. The lower the duty cycle, the more effective a second or even third FET can be. For a minimal increase in gate charging loss ( 0.054 W ) the decrease in conduction loss is 0.15 W . What was an $85 \%$ design improves to $86 \%$ for the added cost of one SO-8 MOSFET.

## Control Loop Components

The circuit is this design example and the others shown in the Example Circuits section have been compensated to improve their DC gain and bandwidth. The result of this compensation is better line and load transient responses. For the LM2742, the top feedback divider resistor, Rfb2, is also a part of the compensation. For the 10A, 5 V to 1.2 V design, the values are: $\mathrm{Cc} 1=4.7 \mathrm{pF} 10 \%, \mathrm{Cc} 2=1 \mathrm{nF} 10 \%, \mathrm{Rc}=229 \mathrm{k} \Omega 1 \%$. These values give a phase margin of $63^{\circ}$ and a bandwidth of 29.3 kHz .

## Support Capacitors and Resistors

The Cinx capacitors are high frequency bypass devices, designed to filter harmonics of the switching frequency and input noise. Two $1 \mu \mathrm{~F}$ ceramic capacitors with a sufficient voltage rating (10V for the Circuit of Figure 4) will work well in almost any case.
$\mathrm{R}_{\mathrm{IN}}$ and $\mathrm{C}_{\text {IN }}$ are standard filter components designed to ensure smooth DC voltage for the chip supply. Depending on noise, $\mathrm{R}_{\text {IN }}$ should be 10 to $100 \Omega$, and $\mathrm{C}_{\text {IN }}$ should be between 0.1 and $2.2 \mu \mathrm{~F} . \mathrm{C}_{\text {Bоот }}$ is the bootstrap capacitor, and should be $0.1 \mu \mathrm{~F}$. (In the case of a separate, higher supply to the BOOT pin, this $0.1 \mu \mathrm{~F}$ cap can be used to bypass the supply.) Using a Schottky device for the bootstrap diode allows the minimum drop for both high and low side drivers. The On Semiconductor BAT54 or MBR0520 work well.
Rp is a standard pull-up resistor for the open-drain power good signal, and should be $10 \mathrm{k} \Omega$. If this feature is not necessary, it can be omitted.
$R_{C S}$ is the resistor used to set the current limit. Since the design calls for a peak current magnitude ( $\mathrm{Io}+0.5{ }^{*} \Delta \mathrm{I}_{\mathrm{o}}$ ) of 12A, a safe setting would be 15A. (This is well below the saturation current of the output inductor, which is 25A.) Following the equation from the Current Limit section, use a $3.3 \mathrm{k} \Omega$ resistor. $\mathrm{R}_{\text {FADJ }}$ is used to set the switching frequency of the chip. Following the equation in the Theory of Operation section, the closest $1 \%$ tolerance resistor to obtain $f_{\mathrm{SW}}=300 \mathrm{kHz}$ is $88.7 \mathrm{k} \Omega$.
$\mathrm{C}_{\mathrm{SS}}$ depends on the users requirements. Based on the equation for $\mathrm{C}_{S S}$ in the Theory of Operation section, for a 3ms delay, a 12 nF capacitor will suffice.

## EFFICIENCY CALCULATIONS

A reasonable estimation of the efficiency of a switching controller can be obtained by adding together the loss is each current carrying element and using the equation:

$$
\eta=\frac{P_{0}}{P_{0}+P_{\text {total-loss }}}
$$

The following shows an efficiency calculation to complement the Circuit of Figure 4. Output power for this circuit is 1.2 V x $10 \mathrm{~A}=12 \mathrm{~W}$.

## Chip Operating Loss

$$
\mathrm{P}_{\mathrm{IQ}}=\mathrm{I}_{\mathrm{Q}-\mathrm{V}_{\mathrm{cc}}} * \mathrm{~V}_{\mathrm{CC}}
$$

$2 \mathrm{~mA} \times 5 \mathrm{~V}=0.01 \mathrm{~W}$

## FET Gate Charging Loss

$$
P_{G C}=n * V_{C C} * Q_{G S} * f_{\mathrm{OSC}}
$$

The value n is the total number of FETs used. The Si4442DY has a typical total gate charge, $Q_{G S}$, of $36 n C$ and an $r_{d s-o n}$ of $4.1 \mathrm{~m} \Omega$. For a single FET on top and bottom: $2^{*} 5^{*} 36 \mathrm{E}^{-9 *} 300,000=0.108 \mathrm{~W}$

