Ultrahigh Speed Monolithic Track-and-Hold

FEATURES

Excellent Hold Mode Distortion into 250Ω
-88 dB @ 30 MSPS (2.3 MHz V ${ }_{\text {IN }}$)
-83 dB @ 30 MSPS (12.1 MHz Viv)
-74 dB @ 30 MSPS (19.7 MHz ViN $)$
16 ns Acquisition Time to 0.01\%
<1 ps Aperture J itter
250 MHz Tracking Bandwidth 83 dB Feedthrough Rejection @ 20 MHz $3.3 \mathrm{nV} \times \sqrt{\mathrm{Hz}}$ Spectral Noise Density MIL-STD-Compliant-Versions Available

A/D Conversion
Direct ly Sampling Imaging/ FLIR Systens
Peak Detectors Radar/EW/ECIM Spectrum Analysis CCD ATE

GENERAL DESCRIPTION

The AD 9100 is a monolithic track-and-hold amplifier which sets a new standard for high speed and high dynamic range applications. It is fabricated in a mature high speed complementary bipolar process. In addition to innovative design topologies, a custom package is utilized to minimize parasitics and optimize dynamic performance.
Acquisition time (hold to track) is 13 ns to 0.1% accuracy, and 16 ns to 0.01%. The AD 9100 boasts superlative hold-mode frequency domain performance; when sampling at 30 M SPS hold mode distortion is less than 83 dBfs for analog frequencies up to 12 M Hz ; and -74 dB fs at 20 M Hz . The AD 9100 can also drive capacitive loads up to 100 pF with little degradation in acquisition time; it is therefore well suited to drive 8- and 10-bit flash converters at clock speeds to 50 M SPS. With a spectral noise density of $3.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and feedthrough rejection of 83 dB at 20 M Hz , the AD 9100 is well suited to enhance the dynamic range of many 8 - to 16 -bit systems.
*Patent pending.

FUNCTIONAL BLOCK DIAGRAM

The AD 9100 is "userfriendly" andeasy to apply: (1) it requires $+5 \mathrm{~V} /-5.2 \mathrm{~V}$ poyver \&upplies; (2) the hold capagitor and switch power supply decoupling eapacitors are britivto the DIP package; (3) the en codectodk is differenfial ECL to mimize] clock jitter: (4) the input resistance s typically of 2Ω; (5) the analog input sinternally ctamped to ppevent damage from voltage transients.

The AD 9100 is available in a 20-lead side-brezed "skinny DIP" package and a 28 -lead LCC package. Commerctat, industrfal, and military temperature grade parts are available. Consult the factory for information about the availability of 883-qualified devices.

PRODUCT HIGHLIGHTS

1. H old M ode Distortion is guaranteed.
2. M onolithic construction.
3. Analog input is internally clamped to protect against overvoltage transients and ensure fast recovery.
4. Output is short circuit protected.
5. Drives capacitive loads to 100 pF .
6. Differential ECL clock inputs.

REV. A

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD9100- SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$
Supply Voltages (\pm V ${ }_{\text {S }}$) . ± 6 V
C ontinuous Output Current . 70 mA
A nalog Input Voltage ${ }^{2}$. ± 5 V
O perating T emperature R ange (C ase)
AD 9100JD \qquad
\qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

AD 9100AD/AE $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD 9100SD/SE . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature . $+175^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Soldering Temperature (10 sec) $+300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

(unless otherwise noted, $+V_{S}=+5 V_{;}-V_{S}=-5.2 V_{;} R_{\text {LOAD }}=100 \Omega ; R_{\text {IN }}=50 \Omega$)

Parameter	Conditions	Temp	Test Leve	AD9100AE/SE/JD/AD/SD ${ }^{3}$Min Typ Max		Units
HOLD-TO-TRACK SWITCHING Acquisition T ime to 0.1\% Acquisition Time to 0.01\% Acquisition Time to 0.01%	2 V Step 2 V Step 4 V Step	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{Full} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 13 \\ & 16 \\ & 20 \end{aligned}$	23	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
POWER SUPPLY Power D issipation $+V_{S}$ Current - V_{S} Current		Full Full Full	$\begin{aligned} & \mathrm{VI} \\ & \mathrm{VI} \\ & \mathrm{VI} \end{aligned}$	$\begin{aligned} & 1.05 \\ & 96 \\ & 116 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 118 \\ & 132 \end{aligned}$	W mA mA

