LTC 1062

5th Order Lowpass Filter

feATURES

- Lowpass Filter with No DC Error
- Low Passband Noise
- Operates DC to 20 kHz
- Operates On a Single 5 V Supply or Up to $\pm 8 \mathrm{~V}$
- 5th Order Filter
- Maximally Flat Response
- Internal or External Clock
- Cascadable for Faster Rolloff
- Buffer Available

APPLICATIONS

- 60Hz Lowpass Filters
- Antialiasing Filter
- Low Level Filtering
- Rolling Off AC Signals from High DC Voltages
- Digital Voltmeters
- Scales
- Strain Gauges

DESCRIPTIOn

The LTC ${ }^{\circledR} 1062$ is a 5th order all pole maximally flat lowpass filter with no DC error. Its unusual architecture puts the filter outside the DC path so DC offset and low frequency noise problems are eliminated. This makes the LTC1062 very useful for lowpass filters where DC accuracy is important.

The filter input and output are simultaneously taken across an external resistor. The LTC1062 is coupled to the signal through an external capacitor. This RC reacts with the internal switched capacitor network to form a 5th order rolloff at the output.

The filter cutoff frequency is set by an internal clock that can be externally driven. The clock-to-cutoff frequency ratio is typically 100:1, allowing the clock ripple to be easily removed.

Two LTC1062s can be cascaded to form a 10th order quasi max flat lowpass filter. The device can be operated with single or dual supplies ranging from $\pm 2.5 \mathrm{~V}$ to $\pm 9 \mathrm{~V}$.
The LTC1062 is manufactured using Linear Technology's enhanced LTCMOS $^{\text {TM }}$ silicon gate process.
© , LTC and LT are registered trademarks of Linear Technology Corporation.
LTCMOS is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

10Hz 5th Order Butterworth Lowpass Filter

NOTE: TO ADJUST OSCILLATOR FREQUENCY, USE A 6800pF CAPACITOR IN SERIES WITH A 50k POT FROM PIN 5 TO GROUND

Filter Amplitude Response and Noise

ABSOLUTE MAXIMMUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) \qquad 18 V Input Voltage at Any Pin $\mathrm{V}^{-}-0.3 \mathrm{~V} \leq \mathrm{V}_{I N} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$ Operating Temperature Range
LTC1062M (OBSOLETE) $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
LTC1062C $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$, unless otherwise specified. AC output measured at Pin 7 , Figure 1.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply Current	$\mathrm{C}_{\text {OSC }}\left(\right.$ Pin 5 to V^{-}, Pin 11 in SW16) $=100 \mathrm{pF}$	-		4.5	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Frequency Range				0 to 20		kHz
$\begin{aligned} \text { Filter Gain at } \begin{aligned} f_{I N} & =0 \\ f_{I N} & =0.5 f_{C}(\text { Note } 2) \\ f_{I N} & =f_{C} \\ f_{I N} & =2 f_{C} \\ f_{I N} & =4 f_{C} \end{aligned} \\ \hline \end{aligned}$	$\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$, Pin 4 (Pin 6 in SW16) at V^{+}, $C=0.01 \mu F, R=25.78 \mathrm{k}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} -2 \\ -28 \\ -52 \end{gathered}$	$\begin{array}{r} 0.00 \\ -0.02 \\ -3.00 \\ -30.00 \\ -60.00 \end{array}$	-0.3	dB $d B$ $d B$ $d B$ $d B$
Clock-to-Cutoff Frequency Ratio, $\mathrm{f}_{\text {LLK }} / \mathrm{f}_{\mathrm{C}}$	$\mathrm{f}_{\text {CLK }}=100 \mathrm{kHz} \text {, Pin } 4 \text { (Pin } 6 \text { in SW16) at } \mathrm{V}^{+} \text {, }$ $\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=25.78 \mathrm{k}$			100 ± 1		\%
Filter Gain at $\mathrm{f}_{\mathrm{IN}}=16 \mathrm{kHz}$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}$, Pin 4 at $\mathrm{V}^{+}, \mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=6.5 \mathrm{k}$	\bullet	-43	-52		dB
$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}$ Tempco	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}$, Pin 4 at $\mathrm{V}^{+}, \mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=6.5 \mathrm{k}$			10		ppm $/{ }^{\circ} \mathrm{C}$
Filter Output (Pin 7, Pin 13 in SW16) DC Swing	Pin 7/Pin13 (SW16) Buffered with an External Op Amp	\bullet	± 3.5	± 3.8		V
Clock Feedthrough				1		$m V_{\text {P-p }}$