## FET Switching Loss

$$
P_{\mathrm{SW}}=0.5^{*} \mathrm{~V}_{\text {in }} * \mathrm{I}_{\mathrm{O}} *\left(\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}\right)^{*} \mathrm{f}_{\mathrm{OSC}}
$$

The Si4442DY has a typical rise time $t_{r}$ and fall time $t_{f}$ of 11 and 47 ns , respectively. $0.5^{*} 5^{*} 10^{*} 58 \mathrm{E}-9 * 300,000=0.435 \mathrm{~W}$

## FET Conduction Loss

$$
P_{C n}=0.533 W
$$

Input Capacitor Loss

$$
\begin{gathered}
P_{C i n}=\frac{I_{r m s-r i p}^{2}{ }^{*} E S R}{n} \\
I_{r m s-r i p}=I_{0}^{*} \sqrt{D(1-D)}
\end{gathered}
$$

$4.28^{2 *} 0.018 / 2=0.164 \mathrm{~W}$
Input Inductor Loss

$$
\begin{gathered}
P_{\text {Lin }}=I_{\text {in }} * D C R_{\text {input-L }} \\
I_{N}=\frac{I_{0}^{*} D}{\eta_{\text {est'd }}}
\end{gathered}
$$

$2.82^{2 *} 0.007=0.055 \mathrm{~W}$

## Output Inductor Loss

$$
P_{\text {Lout }}=I_{o}{ }_{o}^{*} D C R_{\text {output-L }}
$$

$102^{*} 0.004=0.4 \mathrm{~W}$

## System Efficiency

$$
\frac{12}{2+1.7}=87.5 \%
$$

## Example Circuits



20087503
FIGURE 3. $5 \mathrm{~V}-16 \mathrm{~V}$ to $3.3 \mathrm{~V}, 10 \mathrm{~A}, 300 \mathrm{kHz}$

This circuit and the one featured on the front page have been designed to deliver high current and high efficiency in a small package, both in area and in height The tallest component in
this circuit is the inductor L1, which is 6 mm tall. The compensation has been designed to tolerate input voltages from 5 to 16V.


20087504
FIGURE 4. 5V to $1.2 \mathrm{~V}, 10 \mathrm{~A}, 300 \mathrm{kHz}$

This circuit design, detailed in the Design Considerations section, uses inexpensive aluminum capacitors and off-the-shelf inductors. It can deliver 10A at better than $85 \%$ efficiency.

Large bulk capacitance on input and output ensure stable operation.


The example circuit of Figure 5 has been designed for minimum component count and overall solution size. A switching frequency of 600 kHz allows the use of small input/output capacitors and a small inductor. The availability of separate 5 V and 12 V supplies (such as those available from desk-top computer supplies) and the low current further reduce com-
ponent count. Using the 12 V supply to power the MOSFET drivers eliminates the bootstrap diode, D1. At low currents, smaller FETs or dual FETs are often the most efficient solutions. Here, the Si4826DY, an asymmetric dual FET in an SO-8 package, yields $92 \%$ efficiency at a load of 2 A .


20087506
FIGURE 6. 3.3 V to $0.8 \mathrm{~V}, 5 \mathrm{~A}, 500 \mathrm{kHz}$

The circuit of Figure 6 demonstrates the LM2742 delivering a low output voltage at high efficiency ( $87 \%$ ). A separate 5 V
supply is required to run the chip, however the input voltage can be as low as 2.2


FIGURE 7. 1.8 V and $3.3 \mathrm{~V}, 1 \mathrm{~A}, 1.4 \mathrm{MHz}$, Simultaneous

The circuits in Figure 7 are intended for ADSL applications, where the high switching frequency keeps noise out of the data transmission range. In this design, the 1.8 and 3.3 V outputs come up simultaneously by using the same softstart capacitor. Because two current sources now charge the same capacitor, the capacitance must be doubled to achieve the
same softstart time. (Here, 40 nF is used to achieve a 5 ms softstart time.) A common softstart capacitor means that, should one circuit enter current limit, the other circuit will also enter current limit. The additional compensation components Rc2 and Cc3 are needed for the low ESR, all ceramic output capacitors, and the wide ( $3 x$ ) range of Vin.