NOTES

${ }^{1}$ Absolute maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.
${ }^{2}$ Anctoriput voltage should not exceed $\pm \mathrm{V}_{\mathrm{s}}$.
${ }^{3}$ AD 9100 D.$~ 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. AD 9100AD: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. AD 9100SD : $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. DIP $\theta_{\mathrm{JA}}=38^{\circ} \mathrm{C} / \mathrm{W}$; this is valid with the device mounted flush to a grounded 2 of coppef clack beard with 16 sq inches of surface area and no air flow. LCC $\theta_{J A}=48^{\circ} \mathrm{C} / \mathrm{W}$.
${ }^{4}$ T he input to the AD 9100 is internsly clamped at $\pm 2.3 \mathrm{~V}$. The internal input series resistance is nominally 50Ω.
${ }^{5} \mathrm{H}$ old mode nolse if proportional to the lenathe a signal is held. For example, if the hold time (t_{H}) is 20 ns , the accumulated noise is typically $6 \mu \mathrm{~V}(300 \mathrm{~V} / \mathrm{s} \times$ 20 ns). This volue musthe comblined with the track mode noise to obtain total noise.
${ }^{6} \mathrm{M}$ in and max dropp rates are based on the m(itary temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$). Refer to the "D roop Rate vs T emperature" chart for min/max limits over tiecommertial dnd industrizo rankes.

DIP PIN DESCRIPTIONS/CONNECTIONS

LCC PIN DESCRIPTIONS/CONNECTIONS

Pin No.	Description	Connection
1	GND	Common Ground Plane
2	GND	Common Ground Plane
3	NC	N one
4	- $\mathrm{V}_{\text {S }}$	-5.2 V Power Supply
5	- $\mathrm{V}_{\text {S }}$	-5.2 V Power Supply
6	NC	N one
7	$\mathrm{V}_{\text {IN }}$	Analog Input Signal
8	- $\mathrm{V}_{\text {S }}$	-5.2 V Power Supply
9	- $\mathrm{V}_{\text {S }}$	-5.2 V Power Supply
10	NC	N one
11	- $\mathrm{V}_{\text {S }}$	-5.2 V Power Supply
12	- $\mathrm{V}_{\text {S }}$	-5.2 V Power Supply
13	- $\mathrm{V}_{\text {S }}$	-5.2 V Power Supply
14	BYPASS	$0.1 \mu \mathrm{~F}$ to Pin 16
15	$V_{\text {OUT }}$	T rack-and-H old Output
16	BYPASS	$0.1 \mu \mathrm{~F}$ to Pin 14
17	$+V_{S}$	+5 V Power Supply
18	$+\mathrm{V}_{S}$	+5 V Power Supply
19	$+\mathrm{V}_{5}$	+5 V Power Supply
20		External H old C apacitor
21		external H old C apacitor 45 V Power Supply
23 23	$+{ }^{+} \mathrm{s}$	+5 V/Poyer supply
24	GND	Commoh Grourd Prace
25	V_{5}	$+5 N$ Power Supplyl
26	$4{ }^{+}$	+5/V P/ower Supply
27	CLOCK	Complement $E C L C$ Coo
28	CLOCK	"Frue" ECL/Clock

Pad	Name	Pad	Name	Pad	Name
1	NC	12	$+\mathrm{V}_{\text {S }}$	23	- $\mathrm{V}_{\text {S }}$
2	$+\mathrm{V}_{5}$	13	+V	24	$-V_{5} C A P^{1}$
3	$+\mathrm{V}_{5}$	14	CLOCK	25	- V_{5}
4	HOLDCAP ${ }^{3}$	15	CLOCK	26	- V_{5}
5	HOLDCAP ${ }^{3}$	16	GND	27	- V_{5}
6	$+\mathrm{V}_{\mathrm{S}} \mathrm{CAP}^{1}$	17	GND	28	+V
7	$+\mathrm{V}_{5}$	18	- $\mathrm{V}_{\text {S }}$	29	BYPASS ${ }^{2}$
8	$+V_{\text {S }}$	19	$-\mathrm{V}_{5}$	30	$V_{\text {OUT }}$
9	GND	20	NC	31	BYPASS ${ }^{2}$
10	NC	21	$V_{\text {IN }}$	32	$+\mathrm{V}_{5}$
11	NC	22	$-V_{S}$		

