Low-Power, High-Speed CMOS Analog Switches

DESCRIPTION

The DG401, DG403, DG405 monolithic analog switches were designed to provide precision, high performance switching of analog signals. Combining low power ($0.35 \mu \mathrm{~W}$, typ.) with high speed ($\mathrm{t}_{\mathrm{ON}}: 75 \mathrm{~ns}$, typ.), the DG401 series is ideally suited for portable and battery powered industrial and military applications.

Built on the Vishay Siliconix proprietary high-voltage silicon-gate process to achieve high voltage rating and superior switch on/off performance, break-before-make is guaranteed for the SPDT configurations. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks up to 30 V peak-to-peak when off. Onresistance is very flat over the full $\pm 15 \mathrm{~V}$ analog range, rivaling JFET performance without the inherent dynamic range limitations.

The three devices in this series are differentiated by the type of switch action as shown in the functional block diagrams.

FEATURES

- 44 V supply max. rating
- $\pm 15 \mathrm{~V}$ analog signal range
- On-resistance - R_{DS} (on): 30Ω
- Low leakage - $\mathrm{I}_{\mathrm{D}(\mathrm{on})}: 40 \mathrm{pA}$
- Fast switching - $\mathrm{t}_{\mathrm{ON}}: 75 \mathrm{~ns}$
- Ultra low power requirements - $\mathrm{P}_{\mathrm{D}}: 0.35 \mu \mathrm{~W}$
- TTL, CMOS compatible
- Single supply capability
- Compliant to RoHS directive 2002/95/EC

BENEFITS

- Wide dynamic range
- Break-before-make switching action
- Simple interfacing

APPLICATIONS

- Audio and video switching
- Sample-and-hold circuits
- Battery operation
- Test equipment
- Communications systems
- PBX, PABX

RoHS* COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

Top View

Two SPST Switches per Package

TRUTH TABLE	
Logic	Switch
0	OFF
1	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

[^0]
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

Top View

Two SPDT Switches per Package

TRUTH TABLE		
Logic	$\mathbf{S W}_{\mathbf{1}}, \mathbf{S W}_{\mathbf{2}}$	$\mathbf{S W}_{\mathbf{3}}, \mathbf{S W}_{\mathbf{4}}$
0	OFF	ON
1	ON	OFF

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

Two DPST Switches per Package

TRUTH TABLE	
Logic	Switch
0	OFF
1	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION		
Temp. Range	Package	Part Number
DG401		
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \text { DG401DJ } \\ \text { DG401DJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	DG401DY DG401DY-T1 DG401DY-E3 DG401DY-T1-E3
DG403		
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \hline \text { DG403DJ } \\ \text { DG403DJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	DG403DY DG403DY-E3 DG403DY-T1 DG403DY-T1-E3
DG405		
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \hline \text { DG405DJ } \\ \text { DG405DJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	DG405DY DG405DY-E3 DG405DY-T1 DG405DY-T1-E3

ABSOLUTE MAXIMUM RATINGS

Parameter		Limit	Unit
V+ to V-		44	V
GND to V-		25	
V_{L}		(GND - 0.3) to (V+) + 0.3	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current (Any Terminal) Continuous		30	mA
Current, S or D (Pulsed $1 \mathrm{~ms}, 10$ \% Duty)		100	
Storage Temperature	(DJ, DY Suffix)	- 65 to 125	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	450	mW
	$16-\mathrm{Pin}$ SOIC ${ }^{\text {d }}$	600	

Notes:

a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

DG401, DG403, DG405

Vishay Siliconix

SPECIFICATIONS ${ }^{\text {a }}$							
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		-15	15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{aligned}$	Room Full	30		$\begin{aligned} & \hline 45 \\ & 55 \end{aligned}$	Ω
Δ Drain-Source On-Resistance	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}, 0 \mathrm{~V} \\ \mathrm{~V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \end{gathered}$	Room Full	3		$\begin{aligned} & 3 \\ & 5 \end{aligned}$	Ω
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{S} \text { (off) }}$	$\begin{gathered} V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{gathered}$	Room Hot	-0.01	$\begin{gathered} -0.5 \\ -5 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \\ \hline \end{gathered}$	nA
	$I_{D \text { (off) }}$		$\begin{aligned} & \hline \text { Room } \\ & \text { Hot } \end{aligned}$	-0.01	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Channel On Leakage Current	$I_{\text {(on) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ V_{S}=V_{D}= \pm 15.5 \mathrm{~V} \end{gathered}$	Room Hot	-0.04	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input Current $\mathrm{V}_{\text {IN }}$ Low	IIL	$\begin{gathered} \hline \mathrm{V}_{\text {IN }} \text { under test }=0.8 \mathrm{~V} \\ \text { All Other }=2.4 \mathrm{~V} \end{gathered}$	Full	0.005	-1	1	
Input Current $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\begin{gathered} \mathrm{V}_{\text {IN }} \text { under test }=2.4 \mathrm{~V} \\ \text { All Other }=0.8 \mathrm{~V} \end{gathered}$	Full	0.005	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ See Figure 2	Room	75		150	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room	30		100	
Break-Before-Make Time Delay (DG403)	$t_{\text {D }}$	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room	35	5		
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} \\ \mathrm{~V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega \end{gathered}$	Room	60			pC
Off Isolation Reject Ratio	OIRR	$\begin{gathered} R_{L}=100 \Omega, C_{L}=5 \mathrm{pF} \\ f=1 \mathrm{MHz} \end{gathered}$	Room	72			dB
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$		Room	90			
Source Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	Room	12			pF
Drain Off Capacitance	$\mathrm{C}_{\text {(off) }}$		Room	12			
Channel On Capacitance	$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\text {S(on) }}$		Room	39			
Power Supplies							
Positive Supply Current	$1+$	$\begin{gathered} \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	0.01		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	I-		$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	-0.01	$\begin{aligned} & \hline-1 \\ & -5 \\ & \hline \end{aligned}$		
Logic Supply Current	IL		Room Full	0.01		$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	-0.01	$\begin{aligned} & -1 \\ & -5 \end{aligned}$		

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$R_{\text {DS(on) }}$ vs. V_{D} and Power Supply Voltage (V-=0 V)

Input Switching Threshold vs. Supply Voltages

$R_{\mathrm{DS}(o n)}$ vs. V_{D} and Power Supply Voltage

Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Leakage Current vs. Temperature

Supply Current vs. Temperature

Switching Time vs. Power Supply Voltage*

* Refer to Figure 2 for test conditions.

Leakage Current vs. Analog Voltage

Switching Time vs. Temperature*

Switching Time vs. Positive Supply Voltage*

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Supply Current vs. Switching Frequency

SCHEMATIC DIAGRAM Typical Channel

Figure 1.

TEST CIRCUITS

V_{O} is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+r_{D S(\text { on })}}
$$

${ }^{*} \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{ON}}, \mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{OFF}}$
Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Figure 2. Switching Time

Figure 3. Break-Before-Make

Figure 4. Charge Injection

TEST CIRCUITS

Figure 5. Off Isolation

$\mathrm{C}=\mathrm{RF}$ bypass

$\mathrm{X}_{\text {TALK }}$ Isolation $=20 \log$
$\mathrm{C}=\mathrm{RF}$ bypass $\left|\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{O}}}\right|$
Figure 7. Crosstalk

Figure 8. Capacitances

APPLICATIONS

Figure 9. Stereo Source Selector

Dual Slope Integrators:

The DG403 is well suited to configure a selectable slope integrator. One control signal selects the timing capacitor C_{1} or C_{2}. Another one selects $\mathrm{e}_{\text {in }}$ or discharges the capacitor in preparation for the next integration cycle.

Band-Pass Switched Capacitor Filter:

Single-pole double-throw switches are a common element for switched capacitor networks and filters. The fast switching times and low leakage of the DG403 allow for higher clock rates and consequently higher filter operating frequencies.

Figure 10. Dual Slope Integrator

Figure 11. Band-Pass Switched Capacitor Filter

APPLICATIONS

Peak Detector:

A_{3} acting as a comparator provides the logic drive for operating $S W_{1}$. The output of A_{2} is fed back to A_{3} and compared to the analog input $e_{\text {in }}$. If $\mathrm{e}_{\text {in }}>\mathrm{e}_{\text {out }}$ the output of A_{3} is high keeping SW_{1} closed. This allows C_{1} to charge up to
the analog input voltage. When $e_{\text {in }}$ goes below $e_{\text {out }} A_{3}$ goes negative, turning SW 1 off. The system will therefore store the most positive analog input experienced.

Figure 12. Positive Peak Detector reliability data, see www.vishay.com/ppg?70049.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply

