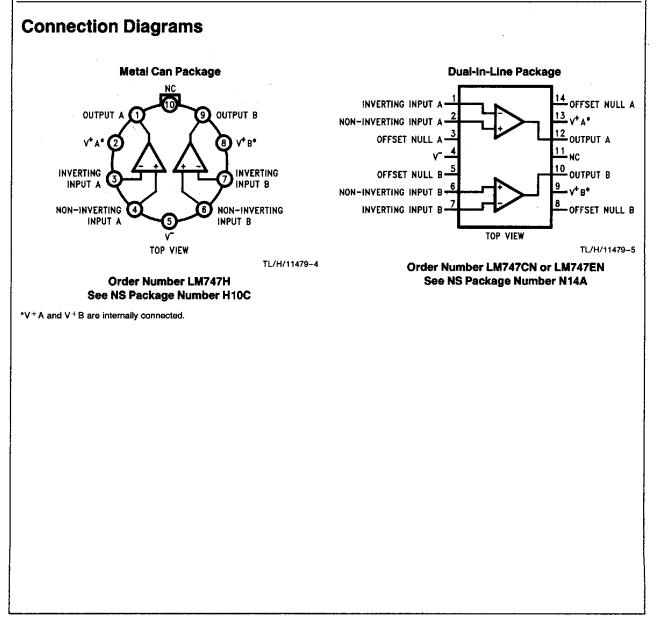
LM747

National Semiconductor

LM747 Dual Operational Amplifier

General Description


The LM747 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C/LM747E is identical to the LM747/LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from 0°C to $+70^{\circ}$ C instead of -55° C to $+125^{\circ}$ C.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low power consumption
- No latch-up
- Balanced offset null

6501124 0094665 651 📖

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	
LM747/LM747A	±22V
LM747C/LM747E	±18V
Power Dissipation (Note 1)	800 mW
Differential Input Voltage	±30V

Input Voltage (Note 2)± 15VOutput Short-Circuit DurationIndefiniteOperating Temperature Range-55°C to + 125°CLM747/LM747A-55°C to + 125°CLM747C/LM747E0°C to + 70°CStorage Temperature Range-65°C to + 150°CLead Temperature (Soldering, 10 sec.)300°C

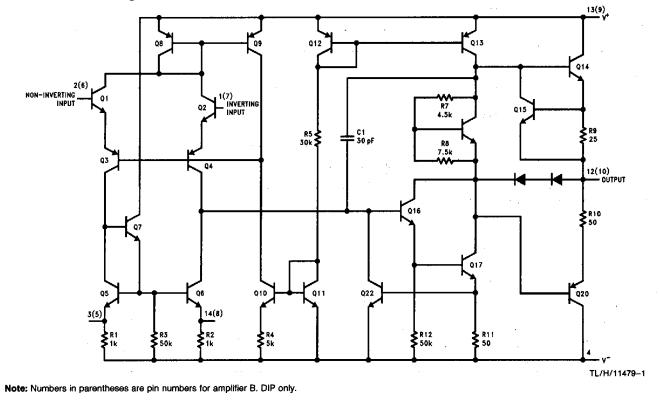
Electrical Characteristics (Note 3)