20087508
FIGURE 8. 12V Unregulated to $3.3 \mathrm{~V}, 3 \mathrm{~A}, 750 \mathrm{kHz}$

This circuit shows the LM2742 paired with a cost effective solution to provide the 5V chip power supply, using no extra components other than the LM78L05 regulator itself. The input voltage comes from a 'brick' power supply which does not
regulate the 12 V line tightly. Additional, inexpensive 10 uF ceramic capacitors (Cinx and Cox) help isolate devices with sensitive databands, such as DSL and cable modems, from switching noise and harmonics.

20087509
FIGURE 9. 12V to 5V, 1.8A, 100kHz

In situations where low cost is very important, the LM2742 can also be used as an asynchronous controller, as shown in the above circuit. Although a a schottky diode in place of the bottom FET will not be as efficient, it will cost much less than the FET. The 5V at low current needed to run the LM2742 could
come from a zener diode or inexpensive regulator, such as the one shown in Figure 8. Because the LM2742 senses current in the low side MOSFET, the current limit feature will not function in an asynchronous design. The ISEN pin should be left open in this case.


TABLE 1. Bill of Materials for Typical Application Circuit

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| U1 | LM2742 | Synchronous <br> Controller | TSSOP-14 | TSSOP-14 | 1 | NSC |
| Q1, Q2 | Si4884DY | N-MOSFET | SO-8 | $30 \mathrm{~V}, 13 \mathrm{~m} \Omega, 15 \mathrm{nC}$ | 1 | Vishay |
| L1 | RLF7030T-1R5N6R1 | Inductor | $7.1 \times 7.1 \times 3.2 \mathrm{~mm}$ | $1.5 \mu \mathrm{H}, 6.1 \mathrm{~A} 9.6 \mathrm{~m} \Omega$ | 1 | TDK |
| Cin1, Cin2 | C2012X5R1J106M | MLCC | 0805 | $10 \mu \mathrm{~F} 6.3 \mathrm{~V}$ | 2 | TDK |
| Cinx | C3216X7R1E105K | Capacitor | 1206 | $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Co1, Co2 | 6MV2200WG | AL-E | 10 mm D 20mm H | $2200 \mu \mathrm{~F} 6.3 \mathrm{~V} 125 \mathrm{~m} \Omega$ | 2 | Sanyo |
| Cboot | VJ1206X104XXA | Capacitor | 1206 | $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cin | C3216X7R1E225K | Capacitor | 1206 | $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Css | VJ1206X123KXX | Capacitor | 1206 | $12 \mathrm{nF}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cc1 | VJ1206A2R2KXX | Capacitor | 1206 | $2.2 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc2 | VJ1206A181KXX | Capacitor | 1206 | $180 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Rin | CRCW1206100J | Resistor | 1206 | $10 \Omega 5 \%$ | 1 | Vishay |
| Rfadj | CRCW12066342F | Resistor | 1206 | $63.4 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc1 | CRCW12063923F | Resistor | 1206 | $392 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12061002F | Resistor | 1206 | $10 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb2 | CRCW12061002F | Resistor | 1206 | $10 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rcs | CRCW1206222J | Resistor | 1206 | $2.2 \mathrm{k} \Omega 5 \%$ | 1 | Vishay |

TABLE 2. Bill of Materials for Circuit of Figure 3 (Identical to BOM for 1.5 V except as noted below)

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| L1 | RLF12560T-2R7N110 | Inductor | $12.5 \times 12.8 \times 6 \mathrm{~mm}$ | $2.7 \mu \mathrm{H}, 14.4 \mathrm{~A} 4.5 \mathrm{~m} \Omega$ | 1 | TDK |
| Co1, Co2, <br> Co3, Co4 | 10TPB100M | POSCAP | $7.3 \times 4.3 \times 2.8 \mathrm{~mm}$ | $100 \mu \mathrm{~F} 10 \mathrm{~V} 1.9 \mathrm{Arms}$ | 4 | Sanyo |
| Cc1 | VJ1206A6R8KXX | Capacitor | 1206 | $6.8 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc2 | VJ1206A271KXX | Capacitor | 1206 | $270 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc3 | VJ1206A471KXX | Capacitor | 1206 | $470 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Rc2 | CRCW12068451F | Resistor | 1206 | $8.45 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12061102F | Resistor | 1206 | $11 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |

TABLE 3. Bill of Materials for Circuit of Figure 4

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| U1 | LM2742 | Synchronous <br> Controller | TSSOP-14 |  | 1 | NSC |
| Q1 | Si4442DY | N-MOSFET | SO-8 | $30 \mathrm{~V}, 4.1 \mathrm{~m} \Omega, @ 4.5 \mathrm{~V}, 36 \mathrm{nC}$ | 1 | Vishay |
| Q2 | Si4442DY | N-MOSFET | SO-8 | $30 \mathrm{~V}, 4.1 \mathrm{~m} \Omega, @ 4.5 \mathrm{~V}, 36 \mathrm{nC}$ | 1 | Vishay |
| D1 | BAT-54 | Schottky Diode | SOT-23 | 30 V | 1 | Vishay |
| Lin | SLF12575T-1R2N8R2 | Inductor | $12.5 \times 12.5 \times 7.5 \mathrm{~mm}$ | $12 \mu \mathrm{H}, 8.2 \mathrm{~A}, 6.9 \mathrm{~m} \Omega$ | 1 | Coilcraft |
| L1 | D05022-152HC | Inductor | $22.35 \times 16.26 \times 8 \mathrm{~mm}$ | $1.5 \mu \mathrm{H}, 15 \mathrm{~A}, 4 \mathrm{~m} \Omega$ | 1 | Coilcraft |
| Cin1, Cin2 | 10MV5600AX | Aluminum <br> Electrolytic | $16 \mathrm{~mm} \mathrm{D} \mathrm{25mm} \mathrm{H}$ | $5600 \mu \mathrm{~F} 10 \mathrm{~V} 2.35 \mathrm{Arms}$ | 2 | Sanyo |
| Cinx | C3216X7R1E105K | Capacitor | 1206 | $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Co1, Co2, <br> Co3 | 10MV5600AX | Aluminum <br> Electrolytic | $16 \mathrm{~mm} \mathrm{D} \mathrm{25mm} \mathrm{H}$ | $5600 \mu \mathrm{~F} 10 \mathrm{~V} 2.35 \mathrm{Arms}$ | 2 | Sanyo |
| Cboot | VJ1206X104XXA | Capacitor | 1206 | $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cin | C3216X7R1E225K | Capacitor | 1206 | $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Css | VJ1206X123KXX | Capacitor | 1206 | $12 \mathrm{nF}, 25 \mathrm{~V}$ | 1 | Vishay |


| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Cc1 | VJ1206A4R7KXX | Capacitor | 1206 | $4.7 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc2 | VJ1206A102KXX | Capacitor | 1206 | $1 \mathrm{nF} 10 \%$ | 1 | Vishay |
| Rin | CRCW1206100J | Resistor | 1206 | $10 \Omega 5 \%$ | 1 | Vishay |
| Rfadj | CRCW12068872F | Resistor | 1206 | $88.7 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc1 | CRCW12062293F | Resistor | 1206 | $229 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12064991F | Resistor | 1206 | $4.99 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb2 | CRCW12064991F | Resistor | 1206 | $4.99 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rcs | CRCW1206152J | Resistor | 1206 | $1.5 \mathrm{k} \Omega 5 \%$ | 1 | Vishay |