Acquisition Time is the amount of time it takes the AD 9100 to reacquire the analog input when switching from hold to track mode. The interval starts at the 50\% clock transition point and ends when the input signal is reacquired to within a specified error band at the hold capacitor.
Analog Delay is the time required for an analog input signal to propagate from the device input to output.
Aperture Delay tells when the input signal is actually sampled. It is the time difference between the analog propagation delay of the front-end buffer and the control switch delay time. (T he time from the hold command transition to when the switch is opened.) For the AD 9100, this is a positive value which means that the switch delay is longer than the analog delay.
Aperture Jitter is the random variation in the aperture delay. Thisis meazured ip ps-rms and results in phase noise on the peld signti.
Droop Rate s the changerin oftputwoltage as a function of time (dV/dt)/It/s measured at/the ADP10Q output with the device in hold phodpand the inpu held at a speqified at value, the meastrem \&nt starts immediatelyafter the T / H switchesfiem track to hold. Eeedthrough Rejection is the ratio of the input signal to the output son in old m de. This is a measure of how well the switch isolates theinputsignal from feeding through to the output.
Hold to Track Switch Delay is the time delay from traek command to the point when the output starts to change and acquire a new signal.
Pedestal Offset is the offset voltage step measured immediately after the AD 9100 is switched from track to hold with the input held at zero volts. It manifests itself as an added offset during the hold time.
Track to Hold Settling Time is the time necessary for the track to hold switching transient to settle to within 1 mV of its final value.
Track to Hold Switching Transient is the maximum peak switch induced transient voltage which appears at the AD 9100 output when it is switched from track to hold.

THEORY OF OPERATION

The AD 9100 utilizes a new track and hold architecture. Previous commercially available high speed track and holds used an open loop input buffer, followed by a diode bridge, hold capacitor, and output buffer (closed or open loop) with a F ET device connected to the hold capacitor. T his architecture required mixed device technology and, usually, hybrid construction. The sampling rate of these hybrids has been limited to 20 M SPS for 12-bit accuracy. Distortion generated in the front-end amplifier/ bridge limited the dynamic range performance to the "mid- 70 dBfs " for analog input signals of less than 10 M Hz . Broadband and switch-generated noise limited the SNR of previous track and holds to about 70 dB .
The AD 9100 is a monolithic device using a high frequency complementary bipolar process to achieve new levels of high speed precision. Its patent pending architecture breaks from the traditional architecture described above. (See the block diagram
on the first page.) T he switching type bridge has been integrated into the first stage closed loop input amplifier. T his innovation provides error (distortion) correction for both the switch and amplifier, while still achieving slew rates representative of an open-loop design. In addition, acquisition slew current for the hold capacitor is higher than standard diode bridge and switch configurations, removing a main contributor to the limits of maximum sampling rate and input frequency.
Switching circuits in the device use current steering (versus voltage switching) to provide improved isolation between the switch and analog sections. This results in low aperture time sensitivity to the analog input signal, and reduced power supply and analog switching noise. Track to hold peak switching transient is typically only 6 mV and settles to less than 1 mV in 7 ns. In addition, pedestal sensitivity to analog input voltage is very low (0.6 mV N) and being first order linear does not significantly affect distortion.
The closed-loop output buffer includes zero voltage bias current cancellation, which results in high-temperature droop rates equivalent to those found in FET type inputs. The buffer also prøvides first order quasistatic bias correction resulting in an extremely high input resistance and very low droop sensitivity vp. input voltage evel (typically less than $1.5 \mathrm{mV} / \mathrm{V}-\mu \mathrm{s}$.) This clos\&d-loop arch/tecture heren fy prowides high speed loop coryection and resulssin low distortion under meapyloads. T heextremely fast/time constant lin \&arity (7 ns to 0.01% for ag $2 \times$ step) els sures that the output byffer/does not linhit the AD 9100 sambling rateok analog inputfrequenky. (Theacquisition and setting time are ppimarily limifed porthe input amplifier and switch.) T he butput is trahsparent to the overall AD 9100 hold mode distortion levels thor loads astaw as 250Ω.
F ull-scale track and acquisition slew rates achieved by the AD 9100 are 800 and $1000 \mathrm{~V} / \mu \mathrm{s}$, respectively. When combined with excellent phase margin (typically 5\% overshoot), wide bandwidth, and dc gain accuracy, acquisition time to 0.01% is only 16 ns . Though not production tested, settling to 14-bit accuracy (-86 dB distortion @ 2.3 M Hz) can be inferred to be 20 ns.