Parameter	Conditions	LM747A/LM747E			LM747			LM747C			Units
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$\begin{array}{l} T_{A} = 25^\circC \\ R_{S} \leq 10 \ k\Omega \\ R_{S} \leq 50\Omega \end{array}$		0.8	3.0		1.0	5.0		2.0	6.0	mV
	R _S ≤ 50Ω R _S ≤ 10 kΩ			4.0			6.0			7.5	mV
Average Input Offset Voltage Drift				15							μV/°(
Input Offset Voltage Adjustment Range	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	± 10				±15			±15		mV
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
				70		85	500			300	
Average Input Offset Current Drift				0.5							nA/°C
Input Bias Current	T _A = 25°C T _{AMIN} ≲ T _A ≤ T _{AMAX}		30	80 0.210		80	500 1.5		80	500 0.8	nA μA
Input Resistance	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		мΩ
	$V_{S} = \pm 20V$	0.5									
Input Voltage Range	T _A = 25°C	±12	±13		±12	±13	_	±12	±13		v
Large Signal Voltage Gain	$ \begin{split} T_{A} &= 25^\circ C, R_{L} \geq 2 k \Omega \\ V_{S} &= \pm 20 V, V_{O} = \pm 15 V \end{split} $	50									V/m\
	$\label{eq:VS} \begin{split} V_S &= \pm 15 \text{V}, V_O = \pm 10 \text{V} \\ R_L &\geq 2 k \Omega \end{split}$				50	200		20	200		V/m\
	$V_{\rm S} = \pm 20V, V_{\rm O} = \pm 15V$	32									V/m\
	$V_{\rm S} = \pm 15 V, V_{\rm O} = \pm 10 V$				25			15			V/m\
	$V_S = \pm 5V, V_O = \pm 2V$	10									V/m\
Output Voltage Swing	$\begin{split} V_S &= \pm 20V \\ R_L &\geq 10 \; k\Omega \\ R_L &\geq 2 \; k\Omega \end{split}$	±16 ±15									v
	$ \begin{array}{l} V_{S} \ = \ \pm \ 15V \\ R_{L} \ \ge \ 10 \ k\Omega \\ R_{L} \ \ge \ 2 \ k\Omega \end{array} $				±12 ±10	±14 ±13		±12 ±10	±14 ±13		v
Output Short Circuit Current	T _A = 25°C	10 10	25	35 40		25			25		mA
Common-Mode	$R_{S} \leq 10 \text{ k}\Omega, V_{CM} = \pm 12 V$				70	90		70	90		dB
Rejection Ratio	$R_S \le 50 \text{ k}\Omega, V_{CM} = \pm 12V$	80	95								

LM747

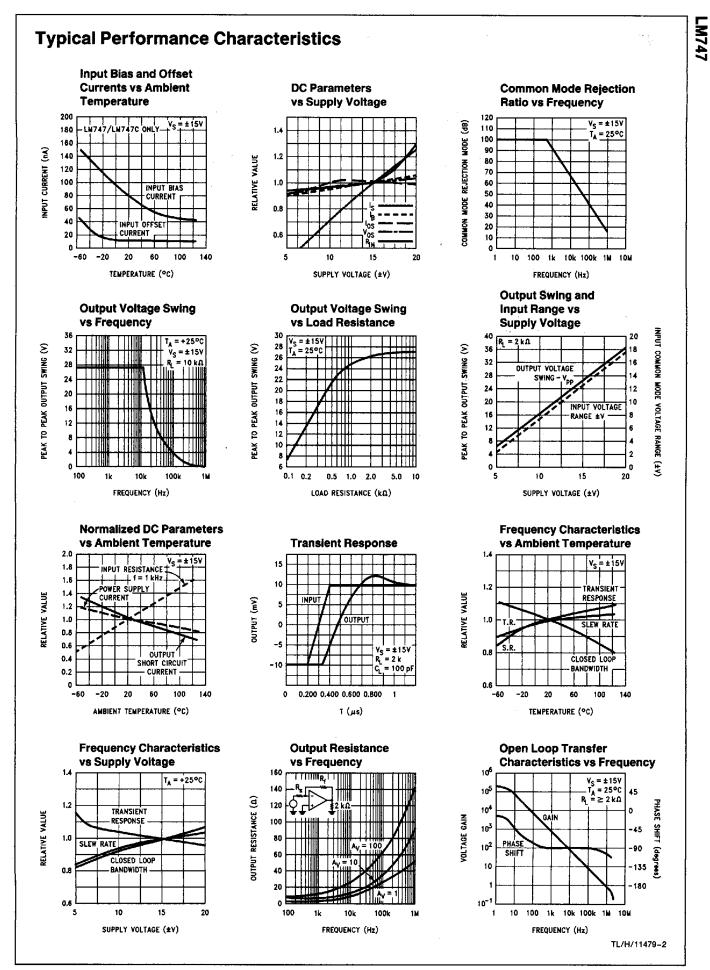
1-371

LM747


Parameter	Conditions	LM747A/LM747E			LM747			LM747C			1
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Supply Voltage Rejection Ratio	$\label{eq:VS} \begin{array}{l} V_S = \ \pm 20 V \ \text{to} \ V_S = \ \pm 5 V \\ R_S \leq 50 \Omega \\ R_S \leq 10 \ \text{k} \Omega \end{array}$	86	96		77	96		77	96		: dB
Transient Response Rise Time Overshoot	T _A = 25°C, Unity Gain		0.25 6.0	0.8 20		0.3 5			0.3 5		μs %
Bandwidth (Note 4)	T _A = 25°C	0.437	1.5							м. 	MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		٧/με
Supply Current/Amp	$T_A = 25^{\circ}C$			2.5		1.7	2.8		1.7	2.8	mA
Power Consumption/Amp	$T_{A} = 25^{\circ}C$ $V_{S} = \pm 20V$ $V_{S} = \pm 15V$		80	150		50	85		50	85	mW
LM747A	$V_{S} = \pm 20V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$			165 135							mW
LM747E	$V_{S} = \pm 20V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$	-		150 150 150					·		mW
LM747	$V_{S} = \pm 15V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$					60 45	100 75				m₩

Note 1: The maximum junction temperature of the LM747C/LM747E is 100°C. For operating at elevated temperatures, devies in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

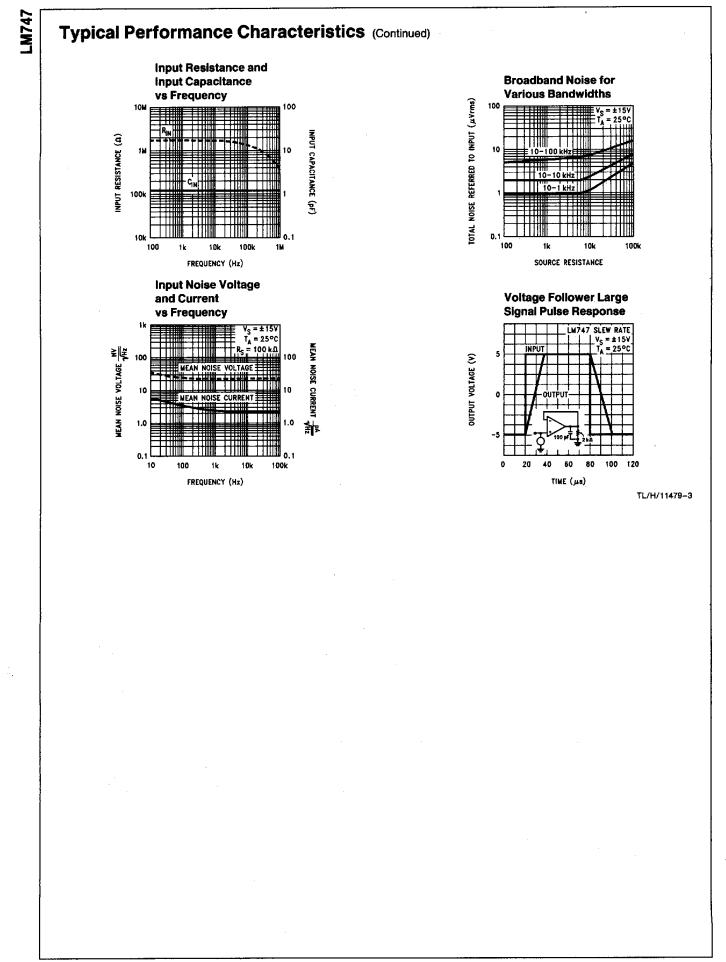
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.


Note 3: These specifications apply for $\pm 5V \le V_S \le \pm 20V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$ for the LM747A and $0^{\circ}C \le T_A \le 70^{\circ}C$ for the LM747E unless otherwise specified. The LM747 and LM747C are specified for $V_S = \pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$ and $0^{\circ}C \le T_A \le 70^{\circ}C$, respectively, unless otherwise specified. Note 4: Calculated value from: 0.35/Rise Time (μ s).

Schematic Diagram (Each Amplifier)

6501124 0094667 424 🛲

Downloaded from Elcodis.com electronic components distributor



1-373

_

6501124 0094668 360 1

Downloaded from Elcodis.com electronic components distributor

6501124 0094669 2T7 I

Downloaded from Elcodis.com electronic components distributor

1-374