TABLE 4. Bill of Materials for Circuit of Figure 5

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| U1 | LM2742 | Synchronous <br> Controller | TSSOP-14 |  | 1 | NSC |
| Q1/Q2 | Si4826DY | Asymetric Dual <br> N-MOSFET | SO-8 | $30 \mathrm{~V}, 24 \mathrm{~m} \Omega / 8 \mathrm{nC}$ <br> Top $16.5 \mathrm{~m} \Omega / 15 \mathrm{nC}$ | 1 | Vishay |
| L1 | DO3316P-222 | Inductor | $12.95 \times 9.4 \times 5.21 \mathrm{~mm}$ | $2.2 \mu \mathrm{H}, 6.1 \mathrm{~A}, 12 \mathrm{~m} \Omega$ | 1 | Coilcraft |
| Cin1 | 10TPB100ML | POSCAP | $7.3 \times 4.3 \times 3.1 \mathrm{~mm}$ | $100 \mu \mathrm{~F} 10 \mathrm{~V} 1.9 \mathrm{Arms}$ | 1 | Sanyo |
| Co1 | 4TPB220ML | POSCAP | $7.3 \times 4.3 \times 3.1 \mathrm{~mm}$ | $220 \mu \mathrm{~F} 4 \mathrm{~V} 1.9 \mathrm{Arms}$ | 1 | Sanyo |
| Cc | C3216X7R1E105K | Capacitor | 1206 | $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Cin | C3216X7R1E225K | Capacitor | 1206 | $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Css | VJ1206X123KXX | Capacitor | 1206 | $12 \mathrm{nF}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cc1 | VJ1206A100KXX | Capacitor | 1206 | $10 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc2 | VJ1206A561KXX | Capacitor | 1206 | $560 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Rin | CRCW1206100J | Resistor | 1206 | $10 \Omega 5 \%$ | 1 | Vishay |
| Rfadj | CRCW12064222F | Resistor | 1206 | $42.2 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc1 | CRCW12065112F | Resistor | 1206 | $51.1 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12062491F | Resistor | 1206 | $2.49 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb2 | CRCW12064991F | Resistor | 1206 | $4.99 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rcs | CRCW1206272J | Resistor | 1206 | $2.7 \mathrm{k} \Omega 5 \%$ | 1 | Vishay |

TABLE 5. Bill of Materials for Circuit of Figure 6

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U1 | LM2742 | Synchronous Controller | TSSOP-14 |  | 1 | NSC |
| Q1 | Si4884DY | N-MOSFET | SO-8 | $\begin{gathered} 30 \mathrm{~V}, 13.5 \mathrm{~m} \Omega \text {, @ } 4.5 \mathrm{~V} \\ 15.3 \mathrm{nC} \end{gathered}$ | 1 | Vishay |
| Q2 | Si4884DY | N-MOSFET | SO-8 | $\begin{gathered} 30 \mathrm{~V}, 13.5 \mathrm{~m} \Omega \text {, @ } 4.5 \mathrm{~V} \\ 15.3 \mathrm{nC} \end{gathered}$ | 1 | Vishay |
| D1 | BAT-54 | Schottky Diode | SOT-23 | 30 V | 1 | Vishay |
| Lin | P1166.102T | Inductor | $7.29 \times 7.293 .51 \mathrm{~mm}$ | $1 \mu \mathrm{H}, 11 \mathrm{~A} 3.7 \mathrm{~m} \Omega$ | 1 | Pulse |
| L1 | P1168.102T | Inductor | $12 \times 12 \times 4.5 \mathrm{~mm}$ | $1 \mu \mathrm{H}, 11 \mathrm{~A}, 3.7 \mathrm{~m} \Omega$ | 1 | Pulse |
| Cin1 | 10MV5600AX | Aluminum Electrolytic | 16 mm D 25 mm H | 5600رF 10V 2.35Arms | 1 | Sanyo |
| Cinx | C3216X7R1E105K | Capacitor | 1206 | $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| $\begin{gathered} \hline \mathrm{Co1,} \mathrm{Co2}, \\ \text { Co3 } \end{gathered}$ | 16MV4700WX | Aluminum Electrolytic | $12.5 \mathrm{~mm} \mathrm{D} \mathrm{30mm} \mathrm{H}$ | 4700رF 16V 2.8Arms | 2 | Sanyo |
| Cboot | VJ1206X104XXA | Capacitor | 1206 | $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cin | C3216X7R1E225K | Capacitor | 1206 | $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Css | VJ1206X123KXX | Capacitor | 1206 | 12nF, 25V | 1 | Vishay |


| ID |  |  |  |  |  |  |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Part Number | Type | Size | Parameters | Qty. | Vendor |  |
| Cc1 | VJ1206A4R7KXX | Capacitor | 1206 | $4.7 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc2 | VJ1206A681KXX | Capacitor | 1206 | $680 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Rin | CRCW1206100J | Resistor | 1206 | $10 \Omega 5 \%$ | 1 | Vishay |
| Rfadj | CRCW12064992F | Resistor | 1206 | $49.9 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc1 | CRCW12061473F | Resistor | 1206 | $147 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12061492F | Resistor | 1206 | $14.9 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb2 | CRCW12064991F | Resistor | 1206 | $4.99 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rcs | CRCW1206332J | Resistor | 1206 | $3.3 \mathrm{k} \Omega 5 \%$ | 1 | Vishay |