ELECTRICPL CHPRPCTERISTICS The o denotes specifications which apply over the full operating tempera-

 ture range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$, unless otherwise specified, AC output measured at Pin 7, Figure 1.| PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Internal Buffer | | | | | | |
| Bias Current | | \bullet | | $\begin{gathered} 2 \\ 170 \end{gathered}$ | $\begin{gathered} \hline 50 \\ 1000 \end{gathered}$ | pA pA |
| Offset Voltage | | | | 2 | 20 | mV |
| Voltage Swing | $\mathrm{R}_{\text {LOAD }}=20 \mathrm{k}$ | \bullet | ± 3.5 | ± 3.8 | | V |
| Short-Circuit Current Source/Sink | | | | 40/3 | | mA |
| Clock (Note 3) | | | | | | |
| Internal Oscillator Frequency | $\mathrm{C}_{\text {OSC }}\left(\right.$ Pin 5 to V^{-}, Pin 11 in SW16) $=100 \mathrm{pF}$ | \bullet | $\begin{aligned} & 25 \\ & 15 \end{aligned}$ | 32 | $\begin{aligned} & 50 \\ & 65 \end{aligned}$ | $\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$ |
| Max Clock Frequency | | | | 4 | | MHz |
| Pin 5 (Pin 11 in SW16) Source or Sink Current | | \bullet | | 40 | 80 | $\mu \mathrm{A}$ |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: f_{C} is the frequency where the gain is -3 dB with respect to the input signal.

Note 3: The external or driven clock frequency is divided by either 1, 2 or 4 depending upon the voltage at Pin 4. For the N8 package, when Pin $4=\mathrm{V}^{+}$, ratio $=1$; when Pin $4=$ GND, ratio $=2$; when Pin $4=\mathrm{V}^{-}$, ratio $=4$.

TYPICAL PGRFORMANCE CHARACTERISTICS

1062 G01

Amplitude Response Normalized to the Cutoff Frequency

Passband Gain vs Input Frequency

1062 G03

TYPICAL PGRFORMANCE CHARACTERISTICS

Passband Gain
vs Input Frequency and Temperature

1062 G04
Normalized Oscillator Frequency, fosc vs Supply Voltage

Passband Phase Shift vs Input Frequency

1062 GO5
Oscillator Frequency, fosc vs Ambient Temperature

Filter Noise Spectral Density

Power Supply Current vs Power Supply Voltage

BLOCK DIAGRAM

For Adjusting Oscillator Frequency, Insert a 50k Pot in Series with $\mathrm{C}_{0 s c}$. Use Two Times Calculated $\mathrm{C}_{0 S C}$

AC TEST CIRCUIT

FOR BEST MAX FLAT APPROXIMATION, THE INPUT RC SHOULD BE SUCH AS:

$$
\frac{1}{2 \pi R C}=\frac{f_{C L K}}{100} \cdot \frac{1}{1.63}
$$

A 0.5k RESISTOR, R', SHOULD BE USED IF THE BIPOLAR EXTERNAL CLOCK IS APPLIED BEFORE THE POWER SUPPLIES TURN ON

Figure 1

APPLICATIONS INFORMATION

Filter Input Voltage Range

Every node of the LTC1062 typically swings within 1V of either voltage supply, positive or negative. With the appropriate external (RC) values, the amplitude response of all the internal or external nodes does not exceed a gain of 0 dB with the exception of Pin 1 . The amplitude response of the feedback node (Pin 1) is shown in Figure 2. For an input frequency around $0.8 \bullet f_{\mathrm{C}}$, the gain is $1.7 \mathrm{~V} / \mathrm{V}$ and , with $\pm 5 \mathrm{~V}$ supplies, the peak-to-peak input voltage should not exceed 4.7V. If the input voltage goes beyond this value, clipping and distortion of the output waveform occur, but the filter will not get damaged nor will it oscillate. Also, the absolute maximum input voltage should not exceed the power supplies.

Figure 2. Amplitude Response of Pin 1

Internal Buffer

The internal buffer out (Pin 8) and Pin 1 are part of the signal AC path. Excessive capacitive loading will cause gain errors in the passband, especially around the cutoff frequency. The internal buffer gain at DC is typically 0.006 dB . The internal buffer output can be used as a filter output, however, it has a few millivolts of DC offset. The temperature coefficient of the internal buffer is typically $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

Filter Attenuation

The LTC1062 rolloff is typically 30dB/octave. When the clock and the cutoff frequencies increase, the filter's maximum attenuation decreases. This is shown in the

Typical Performance Characteristics. The decrease of the maximum attenuation is due to the rolloff at higher frequencies of the loop gains of the various internal feedback paths and not to the increase of the noise floor. For instance, for a 100 kHz clock and 1 kHz cutoff frequency, the maximum attenuation is about 64 dB . A 4 kHz , $1 \mathrm{~V}_{\text {RMS }}$ input signal will be predictably attenuated by 60 dB at the output. A $6 \mathrm{kHz}, 1 \mathrm{~V}_{\text {RMS }}$ input signal will be attenuated by 64 dB and not by 77 dB as an ideal 5th order maximum flat filter would have dictated. The LTC1062 output at 6 kHz will be about $630 \mu \mathrm{~V}_{\text {RMs }}$. The measured RMS noise from DC to 17 kHz was $100 \mu \mathrm{~V}_{\text {RMS }}$ which is 16 dB below the filter output.