Acquisition Time

Acquisition time is the amount of time it takes the AD 9100 to reacquire the analog input when switching from hold to track mode. The interval starts at the 50% clock transition point and ends when the input signal is reacquired to within a specified error band at the hold capacitor.
The hold to track switch delay ($t_{D H} t$) cannot be subtracted from this acquisition time because it is a charging time delay that occurs when moving from hold to track; this is typically 4 to 6 ns and is the longest delay. Therefore, the track time required for the AD 9100 is the acquisition time minus the aperture delay time. N ote that the acquisition time is defined as the settled voltage at the hold capacitor and does not include the delay and settling time of the output buffer. T he example below illustrates why the output buffer amplifier does not contribute to the overall AD 9100 acquisition time.
 limitations, finite BW, power supply ringing, etc.) has not settled during the track time. H owever, since the output buffer always "tracks" the front end circuitry, it "catches up" during the hold time and directly superimposes itself (less about 600 ps of analog delay) to V_{CH}. Since the small-signal settling time of the output buffer is about 1.8 ns to $\pm 1 \mathrm{mV}$ and is significantly less than the specified hold time, acquisition time should be referenced to the hold capacitor.
N ote that most of the hold settling time and output acquisition time are due to the input buffer and the switch network. For track time, the output buffer contributes only about 5 ns of the total; in hold mode, it contributes only 1.8 ns (as stated above).
A stricter definition of acquisition time would total the acquisition and hold times to a defined accuracy. To obtain 12 bit + distortion levels and 30 M SPS operation, the recommended track and hold times are 20 ns and 13.5 ns , respectively. To drive an 8 -bit flash converter with a 2 V p-p full-scale input, hold time to 1 LSB accuracy will be limited primarily by the encoder, rather than by the AD 9100. This makes it possible to reduce track time to approximately 13 ns , with hold time chosen to optimize the encoder's performance.

Hold vs. Track Mode Distortion

In many traditional high speed, open loop track-and-holds, track mode distortion is often much better than hold mode distortion. T rack mode distortion does not include nonlinearities due to the switch network, and does not correlate to the relevant hold mode distortion. But since hold mode distortion has traditionally been omitted from manufacturer's specification tables, users have had to discover for themselves the effective overall hold mode distortion of the combined T/H and encoder.

The architecture of the AD 9100 minimizes hold mode distortion over its specified frequency range. As an example, in track mode the worst harmonic generated for a 20 M Hz input tone is typically -65 dBfs . In hold mode, under the same conditions and sampling at 30 MSPS , the worst harmonic generated is
-74 dBfs . The reason is the output buffer in hold mode has only dc distortion relevancy. With its inherent linearity (7 ns settling to 0.01%), the output buffer has essentially settled to its dc distortion level even for track plus hold times as short as 30 ns . For a traditional open-loop output buffer, the ac (track mode) and dc (hold mode) distortion levels are often the same.

Droop Rate

Droop rate does not necessarily affect a track and hold's distortion characteristics. If the droop rate is constant versus the input voltage for a given hold time, it manifests itself as a dc offset to the encoder. F or the AD 9100, the droop rate is typically $\pm 1 \mathrm{mV} / \mu \mathrm{s}$. If a signal is held for $1 \mu \mathrm{~s}$, a subsequent encoder would see a 1 mV offset voltage. If there is no droop sensitivity to the held voltage value, the 1 mV offset would be constant and "ride" on the input signal and introduce no hold-mode nonlinearities.
In instances in which droop rate varies proportionately to the magnitude of the held voltage signal level, a gain error only is introduced to the A/D encoder. The AD 9100 has a droop sensitivity to the input level of $1.5 \mathrm{mV} / \mathrm{V}-\mu \mathrm{s}$. F or a 2 V p-p input signol, thistrqnslates to a $0.15 \% / \mu$ s gain error and does not cause additional distortion erkors.
F or the Ap 9100, droop spnsitivity to input level is insignificant. However, hold times ionge than about 2 us can cause distortion due

 gradestir pertpritante.

Layout Considerations

F or best performance results, gbod high speed design techniques must be applied. The component fop) side ground plane should be as large as possible; two-ounce copper cladding is preferable. All runs should be as short as possible, and decoupling capacitors must be used.
Figure 2 is the schematic of a recommended AD 9100 evaluation board. (C ontact factory concerning availability of assembled boards.) All $0.01 \mu \mathrm{~F}$ decoupling capacitors should be low inductance surface mount devices (P/N 05085C 103M T 050 from $A V X$) and connected on the component side within 30 mils of the designated pins; with the other sides soldered directly to the top ground plane.
The $10 \mu \mathrm{~F}$ low frequency power supply tantalum decoupling capacitors should be located within 1.5 inches of the AD 9100. The common $0.01 \mu \mathrm{~F}$ supply capacitors can be wired together. The common power supply bus (connected to the $10 \mu \mathrm{~F}$ capacitor and power supply source) can be routed to the underside of the board to the daisy chain wired $0.01 \mu \mathrm{~F}$ supply capacitors.
F or remote input and/or output drive applications, controlled impedances are required to minimize line reflections which will reduce signal fidelity. When capacitive and/or high impedance levels are present, the load and/or source should be physically located within approximately one inch of the AD 9100. N ote that a series resistance, R_{S}, is required if the load is greater than 6 pF. (T he Recommended R_{S} vs. CL chart in the "T ypical Performance Section" shows values of R_{S} for various capacitive loads which result in no more than a 20% increase in settling time for loads up to 80 pF .) As much of the ground plane as possible should be removed from around the $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ pins to minimize coupling onto the analog signal path.

