LTC 1065

DC Accurate, Clock-Tunable Linear Phase 5th Order Bessel Lowpass Filter

features

- Clock-Tunable Cutoff Frequency
- 1mV DC Offset (Typical)
- 80dB CMR (Typical)
- Internal or External Clock
- $50 \mu V_{\text {RMS }}$ Clock Feedthrough
- 100:1 Clock-to-Cutoff Frequency Ratio
- $80 \mu \mathrm{~V}_{\text {RMS }}$ Total Wideband Noise
- 0.004% Noise + THD at $2 V_{\text {RMS }}$ Output Level
- 50kHz Maximum Cutoff Frequency
- Cascadable for Faster Roll-Off
- Operates from ± 2.375 to $\pm 8 \mathrm{~V}$ Power Supplies
- Self-Clocking with 1 RC
- Available in 8-Pin DIP and 16-Pin SW Packages

APPLICATIONS

- Audio
- Strain Gauge Amplifiers
- Anti-Aliasing Filters
- Low Level Filtering
- Digital Voltmeters
- Smoothing Filters
- Reconstruction Filters
$\overline{\boldsymbol{\wedge}}$, LTC and LT are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners. Protected by U.S. Patents including 4857860.

DESCRIPTIOn

The LTC ${ }^{\circledR} 1065$ is the first monolithic filter providing both clock-tunability with low DC output offset and over 12-bit DC accuracy. The frequency response of the LTC1065 closely approximates a 5th order Bessel polynomial. With appropriate PCB layout techniques the output DC offset is typically 1 mV and is constant over a wide range of clock frequencies. With $\pm 5 \mathrm{~V}$ supplies and $\pm 4 \mathrm{~V}$ input voltage range, the CMR of the device is typically 80 dB .

The filter cutoff frequency is controlled either by an internal or external clock. The clock-to-cutoff frequency ratio is $100: 1$. The on-board clock is nearly power supply independent and it is programmed via an external RC. The $50 \mu \mathrm{~V}_{\text {RMS }}$ clock feedthrough of the device is considerably lower than other existing monolithic filters.

The LTC1065 wideband noise is $80 \mu V_{\mathrm{RMS}}$ and it can process large AC input signals with low distortion. With $\pm 7.5 \mathrm{~V}$ supplies, for instance, the filter handles up to $4 \mathrm{~V}_{\text {RMS }}(94 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio) while the standard 1 kHz THD is below 0.005%; 87 dB dynamic range ($\mathrm{S} / \mathrm{N}+\mathrm{THD}$) is obtained with input levels between $2 \mathrm{~V}_{\text {RMS }}$ and $2.5 \mathrm{~V}_{\text {RMS }}$.
The LTC1065 is available in 8-pin miniDIP and 16-pin SW packages. For a Butterworth response, see LTC1063 data sheet. The LTC1065 is pin compatible with the LTC1063.

TYPICAL APPLICATION
3.4kHz Single 5V Supply Bessel Lowpass Filter

Frequency Response

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-}) 16.5 V
Power Dissipation .. 400 mW
Voltage at Any Input $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{IN}} \leq\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Burn-In Voltage .. 16V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Operating Temperature Range (Note 7)
LTC1065C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1065I.. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1065M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, \mathrm{f}_{\mathrm{C}}=5 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Clock-to-Cutoff Frequency Ratio ($\mathrm{f}_{\text {LLK }} / \mathrm{f}_{\mathrm{C}}$)	$\pm 2.375 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 7.5 \mathrm{~V}$			100 ± 0.5		
Maximum Clock Frequency (Note 2)	$\begin{aligned} & V_{S}= \pm 7.5 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}= \pm 2.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 5 \\ & 4 \\ & 3 \end{aligned}$		MHz MHz MHz
Minimum Clock Frequency (Note 3)	$\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$			30		Hz
Input Frequency Range			0		$0^{0.9 f}{ }_{\text {LLK }}$	
Filter Gain	$\begin{aligned} \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=25 \mathrm{kHz}, \mathrm{f}_{\mathrm{C}} & =250 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{IN}} & =250 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{IN}} & =1 \mathrm{kHz} \end{aligned}$	$\bullet \bullet$	$\begin{array}{r} -3.5 \\ -43.0 \end{array}$	$\begin{array}{r} -3.1 \\ -41.0 \end{array}$	$\begin{array}{r} -2.7 \\ -39.0 \end{array}$	dB dB
	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}, \mathrm{f}_{\mathrm{C}}=5 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\text {IN }}=1 \mathrm{kHz}=0.2 \mathrm{f}_{\mathrm{C}} \\ & \mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{kHz}=0.5 \mathrm{f}_{\mathrm{C}} \\ & \mathrm{f}_{\text {IN }}=4 \mathrm{kHz}=0.8 \mathrm{f}_{\mathrm{C}} \\ & \mathrm{f}_{\text {IN }}=5 \mathrm{kHz}=\mathrm{f}_{\mathrm{C}} \\ & \mathrm{f}_{\text {IN }}=10 \mathrm{kHz}=2 \mathrm{f}_{\mathrm{C}} \\ & \mathrm{f}_{\text {IN }}=20 \mathrm{kHz}=4 \mathrm{f}_{\mathrm{C}} \\ & \hline \end{aligned}$		0			dB
		\bullet	-0.215	-0.175	-0.135	dB
		\bullet	-1.1	-0.972	-0.84	dB
		\bullet	-2.35	-2.13	-1.9	dB
		\bullet	-3.35	-3.1	-2.7	dB
		\bullet	-14.5	-14.15	-13.0	dB
		\bullet	-43.0	-41.15	-39.0	dB
						1065fb

EGCTRICPLCHARACTERASTCS The e denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, \mathrm{f}_{\mathrm{C}}=5 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

ELECTRICAL CHARACTERISTICS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The maximum clock frequency is arbitrarily defined as the frequency at which the filter AC response exhibits $\geq 1 \mathrm{~dB}$ of gain peaking.
Note 3: At limited temperature ranges (i.e., $\mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C}$) the minimum clock frequency can be as low as 10 Hz . The typical minimum clock frequency is arbitrarily defined as the clock frequency at which the output DC offset changes by more than 1 mV .
Note 4: The wideband noise specification does not include the clock feedthrough.

Note 5: To properly evaluate the filter's harmonic distortion an inverting output buffer is recommended. An output buffer (although recommended) is not necessarily needed when measuring output DC offset or wideband noise (see Figure 3).
Note 6: The output DC offset is optimized for $\pm 5 \mathrm{~V}$ supply. The output DC offset shifts when the power supplies change; however, this phenomenon is repeatable and predictable.
Note 7: The LTC1065C is guaranteed to meet the specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LTC1065I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

1065 G01

Output Offset vs Clock, Low Clock Rates

1065 GO2

Output Offset vs Clock, Medium Clock Rates

1065 G03

Gain vs Frequency; $\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$

TYPICAL PERFORMANCE CHARACTERISTICS

THD vs Frequency; $V_{S}= \pm 5 \mathrm{~V}$

Passband Gain and Phase vs Input Frequency

1065 G13

THD vs Frequency;
$\mathrm{V}_{\mathrm{S}}=$ Single $5 \mathrm{~V}, \mathrm{AGND}=2 \mathrm{~V}$

1065 G08
THD + Noise vs Input Voltage;
$V_{S}= \pm 7.5 \mathrm{~V}$

Typical Phase Matching Device to Device

THD + Noise vs Input Voltage;
$V_{S}= \pm 5 \mathrm{~V}$

THD vs Frequency;
$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$

Power Supply Current vs Power Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

Transient Response

HORIZONTAL: $0.1 \mathrm{~ms} /$ DIV, VERTICAL: 2V/DIV $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{C}}=10 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=1 \mathrm{kHz} \pm 3 \mathrm{~V}_{\mathrm{P}}$ SQUARE WAVE

PIn functions

Power Supply Pins (Pins 6, 3, N Package)

The positive and negative supply pin should be bypassed with a high quality $0.1 \mu \mathrm{~F}$ ceramic capacitor. In applications where the clock pin (5) is externally swept to provide several cutoff frequencies, the output DC offset variation is minimized by connecting an additional $1 \mu \mathrm{~F}$ solid tantalum capacitor in parallel with the $0.1 \mu \mathrm{~F}$ disc ceramic. This technique was used to generate the graphs of the output DC offset variation versus clock; they are illustrated in the Typical Performance Characteristics section.
When the power supply voltage exceeds $\pm 7 \mathrm{~V}$, and when V^{-}is applied before V^{+}(if V^{+}is allowed to go below ground) connect a signal diode between the positive supply pin and ground to prevent latch-up (see Typical Applications).

Ground Pin (Pin 2, N Package)

The ground pin merges the internal analog and digital ground paths. The potential of the ground pin is the reference for the internal switched-capacitor resistors, and the reference for the external clock. The positive input of the internal op amp is also tied to the ground pin.
For dual supply operation, the ground pin should be connected to a high quality AC and DC ground. A ground plane, if possible, should be used. A poor ground will
degrade DC offset and it will increase clock feedthrough, noise and distortion.

A small amount of AC current flows out of the ground pin whether or not the internal oscillator is used. The frequency of the ground current equals the frequency of the clock. The average value of this current is approximately $55 \mu \mathrm{~A}, 110 \mu \mathrm{~A}, 170 \mu \mathrm{~A}$ for $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 7.5 \mathrm{~V}$ supplies respectively.

For single supply operation, the ground pin should be preferably biased at half supply (see Typical Applications).

$V_{0 S}$ Adjust Pin (Pin 8, N Package)

The $V_{0 S}$ adjust pin can be used to trim any small amount of output DC offset voltage orto introduce a desired output DC level. The DC gain from the $\mathrm{V}_{0 \text { S }}$ adjust pin to the filter output pin equals two.
Any DC voltage applied to this pin will reflect at the output pin of the filter multiplied by two.

If the $\mathrm{V}_{\text {OS }}$ adjust pin is not used, it should be shorted to the ground pin. The $D C$ bias current flowing into the $\mathrm{V}_{\text {OS }}$ adjust pin is typically 10 pA .

The $\mathrm{V}_{0 S}$ adjust pin should always be connected to an AC ground; AC signals applied to this pin will degrade the filter response.

PIn fUnCTIOnS

Input Pin (Pin 1, N Package)

Pin 1 is the filter input and it is connected to an internal switched-capacitor resistor. If the input pin is left floating, the filter output will saturate. The DC input impedance of pin 1 is very high; with $\pm 5 \mathrm{~V}$ supplies and 1 MHz clock, the DC input impedance is typically $1 G \Omega$. A resistor $R_{I N}$ in series with the input pin will not alter the value of the filter's DC output offset (Figure 1). R IN $^{\text {should however, be limited }}$ to a maximum value (Table 1), otherwise the filter's passband will be affected. Refer to the Applications Information section for more details.

Figure 1.
Table 1. RIN(MAX) vs Clock and Power Supply

	$\mathrm{R}_{\mathbf{I N}(\text { MAX })}$		
	$\mathbf{V}_{\mathbf{S}}= \pm 7.5 \mathrm{~V}$	$\mathrm{~V}_{\boldsymbol{S}}= \pm 5 \mathrm{~V}$	$\mathbf{V}_{\boldsymbol{S}}= \pm \mathbf{2 . 5 \mathrm { V }}$
$\mathrm{f}_{\mathrm{CLK}}=4 \mathrm{MHz}$	1.82 k	-	-
$\mathrm{f}_{\text {CLK }}=3 \mathrm{MHz}$	3.01 k	2.49 k	-
$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}$	4.32 k	3.65 k	2.37 k
$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}$	9.09 k	8.25 k	7.5 k
$\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$	17.8 k	16.9 k	16.9 k
$\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$	95.3 k	90.9 k	90.9 k

Output Pin (Pin 7, N Package)

Pin 7 is the filter output. This pin can typically source over 20 mA and sink 2 mA . Pin 7 should not drive long coax cables, otherwise the filter's total harmonic distortion will degrade. The maximum load the filter output can drive and still maintain the distortion levels, shown in the Typical Performance Characteristics, is 20k.

Clock Input Pin (Pin 5, N Package)

An external clock, when applied to pin 5, tunes the filter cutoff frequency. The clock-to-cutoff frequency ratio is

100:1. The high ($\mathrm{V}_{\text {HIGH }}$) and low ($\mathrm{V}_{\text {LOW }}$) clock logic threshold levels are illustrated in Table 2. Square wave clocks with duty cycles between 30% and 50% are strongly recommended. Sinewave clocks are not recommended.

Table 2. Clock Pin Threshold Levels

POWER SUPPLY	$\mathbf{V}_{\text {HIGH }}$	$\mathbf{V}_{\text {LOW }}$
$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$	1.5 V	0.5 V
$\mathrm{~V}_{S}= \pm 5 \mathrm{~V}$	3 V	1 V
$\mathrm{~V}_{S}= \pm 7.5 \mathrm{~V}$	4.5 V	1.5 V
$\mathrm{~V}_{S}= \pm 8 \mathrm{~V}$	4.8 V	1.6 V
$\mathrm{~V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$	4 V	3 V
$\mathrm{~V}_{S}=12 \mathrm{~V}, 0 \mathrm{~V}$	9.6 V	7.2 V
$\mathrm{~V}_{\mathrm{S}}=15 \mathrm{~V}, 0 \mathrm{~V}$	12 V	9 V

Clock Output Pin (Pin 4, N Package)

Any external clock applied to the clock input pin appears at the clock output pin. The duty cycle of the clock output equals the duty cycle of the external clock applied to the clock input pin. The clock output pin swings to the power supply rails. When the LTC1065 is used in a self-clocking mode, the clock of the internal oscillator appears at the clock output pin with a 30% duty cycle. The clock output pin can be used to drive other LTC1065s or other ICs. The maximum capacitance, $C_{L(M A X)}$, the clock output pin can drive is illustrated in Figure 2.

Figure 2. Maximum Load Capacitance at the Clock Output Pin

TEST CIRCUIT

Figure 3. Test Circuit for THD

APPLICATIONS INFORMATION

Self-Clocking Operation

The LTC1065 features an internal oscillator which can be tuned via an external RC. The LTC1065's internal oscillator is primarily intended for generation of clock frequencies below 500 kHz . The first curve of the Typical Performance Characteristics section shows how to quickly choose the value of the RC for a given frequency. More precisely, the frequency of the internal oscillator is equal to:

$$
\mathrm{f}_{\mathrm{CLK}}=\mathrm{K} / \mathrm{RC}
$$

For clock frequencies ($\mathrm{f}_{\mathrm{CLK}}$) below 100kHz, K equals 1.07. Figure 4b shows the variation of the parameter K versus clock frequency and power supply. First choose the desired clock frequency ($\mathrm{f}_{\mathrm{CLK}}<500 \mathrm{kHz}$), then through Figure 4 b pick the right value of K , set $\mathrm{C}=200 \mathrm{pF}$ and solve for R .
Example 1: $f_{\text {CUTOFF }}=2 \mathrm{kHz}, \mathrm{f}_{\text {CLK }}=200 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$,

$$
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~K}=1.0, \mathrm{C}=200 \mathrm{pF}
$$

then,

$$
R=(1.0) /(200 \mathrm{kHz} \times 204 \mathrm{pF})=24.5 \mathrm{k} .
$$

Figure 4a.

Note a 4pF parasitic capacitance is assumed in parallel with the external 200 pF timing capacitor. Figure 5 shows the clock frequency variation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The 200 kHz clock of Example 1 will change by -1.75% at $85^{\circ} \mathrm{C}$.
For a limited temperature range, the internal oscillator of the LTC1065 can be used to generate clock frequencies above 500 kHz (Figures 6 and 7). The data of Figure 6 is derived from several devices. For a given external (RC) value, the observed device-to-device clockfrequency variation was $\pm 1 \%\left(V_{S}= \pm 5 \mathrm{~V}\right)$, and $\pm 1.25 \%$ for $V_{S}= \pm 2.5 \mathrm{~V}$.

Example 2: $\quad \mathrm{f}_{\text {CUTOFF }}=20 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}=10 \mathrm{pF}$
from Figure $6, K=0.575$,
and,

$$
\mathrm{R}=(0.575) /(2 \mathrm{MHz} \times 14 \mathrm{pF})=20.5 \mathrm{k} .
$$

Figure 4b. flck vs K

Figure 5. fCLK vs Temperature

Figure 6. $\mathrm{f}_{\mathrm{CLK}}$ vs K

Figure 7. $\mathrm{f}_{\text {CLK }}$ vs K

A 4pF parasitic capacitance is assumed in parallel with the external 10 pF capacitor. $\mathrm{A} \pm 1 \%$ clock frequency variation from device to device can be expected. The 2MHz clock frequency designed above will typically drift to 1.74 MHz at $70^{\circ} \mathrm{C}$ (Figure 7).
The internal clock of the LTC1065 can be overridden by an external clock provided that the external clock source can drive the timing capacitor C , which is connected from the clock input pin to ground.

Output Offset

The DC output offset of the LTC1065 is trimmed to typically less than $\pm 1 \mathrm{mV}$. The trimming is done at $\mathrm{V}_{\mathrm{S}}=$ $\pm 5 \mathrm{~V}$. To obtain optimum DC offset performance, appropriate PC layout techniques should be used and the filter IC should be soldered to the PC board. A socket will degrade the output DC offset by typically 1 mV . The output DC offset is sensitive to the coupling of the clock output pin 4 (N package) to the negative power supply pin 3 (N package). The negative supply pin should be well decoupled. When the surface mount package is used, all NC pins should be grounded. When the output DC voltage is measured with a voltmeter, the filter output pin should be buffered. Long test leads should be avoided.

With fixed power supplies, the output DC offset should not change by more than $\pm 100 \mu \mathrm{~V}$ over 10 Hz to 1 MHz clock frequency variation. When the filter clock frequency is fixed, the output DC offset will typically change by -4 mV $(2 \mathrm{mV})$ when the power supply varies from $\pm 5 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$ $(\pm 2.5 \mathrm{~V})$. See Typical Performance Characteristics.

Common Mode Rejection

The common mode rejection is defined as the change of the output DC offset with respect to the DC change of the input voltage applied to the filter.

$$
\mathrm{CMR}=20 \log \left(\Delta \mathrm{~V}_{\text {OS OUT }} / \Delta \mathrm{V}_{\text {IN }}\right)(\mathrm{dB})
$$

Table 3 illustrates the common mode rejection for three power supplies and three temperatures. The common mode rejection improves if the output offset is adjusted to approximately OV . The output offset can be adjusted via pin 8 (N package). See Typical Applications.

APPLICATIONS IMFORMATION

Table 3. CMR Data, $\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$

POWER SUPPLY	$\Delta \mathbf{V}_{\mathbf{I N}}$	$-\mathbf{4 0 ^ { \circ } \mathbf { C }}$	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}{ }^{\circ} \mathbf{C}$	$25^{\circ} \mathbf{C}$ $\left(\mathbf{V}_{\mathbf{O S}}\right.$ Nulled $)$
$\pm 2.5 \mathrm{~V}$	$\pm 1.8 \mathrm{~V}$	84 dB	83 dB	80 dB	83 dB
$\pm 5 \mathrm{~V}$	$\pm 4 \mathrm{~V}$	82 dB	78 dB	77 dB	78 dB
$\pm 7.5 \mathrm{~V}$	$\pm 6 \mathrm{~V}$	80 dB	77 dB	76 dB	80 dB

The above data is valid for clock frequencies up to $800 \mathrm{kHz}, 900 \mathrm{kHz}, 1 \mathrm{MHz}$, for $\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 7.5 \mathrm{~V}$ respectively.

Clock Feedthrough

Clock feedthrough is defined as the RMS value of the clock frequency and its harmonics which are present at the filter's output pin. The clock feedthrough is tested with the filter input grounded and it depends on the quality of the PC board layout and power supply decoupling. Any parasitic switching transients during the rise and fall of the incoming clock, are not part of the clock feedthrough specifications; their amplitude strongly depends on scope probing techniques as well as ground quality and power supply bypassing. For a power supply $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$, the clock feedthrough of the LTC1065 is $50 \mu \mathrm{~V}_{\mathrm{RMS}}$; for $\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$, the clock feedthrough approaches $75 \mu V_{\text {RMS }}$. Figures 8 and 9 show a typical scope photo of the LTC1065 output pin when the input pin is grounded. The filter cutoff frequency was 1 kHz , while scope bandwidth was chosen to be 1 MHz so that switching transients above the 100 kHz clock frequency would show.

Wideband Noise

The wideband noise data is used to determine the operating signal-to-noise ratio at a given distortion level. The wideband noise ($\mu \mathrm{V}_{\text {RMS }}$) is nearly independent of the value of the clock frequency and excludes the clock feedthrough. The LTC1065's typical wideband noise is $80 \mu \mathrm{~V}_{\mathrm{RMS}}$. Figure 9 shows the same scope photo as Figure 8 but with a more sensitive vertical scale. The clock feedthrough is imbedded in the filter's wideband noise. The peak-to-peak wideband noise of the filter can be clearly seen; it is approximately $420 \mu \mathrm{~V}_{\text {P-p. }}$. Note that $420 \mu \mathrm{~V}_{\text {p-p }}$ equals the $80 \mu \mathrm{~V}_{\text {RMS }}$ wideband noise of the part multiplied by a crest factor of 5.25 .

Figure 8. LTC1065 Output Clock Feedthrough + Noise

Figure 9. LTC1065 Output Clock Feedthrough + Noise

Aliasing

Aliasing is an inherent phenomenon of sampled data filters. It primarily occurs when the frequency of an input signal approaches the sampling frequency. For the LTC1065, an input signal whose frequency is in the range of $f_{\text {CLK }} \pm 6 \%$ will generate an alias signal into the filter's passband and stopband. Table 4 shows details.
Example: LTC1065, $\mathrm{f}_{\mathrm{CLK}}=20 \mathrm{kHz}, \mathrm{f}_{\mathrm{C}}=200 \mathrm{kHz}$, $\mathrm{f}_{\mathrm{IN}}=(19.6 \mathrm{kHz}, 100 \mathrm{mV}$ RMS $)$
$\mathrm{f}_{\text {ALIAS }}=\left(400 \mathrm{~Hz}, 3.16 \mathrm{~m} \mathrm{~V}_{\text {RMS }}\right)$

APPLICATIONS INFORMATION

Table 4. Aliasing Data

INPUT FREQUENCY	OUTPUT FREQUENCY	OUTPUT AMPLITUDE REFERENCED TO INPUT SIGNAL
$0.9995 \mathrm{f}_{\text {CLK }}$	$0.0005 \mathrm{f}_{\text {CLK }}$	$-0.01 \mathrm{~dB}$
0.995 flık	$0.005 \mathrm{f}_{\text {CLK }}$	$-0.98 \mathrm{~dB}$
0.99 f CLK	0.01 f CLK	$-3.13 \mathrm{~dB}$
0.9875 f CLK	0.0125 f CLK	-4.79 dB
$0.985 \mathrm{f}_{\text {CLK }}$	$0.015 \mathrm{f}_{\text {CLK }}$	-7.21 dB
0.9825 flıK	0.0175 f CLK	-10.43 dB
$0.98 \mathrm{f}_{\text {CLK }}$	$0.02 \mathrm{f}_{\text {CLK }}$	-14.14 dB
$0.975 \mathrm{f}_{\text {CLK }}$	$0.025 \mathrm{f}_{\text {CLK }}$	-21.84 dB
0.97 f CLK	0.03 f CLK	-28.98 dB
0.965 f CLK	0.035 flck	-35.31 dB
0.96 f CLK	0.04 f CLK	-40.94 dB
$0.955 \mathrm{f}_{\text {CLK }}$	$0.045 \mathrm{f}_{\text {CLK }}$	-45.96 dB
0.95 f CLK	0.05 f CLK	-50.46 dB
0.94 f CLK	0.06 f CLK	-58.29 dB
0.93 f CLK	0.07 f CLK	-64.90 dB
0.9 f $\mathrm{f}_{\text {LLK }}$	0.1 f CLK	$-80.20 \mathrm{~dB}$

An input RC can be used to attenuate incoming signals close to the filter clock frequency (Figure 10). A Bessel passband response will be maintained if the value of the input resistor follows Table 1.

Figure 10. Adding an Input Anti-Aliasing RC

TYPICAL APPLICATIONS

Cascading Two LTC1065s for Steeper Roll-Off

Sharing Clock for Multichannel Applications

PACKAGE DESCRIPTION

J8 Package

8-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

PACKAGE DESCRIPTION

N Package

8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

PACKAGE DESCRIPTION

SW Package

16-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

NOTE:

1. DIMENSIONS IN $\frac{\text { INCHES }}{(\text { MILLIMETERS })}$
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.

THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

TYPICAL APPLICATIONS

Single 5V Supply Operation ($\mathrm{f}_{\mathrm{C}}=3.4 \mathrm{kHz}$)

Adjusting $\mathrm{V}_{\text {OS(OUT) }}$ for ± 7.5 Supply Operation

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1063	Clock Tunable, 5th Order Bessel Low Pass	Internal or External Clock, 1mV
LTC Offset, Cascadable		
LTC1164-5-1/6/7/4/7	Clock Tunable, 8th Order Low Pass	Elock Tunable, Low Power, 8th Order Low Pass
LTC1264-7	Clock Tunable, 8th Order Low Pass	Butterworth, Bessel or Elliptic, Fo Max = 20KHz
LTC1569-6/7	Clock Tunable, 10th Order Low Pass	Flat Group Delay, Fo Max = 200KHz, Steeper Roll-Off than Bessel