Cosc, Pin 5

The $\mathrm{C}_{0 S c}$, Pin 5 , can be used with an external capacitor, $\mathrm{C}_{0 S C}$, connected from Pin 5 to ground. If $\mathrm{C}_{0 S c}$ is polarized it should be connected from Pin 5 to the negative supply, Pin 3. Cosc lowers the internal oscillator frequency. If Pin 5 is floating, an internal 33pF capacitor plus the external interpin capacitance set the oscillator frequency around 140 kHz with $\pm 5 \mathrm{~V}$ supply. An external C_{0} sc will bring the oscillator frequency down by the ratio (33pF)/ (33pF + Cosc). The Typical Performance Characteristics curves provide the necessary information to get the internal oscillator frequency for various power supply ranges. Pin 5 can also be driven with an external CMOS clock to override the internal oscillator. Although standard 7400 series CMOS gates do not guarantee CMOS levels with the current source and sink requirements of Pin 5, they will, in reality, drive the Cosc pin. CMOS gates conforming to standard B series output drive have the appropriate voltage levels and more than enough output current to simultaneously drive several LTC1062 Cosc pins. The typical trip levels of the internal Schmitt trigger which input is Pin 5, are given in Table 1.

Table 1

$\mathbf{V}_{\text {SUPPLY }}$	$\mathbf{V}_{\text {TH }^{+}}$	$\mathbf{V}_{\text {TH }^{-}}$
$\pm 2.5 \mathrm{~V}$	0.9 V	-1 V
$\pm 5 \mathrm{~V}$	1.3 V	-2.1 V
$\pm 6 \mathrm{~V}$	1.7 V	-2.5 V
$\pm 7 \mathrm{~V}$	1.75 V	-2.9 V

APPLICATIONS INFORMATION

Divide By 1, 2, 4 (Pin 4)

By connecting Pin 4 to V^{+}, to mid supplies or to V^{-}, the clock frequency driving the internal switched capacitor network is the oscillator frequency divided by 1, 2, 4 respectively. Note that the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ ratio of $100: 1$ is with respect to the internal clock generator output frequency. The internal divider is useful for applications where octave tuning is required. The $\div 2$ threshold is typically $\pm 1 \mathrm{~V}$ from the mid supply voltage.

Transient Response

Filter Noise

The filter wideband RMS noise is typically $100 \mu V_{\text {RMS }}$ for $\pm 5 \mathrm{~V}$ supply and it is nearly independent from the value of the cutoff frequency. For single 5V supply the RMS noise is $80 \mu V_{\text {RMS. }}$. Sixty-two percent of the wideband noise is in the passband, that is from $D C$ to f_{C}. The noise spectral density, unlike conventional active filters, is nearly zero for frequencies below $0.1 \bullet \mathrm{f}_{\mathrm{C}}$. This is shown in the Typical Performance Characteristics section. Table 2 shows the LTC1062 RMS noise for different noise bandwidths.

Figure 3 shows the LTC1062 response to a 1 V input step.

Figure 3. Step Response to a 1V Peak Input Step
Table 2

NOISE BW	RMS NOISE $\left(V_{S}= \pm 5 \mathrm{~V}\right)$
$D C-0.1 \bullet \mathrm{f}_{\mathrm{C}}$	$2 \mu \mathrm{~V}$
$D C-0.25 \cdot \mathrm{f}_{\mathrm{C}}$	$8 \mu \mathrm{~V}$
$D C-0.5 \bullet \mathrm{f}_{\mathrm{C}}$	$20 \mu \mathrm{~V}$
$D C-1 \cdot \mathrm{f}_{\mathrm{C}}$	$62 \mu \mathrm{~V}$
$D C-2 \cdot \mathrm{f}_{\mathrm{C}}$	$100 \mu \mathrm{~V}$

TYPICAL APPLICATIONS

Adding an External (R1, C1) to Eliminate the Clock Feedthrough and to Improve the High Frequency Attenuation Floor