TABLE 6. Bill of Materials for Circuit of Figure 7

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U1 | LM2742 | Synchronous Controller | TSSOP-14 |  | 1 | NSC |
| Q1/Q2 | Si4826DY | Assymetric Dual N-MOSFET | SO-8 | $30 \mathrm{~V}, 24 \mathrm{~m} \Omega / 8 \mathrm{nC}$ Top $16.5 \mathrm{~m} \Omega / 15 \mathrm{nC}$ | 1 | Vishay |
| D1 | BAT-54 | Schottky Diode | SOT-23 | 30 V | 1 | Vishay |
| Lin | RLF7030T-1R0N64 | Inductor | $6.8 \times 7.1 \times 3.2 \mathrm{~mm}$ | $1 \mu \mathrm{H}, 6.4 \mathrm{~A}, 7.3 \mathrm{~m} \Omega$ | 1 | TDK |
| L1 | RLF7030T-3R3M4R1 | Inductor | $6.8 \times 7.1 \times 3.2 \mathrm{~mm}$ | $3.3 \mu \mathrm{H}, 4.1 \mathrm{~A}, 17.4 \mathrm{~m} \Omega$ | 1 | TDK |
| Cin1 | C4532X5R1E156M | MLCC | 1812 | $15 \mu \mathrm{~F} 25 \mathrm{~V} 3.3 \mathrm{Arms}$ | 1 | Sanyo |
| Co1 | C4532X5R1E156M | MLCC | 1812 | $15 \mu \mathrm{~F} 25 \mathrm{~V} 3.3 \mathrm{Arms}$ | 1 | Sanyo |
| Cboot | VJ1206X104XXA | Capacitor | 1206 | $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Cin | C3216X7R1E225K | Capacitor | 1206 | $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Css | VJ1206X393KXX | Capacitor | 1206 | 39nF, 25V | 1 | Vishay |
| Cc1 | VJ1206A220KXX | Capacitor | 1206 | 22pF 10\% | 1 | Vishay |
| Cc2 | VJ1206A681KXX | Capacitor | 1206 | 680pF 10\% | 1 | Vishay |
| Cc3 | VJ1206A681KXX | Capacitor | 1206 | 680pF 10\% | 1 | Vishay |
| Rin | CRCW1206100J | Resistor | 1206 | 10ת 5\% | 1 | Vishay |
| Rfadj | CRCW12061742F | Resistor | 1206 | 17.4k $1 \%$ | 1 | Vishay |
| Rc1 | CRCW12061072F | Resistor | 1206 | $10.7 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc2 | CRCW120666R5F | Resistor | 1206 | 66.5ת 1\% | 1 | Vishay |
| Rfb1 | CRCW12064991F | Resistor | 1206 | 4.99k $\Omega$ 1\% | 1 | Vishay |
| Rfb2 | CRCW12061002F | Resistor | 1206 | 10k』 1\% | 1 | Vishay |
| Rcs | CRCW1206152J | Resistor | 1206 | 1.5k 5 \% | 1 | Vishay |

TABLE 7. Bill of Materials for 3.3V Circuit of Figure 7
(Identical to BOM for 1.8 V except as noted below)

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| L1 | RLF7030T-4R7M3R4 | Inductor | $6.8 \times 7.1 \times 3.2 \mathrm{~mm}$ | $4.7 \mu \mathrm{H}, 3.4 \mathrm{~A}, 26 \mathrm{~m} \Omega$ | 1 | TDK |
| Cc1 | VJ1206A270KXX | Capacitor | 1206 | $27 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc2 | VJ1206X102KXX | Capacitor | 1206 | $1 \mathrm{nF} 10 \%$ | 1 | Vishay |
| Cc3 | VJ1206A821KXX | Capacitor | 1206 | $820 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Rc1 | CRCW12061212F | Resistor | 1206 | $12.1 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc2 | CRCW12054R9F | Resistor | 1206 | $54.9 \Omega 1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12062211F | Resistor | 1206 | $2.21 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb2 | CRCW12061002F | Resistor | 1206 | $10 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |

TABLE 8. Bill of Materials for Circuit of Figure 8

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U1 | LM2742 | Synchronous Controller | TSSOP-14 |  | 1 | NSC |
| U2 | LM78L05 | Voltage Regulator | SO-8 |  | 1 | NSC |
| Q1/Q2 | Si4826DY | Assymetric Dual N-MOSFET | SO-8 | $30 \mathrm{~V}, 24 \mathrm{~m} \Omega / 8 \mathrm{nC}$ <br> Top $16.5 \mathrm{~m} \Omega / 15 \mathrm{nC}$ | 1 | Vishay |
| D1 | BAT-54 | Schottky Diode | SOT-23 | 30 V | 1 | Vishay |
| Lin | RLF7030T-1R0N64 | Inductor | $6.8 \times 7.1 \times 3.2 \mathrm{~mm}$ | $1 \mu \mathrm{H}, 6.4 \mathrm{~A}, 7.3 \mathrm{~m} \Omega$ | 1 | TDK |
| L1 | SLF12565T-4R2N5R5 | Inductor | $12.5 \times 12.5 \times 6.5 \mathrm{~mm}$ | $4.2 \mu \mathrm{H}, 5.5 \mathrm{~A}, 15 \mathrm{~m} \Omega$ | 1 | TDK |
| Cin1 | 16MV680WG | AI-E | D: $10 \mathrm{~mm} \mathrm{L:} 12.5 \mathrm{~mm}$ | $680 \mu \mathrm{~F} 16 \mathrm{~V} 3.4 \mathrm{Arms}$ | 1 | Sanyo |
| Cinx | C3216X5R1C106M | MLCC | 1210 | $10 \mu \mathrm{~F} 16 \mathrm{~V} 3.4 \mathrm{Arms}$ | 1 | TDK |
| Co1 Co2 | 16MV680WG | MLCC | 1812 | $15 \mu \mathrm{~F} 25 \mathrm{~V} 3.3 \mathrm{Arms}$ | 1 | Sanyo |
| Cox | C3216X5R10J06M | MLCC | 1206 | 10رF 6.3V 2.7A |  | TDK |
| Cboot | VJ1206X104XXA | Capacitor | 1206 | $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cin | C3216X7R1E225K | Capacitor | 1206 | $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Css | VJ1206X123KXX | Capacitor | 1206 | $12 \mathrm{nF}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cc1 | VJ1206A8R2KXX | Capacitor | 1206 | 8.2pF 10\% | 1 | Vishay |
| Cc2 | VJ1206X102KXX | Capacitor | 1206 | 1nF 10\% | 1 | Vishay |
| Cc3 | VJ1206X472KXX | Capacitor | 1206 | 4.7nF 10\% | 1 | Vishay |
| Rfadj | CRCW12063252F | Resistor | 1206 | 32.5k $1 \%$ | 1 | Vishay |
| Rc1 | CRCW12065232F | Resistor | 1206 | 52.3k $1 \%$ | 1 | Vishay |
| Rc2 | CRCW120662371F | Resistor | 1206 | 2.37 $1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12062211F | Resistor | 1206 | 2.21k $\Omega$ 1\% | 1 | Vishay |
| Rfb2 | CRCW12061002F | Resistor | 1206 | 10k』 1\% | 1 | Vishay |
| Rcs | CRCW1206202J | Resistor | 1206 | 2k $\Omega$ \% | 1 | Vishay |