While a single ground plane is recommended, the analog signal and differential ECL clock ground currents follow a narrow path directly under their common voltage signal line. To reduce reflections, especially when terminations are used for transmission line efficiency, the clock, $\mathrm{V}_{\text {IN }}$, and $\mathrm{V}_{\text {OUT }}$ signals and respective ground paths should not cross each other; if they do, unwanted coupling can result.
High current ground transients via the high frequency decoupling capacitors can also cause unwanted coupling to the $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {out }}$ current loops. T herefore, these analog terminations should be kept as far as possible from the power supply decoupling capacitors to minimize feedthrough.

Using Sockets

Pin sockets (P/N 6-330808-3 from AM P) should be used if the device can not be soldered directly to the PCB. High profile or yrre wran type sod kets will dramatically reduce the dynamic performance of the dexice in addition to increasing the case-toambient thermal/resistance.
Qriving the E ncodeClock The AD 9100 requires a djffekential EC clock-command-Due to the high gain bandwidth of the AD 9100 internal switch, the input clock shout have a slew rate of at leqst $100 \mathrm{~V} / 4 \mathrm{~s}$.
To obtain maximum signal to noise performance especially at high analog input frequencies, a low jitter clock sourceis required. The AD 9100 clock can be driven by an AQ96685, an ultrahigh speed ECL comparator with very low jitter.

$$
\text { Clock/ } \overline{\text { Clock Input Stage }}
$$

Figure 2. AD9100/PCB Evaluation Board Diagram

his technique is hot oonfined to processing N yquist signals. = igure 5 illustatep the splurious free dynamic range of the AD 100 as afundtioh of antare inn ut fignat texel and frequency. Withbut the putput anplifier (2 V p-pindut) $70 d B+$ dynatnic range is obsejved only to about 24 reducing the analoy input to 200 , $y \sim P,>P D B S F R$ R an be maintained to 70 MHzTF .
The optimum T/H input level for a partisular IE an me determined by examining the T / H spurious and noise performance. The highest input signal level which will provide the required SFDR gives the lowest noise performance. When sampling super Nyquist signals, the IF will be aliased to baseband and can be observed by using FFT analysis.

In the FFT spectrum below (see Figure 6), the 71.4 M HzIF is observed at 1.4 M Hz . N ote that the highest frequency observed ($\mathrm{FS} / 2$) is determined by the sample rate of the T / H.

figure 6. 71.4 MHz Signal Sampled at 10 MSPS with $2 め 0 \mathrm{mv} / \mathrm{p} p$ Input

Low Noise Applications

Wher processing low/leve-single evert-signals in which noise perffrmance is the pimary concern, amplificationthead of the AD 910ϕ can increase overall system signal to roiselrafio. Frentend amptification often/resultsid an increase/in hold modedistortorelal because of the track mode limitations of the amplifier which is 4 sed. Depencoing on the dignal leyels and
bandwidth, the AD 9618 low ise hight gaih amplifier is bandwidth, the AD 9618 low endise high gaih amplifier
possible candidate for this application. See Figure 7 .
A s a general rule, if the goal is maximize SNR (minimizenoise), pre-AD 9100 amplification is recommended. When the system goal is to maximize the spurious free dynamic range (minimize distortion), post-AD 9100 amplification is recommended.

Figure 7. Using AD9618 as Pre-Amp for AD9100

Figure 5. AD9100 SFDR vs. Input Frequency at 10 MSPS

Frequency (500 kHz/Division) Analog Input $=540 \mathrm{kHz}$

Bottom of AD9100/PCB Evaluation Board Viewed from Above
 Frequenc) 1500 kHzDivisiqni Analigg Inquit $=12.1 \mathrm{MHz}$

Top of AD9100/PCB Evaluation Board Viewed from Above

EVALUATION BOARD ORDERING INFORMATION

Part Number	Description
AD 9100/PWB	Printed W iring Board (Only) of E valuation Circuit
AD 9100/PCB	Evaluation Board for AD 9100T/H, Assembled and
	T ested [O rder AD 9100T /H (DIP) Separately]

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Pin Side-Brazed Ceramic DIP

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