Filtering AC Signals from High DC Voltages

EXAMPLE:
$\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{KHz}, \mathrm{f}_{\mathrm{C}}=1 \mathrm{kHz}$. THE FILTER ACCURATELY PASSES
THE HIGH DC INPUT AND ACTS AS 5TH ORDER LP FILTER
FOR THE AC SIGNALS RIDING ON THE DC

Passband Amplitude Response for the High DC Accurate 5th Order Filter

1062 TA06

TYPICAL APPLICATIONS

Cascading Two LTC1062s to Form a Very Selective Clock Sweepable Bandpass Filter

Clock Tunable Notch Filter
For Simplicity Use R3 $=$ R4 $=$ R5 $=\mathbf{1 0 k}$;

$$
\frac{R 5}{R 2}=1.234, \frac{f C L K}{f_{\text {NOTCH }}}=\frac{79.3}{1}
$$

Frequency Response of the Bandpass Filter

Frequency Response of the Notch Filter

LTC 1062

TYPICAL APPLICATIONS
Simple Cascading Technique

$100 \mathrm{~Hz}, 50 \mathrm{~Hz}, 25 \mathrm{~Hz} 5 \mathrm{th}$ Order DC Accurate LP Filter

TYPICAL APPLICATIONS

7th Order 100Hz Lowpass Filter with Continuous Output Filtering, Output Buffering and Gain Adjustment

THE LTC1052 IS CONNECTED AS A 2ND ORDER SALLEN AND KEY LOWPASS FILTER WITH A CUTOFF
FREQUENCY EQUAL TO THE CUTOFF FREQUENCY OF THE LTC1062. THE ADDITIONAL FILTERING
ELIMINATES ANY 10kHz CLOCK FEEDTHROUGH PLUS DECREASES THE WIDEBAND NOISE OF THE FILTER
DC OUTPUT OFFSET (REFERRED TO A DC GAIN OF UNITY) $=5 \mu \mathrm{~V}$ MAX
WIDEBAND NOISE (REFERRED TO A DC GAIN OF UNITY) $=60 \mu V_{\text {RMS }}$
OUTPUT FILTER COMPONENT VALUES

DC GAIN	R3	R4	R1	R2	C1	C2
1	∞	0	14.3 k	53.6 k	$0.1 \mu \mathrm{~F}$	$0.033 \mu \mathrm{~F}$
10	3.57 k	32.4 k	46 k	274 k	$0.01 \mu \mathrm{~F}$	$0.02 \mu \mathrm{~F}$

Single 5V Supply 5th Order LP Filter

> FOR A 10Hz FILTER: $\mathrm{R}=29.4 \mathrm{k}, \mathrm{C}=1 \mu \mathrm{~F}, \mathrm{f} C L \mathrm{~K}=1 \mathrm{kHz}$ THE FILTER IS MAXIMALLY FLAT FOR $\frac{1}{2 \pi \mathrm{RC}}=\frac{\mathrm{f}_{\mathrm{C}}}{1.84}$

LTC 1062

TYPICAL APPLICATIONS

A Lowpass Filter with a $\mathbf{6 0 H z}$ Notch

Frequency Response of the Above Lowpass Filter

$$
\text { with the Notch } \mathrm{f}_{\mathrm{NOTCH}}=\mathrm{f}_{\mathrm{CLK}} / 47.3
$$

PACKAGE DESCRIPTION

J8 Package

8-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

LTC 1062

PACKAGE DESCRIPTION
N8 Package
8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254 mm)

PACKAGE DESCRIPTION

SW Package

16-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

NOTE
INCHES

1. DIMENSIONS IN $\frac{\text { INCHES }}{(\text { MILLIMETERS })}$

S16 (WIDE) 0502
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

TYPICAL APPLICATION

A Low Frequency, 5Hz Filter Using Back-to-Back Solid Tantalum Capacitors

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1063	5th Order Butterworth Lowpass, DC Accurate	Clock Tunable, No External Components
LTC1065	5th Order Bessel Lowpass, DC Accurate	Clock Tunable, No External Components
LTC1066-1	8th Order Elliptic or Linear Phase, DC Accurate	Clock Tunable, fc $\leq 120 \mathrm{kHz}$
LTC1563-2/	Active RC, 4th Order Lowpass	
LTC1563-3	Very Low Noise, 256Hz $\leq \mathrm{fc} \leq 256 \mathrm{kHz}$	
LTC1564	10kHz to 150kHz Digitally Controlled Lowpass and PGA	Continuous Time, Very High Dynamic Range, PGA Included
LTC1569-6	Linear Phase, DC Accurate, 10th Order	No External Clock Required, fc $\leq 64 \mathrm{kHz}$, S08
LTC1569-7	Linear Phase, DC Accurate, 10th Order	No External Clock Required, fc $\leq 300 \mathrm{kHz}, \mathrm{S08}$

