Panasonic ideas for life

\. Product is discontinued.

10A COMPACT CUBE TYPE POWER RELAY

SRELAYS (ALS)

FEATURES

1. Universal terminal footprint

Same terminal pitch as our JS relay

2. Space-saving and Compact cube

 type$$
19.5(\mathrm{~L}) \times 15.5(\mathrm{~W}) \times 15.2(\mathrm{H}) \mathrm{mm}
$$

$$
.768(\mathrm{~L}) \times .610(\mathrm{~W}) \times .598(\mathrm{H}) \text { inch }
$$

Comparison with our JS relay:

- PCB mount area: 86\%

3. Excellent heat resistance and tracking performance

- $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ ambient operating temperature (UL Class B)
- Compatibility available for UL Class F
- Uses PTI250 material
- EN60335-1 GWT compliant (Tested by VDE)

4. Supports all safety standards

- UL, C-UL and VDE certified

TYPICAL APPLICATIONS

1. Household appliances

Refrigerator, Heater, Washing machine, Dishwasher, Rice cooker, etc.
2. Office automation equipment, Home appliances, etc.
3. Game machines, etc.

SPECIFICATIONS

Contact

Arrangement		1 Form A, 1 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		$100 \mathrm{~m} \Omega$
Contact material		$\mathrm{AgNi} / \mathrm{AgSnO}_{2}$ type
Rating	Nominal switching capacity (resistive load)	$\begin{aligned} & 10 \text { A } 277 \text { V AC (N.O.) } \\ & 6 \text { A } 277 \text { V AC (N.C.) } \end{aligned}$
	Max. switching power (resistive load)	2,770 VA
	Max. switching voltage	277 V AC
	Max. switching current	10 A (AC)
	Min. switching capacity\#1 (Reference value)	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. ope.)	Mechanical (at 180 cpm)	10^{7}
	Electrical at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ (resistive load)	$\begin{gathered} 10 \text { A } 250 \text { V AC: } 5 \times 10^{4} \text { (N.O.) } \\ 6 \text { A } 250 \text { V AC: } 10^{5} \text { (N.O.) } \\ 6 \text { A } 250 \text { V AC: } 5 \times 10^{4} \text { (N.C.) } \end{gathered}$

Coil

Nominal operating power	360 mW
\#1 This value can change due to the switching frequency, environmental conditions,	

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

${ }^{*}{ }_{1}$ Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{* 3}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*4 Half-wave pulse of sine wave: 6 ms
${ }^{* 5}$ Detection time: $10 \mu \mathrm{~s}$
*6 The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value.
*7 Pick-up and drop-out voltages increase approximately 0.4% for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ where the standard temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Therefore, when using the relay where the ambient temperature is high, please take into consideration the rise in pick-up voltage due to ambient temperature and determine a coil nominal voltage that is within the maximum allowable voltage range.

Characteristics

Max. operating speed			20 cpm
Initial insulation resistance			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*1	Between open contacts		750 Vrms for 1 min.
	Between contacts and coil		1,500 Vrms for 1 min.
Operate time*2 (at nominal voltage)			Max. 10 ms
Release time(without diode)*2 (at nominal voltage)			Max. 10 ms
Temperature rise (at nominal voltage)			Max. $45^{\circ} \mathrm{C}$, resistive, nominal voltage applied to coil. Contact carrying current: 10 A , at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
Shock resistance		Functiona\|*3	$98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*4	$980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functiona\|*5	10 to 55 Hz at double amplitude of 1.6 mm
		Destructive	10 to 55 Hz at double amplitude of 2 mm
Conditions for operation, transport and storage*6 (Not freezing and condensing at low temperature)		Ambient temp.*7	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 10 g .35 oz

ORDERING INFORMATION

Note: UL, C-UL, VDE approved type is standard.

TYPES

Contact arrangement	Nominal voltage, V DC	Part No.	
		Sealed type	Flux-resistant type
1 Form A	5	ALS4○05TW	ALS3O05TW
	6	ALS4○06TW	ALS3O06TW
	9	ALS4○09TW	ALS3O09TW
	12	ALS4○12TW	ALS3O12TW
	18	ALS4○18TW	ALS3O18TW
	24	ALS4○24TW	ALS3O24TW
	48	ALS4○48TW	ALS3O48TW
1 Form C	5	ALS2○05TW	ALS1O05TW
	6	ALS2○06TW	ALS1O06TW
	9	ALS2○09TW	ALS1O09TW
	12	ALS2O12TW	ALS1O12TW
	18	ALS2O18TW	ALS1O18TW
	24	ALS2O24TW	ALS1O24TW
	48	ALS2○48TW	ALS1O48TW

Packing quantity: inner 100 pieces, outer 500 pieces
Notes: 1. O: Input the following letter. Class B insulation: B, Class F insulation: F
2. Carton packing symbol " W " is not marked on the relay.
3. Please consult with our sales office on a tube packing type.

COIL DATA

Nominal voltage, V DC	Pick-up voltage, V DC (max.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (min.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current, $\begin{gathered} \mathrm{mA}(\pm 10 \%) \\ \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & \text { Coil resistance, } \\ & \Omega(\pm 10 \%) \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power, mW (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Maximum allowable voltage (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
5	3.75	0.5	72	69.4	360	130% V of nominal voltage*1
6	4.5	0.6	60	100	360	
9	6.75	0.9	40	225	360	
12	9	1.2	30	400	360	
18	13.5	1.8	20	900	360	
24	18	2.4	15	1,600	360	
48	36	4.8	7.5	6,400	360	

${ }^{* 1}$ Pick-up and drop-out voltages increase approximately 0.4% for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ where the standard temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Therefore, when using the relay where the ambient temperature is high, please take into consideration the rise in pick-up voltage due to ambient temperature and determine a coil nominal voltage that is within the maximum allowable voltage range.

DIMENSIONS ${ }_{(m m}$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

PC board pattern (Bottom view)
1 Form A

1 Form C

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
1 Form A

1 Form C

REFERENCE DATA

1. Maximum switching capacity

2. Ambient temperature characteristics Sample: 6 pcs., ALS2B12TW

3. Operate/release time

 Sample: 25 pcs., ALS2B12TW

* Rate of change: for nominal voltage

For Cautions for Use, see Relay Technical Information.