TABLE 9. Bill of Materials for Circuit of Figure 9

| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| U1 | LM2742 | Synchronous <br> Controller | TSSOP-14 |  | 1 | NSC |
| Q1 | Si4894DY | N-MOSFET | SO-8 | $30 \mathrm{~V}, 15 \mathrm{~m} \Omega, 11.5 \mathrm{nC}$ | 1 | Vishay |
| D2 | MBRS330T3 | Schottky Diode | SO-8 | $30 \mathrm{~V}, 3 \mathrm{~A}$ | 1 | ON |
| L1 | SLF12565T-470M2R4 | Inductor | $12.5 \times 12.8 \times 4.7 \mathrm{~mm}$ | $47 \mu \mathrm{H}, 2.7 \mathrm{~A} 53 \mathrm{~m} \Omega$ | 1 | TDK |
| D1 | MBR0520 | Schottky Diode | 1812 | 20 V 0.5 A | 1 | ON |
| Cin1 | 16MV680WG | Al-E | 1206 | $680 \mu \mathrm{~F}, 16 \mathrm{~V}, 1.54 \mathrm{Arms}$ | 1 | Sanyo |
| Cinx | C3216X5R1C106M | MLCC | 1206 | $10 \mu \mathrm{~F}, 16 \mathrm{~V}, 3.4 \mathrm{Arms}$ | 1 | TDK |
| Co1, Co2 | 16MV680WG | Al-E | D: $10 \mathrm{~mm} \mathrm{L:} 12.5 \mathrm{~mm}$ | $680 \mu \mathrm{~F} 16 \mathrm{~V} 26 \mathrm{~m} \Omega$ | 2 | Sanyo |
| Cox | C3216X5R10J06M | MLCC | 1206 | $10 \mu \mathrm{~F}, 6.3 \mathrm{~V} 2.7 \mathrm{~A}$ | 1 | TDK |
| Cboot | VJ1206X104XXA | Capacitor | 1206 | $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cin | C3216X7R1E225K | Capacitor | 1206 | $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ | 1 | TDK |
| Css | VJ1206X123KXX | Capacitor | 1206 | $12 \mathrm{nF}, 25 \mathrm{~V}$ | 1 | Vishay |
| Cc1 | VJ1206A561KXX | Capacitor | 1206 | $56 \mathrm{pF} 10 \%$ | 1 | Vishay |
| Cc2 | VJ1206X392KXX | Capacitor | 1206 | $3.9 \mathrm{nF} 10 \%$ | 1 | Vishay |
| Cc3 | VJ1206X223KXX | Capacitor | 1206 | $22 \mathrm{nF} 10 \%$ | 1 | Vishay |
| Rfadj | CRCW12062673F | Resistor | 1206 | $267 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc1 | CRCW12066192F | Resistor | 1206 | $61.9 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rc2 | CRCW12067503F | Resistor | 1206 | $750 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |
| Rfb1 | CRCW12061371F | Resistor | 1206 | $1.37 \mathrm{k} \Omega 1 \%$ | 1 | Vishay |


| ID | Part Number | Type | Size | Parameters | Qty. | Vendor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rfb2 | CRCW12061002F | Resistor | 1206 | 10k』 1\% | 1 | Vishay |
| Rcs | CRCW1206122F | Resistor | 1206 | 1.2k ${ }^{\text {5\% }}$ | 1 | Vishay |

Physical Dimensions inches (millimeters) unless otherwise noted


## Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

| Products |  | Design Support |  |
| :--- | :--- | :--- | :--- |
| Amplifiers | www.national.com/amplifiers | WEBENCH | www.national.com/webench |
| Audio | www.national.com/audio | Analog University | www.national.com/AU |
| Clock Conditioners | www.national.com/timing | App Notes | www.national.com/appnotes |
| Data Converters | www.national.com/adc | Distributors | www.national.com/contacts |
| Displays | www.national.com/displays | Green Compliance | www.national.com/quality/green |
| Ethernet | www.national.com/ethernet | Packaging | www.national.com/packaging |
| Interface | www.national.com/interface | Quality and Reliability | www.national.com/quality |
| LVDS | www.national.com/lvds | Reference Designs | www.national.com/refdesigns |
| Power Management | www.national.com/power | Feedback | www.national.com/feedback |
| Switching Regulators | www.national.com/switchers |  |  |
| LDOs | www.national.com/ldo |  |  |
| LED Lighting | www.national.com/led |  |  |
| PowerWise | www.national.com/powerwise |  |  |
| Serial Digital Interface (SDI) | www.national.com/sdi |  |  |
| Temperature Sensors | www.national.com/tempsensors |  |  |
| Wireless (PLL/VCO) | www.national.com/wireless |  |  |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
testing and other quality controls are used to the extent national deems necessary to support NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com
National Semiconductor
Americas Customer
Support Center
Email:
new.feedback@nsc.com
Tel: 1-800-272-9959
National Semiconductor Europe
Customer Support Center
Fax: +49 (0) 180-530-85-86
Email: europe.support @ nsc.com
Deutsch Tel: +49 (0) 6995086208
English Tel: +49 (0) 8702402171
Francais Tel: +33 (0) 141918790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com

National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

