FAIRCHILD

SEMICONDUCTOR®

USB1T1102 Universal Serial Bus Peripheral Transceiver with Voltage Regulator

General Description

This chip provides a USB Transceiver functionality with a voltage regulator that is compliant to USB Specification Rev 2.0. this integrated 5V to 3.3V regulator allows interfacing of USB Application specific devices with supply voltages ranging from 1.65V to 3.6V with the physical layer of Universal Serial Bus. It is capable of operating at 12Mbits/s (full speed) data rates and hence is fully compliant to USB Specification Rev 2.0. The Vbusmon pin allows for monitoring the Vbus line.

The USB1T1102 also provides exceptional ESD protection with 15kV contact HBM on D+, D- pins.

Features

■ Complies with Universal Serial Bus Specification 2.0

August 2004

Revised April 2005

- Integrated 5V to 3.3V voltage regulator for powering
- VBus
 Utilizes digital inputs and outputs to transmit and receive
- USB cable data
- Supports full speed (12Mbits/s) data rates
- Ideal for portable electronic devices
- MLP technology package (16 pin) with HBCC footprint
- 15kV contact HBM ESD protection on bus pins

Ordering Code:

Order Number	Package Number	Package Description
USB1T1102MPX	MLP14D	Pb-Free 14-Terminal Molded Leadless Package (MLP), 2.5mm Square
USB1T1102MHX	MLP16HB	Pb-Free 16-Terminal Molded Leadless Package (MHBCC), JEDEC MO-217, 3mm Square
USB1T1102RMPX (Preliminary)	MLP14D	Pb-Free 14-Terminal Molded Leadless Package (MLP), 2.5mm Square
USB1T1102RMHX (Preliminary)	MLP16HB	Pb-Free 16-Terminal Molded Leadless Package (MHBCC), JEDEC MO-217, 3mm Square

Logic Diagram

© 2005 Fairchild Semiconductor Corporation DS500877

USB1T1102

Terminal Descriptions (Continued)

Terminal Descriptions (Continued)						
Terminal Number Terminal VO Terminal Description			Terminal Description			
MLP14	MLP16	Name	1/0	Terminal Description		
13	15	V _{PU} (3.3V)		Pull-up Supply Voltage ($3.3V \pm 10\%$): Connect an external $1.5k\Omega$ resistor on D+ (FS data rate); Pin function is controlled by Config input pin: Config = LOW - V _{PU} ($3.3V$) is floating (High Impedance) for zero pull-up current. Config = HIGH - V _{PU} ($3.3V$) = $3.3V$; internally connected to V _{REG} ($3.3V$).		
14	16	Config	I	USB connect or disconnect software control input. Configures 3.3V to external $1.5k\Omega$ resistor on D+ when HIGH.		
Exposed Diepad	Exposed Diepad	GND	GND	GND supply down bonded to exposed diepad to be connected to the PCB GND.		

Functional Description

The USB1T1102 transceiver is designed to convert CMOS data into USB differential bus signal levels and to convert USB differential bus signal to CMOS data.

To minimize EMI and noise the outputs are edge rate controlled with the rise and fall times controlled and defined for full speed data rates only (12Mbits/s). The rise, fall times are balanced between the differential pins to minimize skew.

The USB1T1102 differs from earlier USB Transceiver in that the $V_{\rm p}/V_{\rm m}$ and $V_{\rm po}/V_{\rm mo}$ pins are now I/O pins rather than discrete input and output pins. Table 1 describes the specific pin functionality selection. Table 2 and Table 3 describe the specific Truth Tables for Driver and Receiver operating functions.

The USB1T1102 also has the capability of various power supply configurations to support mixed voltage supply applications (see Table 4) and Section 2.1 for detailed descriptions.

Functional Tables

TABLE 1. Function Select

SUSPND	OE	D+, D-	RCV	V _p /V _{po}	V _m /V _{mo}	Function
L	L	Driving & Receiving	Active	V _{po} Input	V _{mo} Input	Normal Driving (Differential Receiver Active)
L	Н	Receiving (Note 1)	Active	V _p Output	V _m Output	Receiving
Н	L	Driving	Inactive (Note 2)	V _{po} Input	V _{mo} Input	Driving during Suspend (Differential Receiver Inactive)
Н	Н	3-STATE (Note 1)	Inactive (Note 2)	V _p Output	V _m Output	Low Power State

Note 1: Signal levels is function of connection and/or pull-up/pull-down resistors.

Note 2: For SUSPND = HIGH mode the differential receiver is inactive and the output RCV is forced LOW. The out-of-suspend signaling (K) is detected via the single-ended receivers of the $V_{\rm p}/V_{\rm po}$ and $V_{\rm m}/V_{\rm mo}$ pins.

TABLE 2. Driver Function (OE = L) using Differential Input Interface

V _m /V _{mo}	V _p /V _{po}	Data
L	L	SE0 (Note 3)
L	Н	Differential Logic 1
Н	L	Differential Logic 0
Н	Н	Illegal State

Note 3: SE0 = Single Ended Zero

TABLE 3. Receiver Function ($\overline{OE} = H$)

D+, D-	RCV	V _p /V _{po}	V _m /V _{mo}
Differential Logic 1	Н	Н	L
Differential Logic 0	L	L	Н
SE0	Х	L	L

3

X = Don't Care

www.fairchildsemi.com

Downloaded from Elcodis.com electronic components distributor

Power Supply Configurations and Options

The USB1T1102 may be operated in two power supply modes.

- 1. Normal (Regulator) Mode: For 5V operation V_{CC} is connected to 5V source (4.0V to 5.5V) and the internal voltage regulator then produces 3.3V for the USB connections.
- 2. Bypass Mode: For 3.3V operation both V_{CC} and V_{REG} are connected to a 3.3V source (3.0V to 3.6V)

In both cases for normal mode the V_{CCIO} is an independent voltage source (1.65V to 3.6V) that is a function of the external circuit configuration.

A summary of the Supply Configurations is described in Table 4.

TABLE 4. Power Supply Configuration Options						
Pine	Power Supply Mode Configuration					
FIIIS	Normal (Regulated Output)	Normal (Regulator Bypass)				
V _{CC} (5V)	Connected to 5V Source	Connected to V _{REG} (3.3V) [Max Drop of 0.3V] (2.7V to 3.6V0				
V _{REG} (3.3V)	3.3V, 300μA Regulated Output	Connected to 3.3V Source				
V _{CCIO}	1.65V to 3.6V Source	1.65V to 3.6v Source				
V _{PU}	3.3V Available if Config = HIGH	3.3V Available if Config = HIGH				
D+, D-	Function of Mode Set Up	Function of Mode Set Up				
V _p /V _{po} , V _m /V _{mo}	Function of Mode Set Up	Function of Mode Set Up				
RCV	Function of Mode Set Up	Function of Mode Set Up				
Vbusmon	Function of Mode Set Up	Function of Mode Set Up				
OE, SUSPND Config	Function of Mode Set Up	Function of Mode Set Up				

ESD Protection

ESD Performance of the USB1T1102

HBM D+/D-: 15.0kV HBM, all other pins (Mil-Std 883E): 6.5kV

ESD Protection: D+/D- Pins

Since the differential pins of a USB transceiver may be subjected to extreme ESD voltages, additional immunity has been included in the D+ and D- pins without compromising performance. The USB1T1102 differential pins have ESD protection to the following limits:

- 15kV using the contact Human Body Model
- 8kV using the Contact Discharge method as specified in IEC 61000-4-2

Human Body Model

Figure 1 shows the schematic representation of the Human Body Model ESD event. Figure 2 is the ideal waveform representation of the Human Body Model.

IEC 61000-4-2, IEC 60749-26 and IEC 60749-27

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment, and as such evaluates the equipment in its entirety for ESD immunity. Fairchild Semiconductor has evaluated this device using the IEC 6100-4-2 representative system model depicted in Figure 3. Under the additional standards set forth by the IEC, this device is also compliant with IEC 60749-26 (HBM) and IEC 60749-27 (MM).

Additional ESD Test Conditions

For additional information regarding our product test methodologies and performance levels, please contact Fairchild Semiconductor.

FIGURE 1. Human Body ESD Test Model

FIGURE 3. IEC 61000-4-2 ESD Test Model

USB1T1102

Absolute Maximum Ratings(Note 4)

Supply Voltage (Voc)(5)()	-0.5V to $+6.0V$	Conditions	
I/O Supply Voltage (Vccio)	-0.5V to +4.6V	DC Supply Voltage Vac (5V)	4 0V to 5 5V
Latch-up Current (ILLI)			1.65V to 3.6V
$V_1 = -1.8V$ to $+5.4V$	150 mA	DC Input Voltage Range (V)	0V to Vegio +5.5V
DC Input Current (I _{IK})		DC Input Range for AI/O (V _{AVO})	0V to Vcc
V ₁ < 0	–50 mA	Pins D+ and D-	0V to 3.6V
DC Input Voltage (VI)		Operating Ambient Temperature	
(Note 5)	–0.5V to V _{CCIO} +5.5V	(T _{AMB})	–40°C to +85°C
DC Output Diode Current (I _{OK})			
$V_{O} > V_{CC}$ or $V_{O} < 0$	±50 mA		
DC Output Voltage (V _O)			
(Note 5)	–0.5V to V _{CCIO} + 0.5V		
Output Source or Sink Current (I_O)			
$V_{O} = 0$ to V_{CC}			
Current for D+, D– Pins	±50 mA		
Current for RCV, V _m /V _p	±15 mA		
DC V _{CC} or GND Current			
(I _{CC} , I _{GND})	±100 mA		
ESD Immunity Voltage (V _{ESD});			
Contact HBM		Note 4: The Absolute Maximum Ratings are	those values beyond which
Pins D+, D–, V_{CC} (5.5V) and GND	15kV	operated at these limits. The parametric value	a. The device should not be les defined in the Electrical
All Other Pins	6.5kV	Characteristic tables are not guaranteed at th	e absolute maximum rating.
Storage Temperature (T _{STO})	-40°C to + 125°C	for actual device operation.	ble will define the conditions
Power Dissipation (P _{TOT})		Note 5: IO Absolute Maximum Rating must be	observed.
I _{CC} (5V)	48 mW		
Iccio	9 mW		

Recommended Operating

DC Electrical Characteristics (Supply Pins)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CC} (5V) = 4.0V to 5.5V or V_{REG} (3.3V) = 3.0V to 3.6V, V_{CCIO} = 1.65V to 3.6V

Symbol	Parameter	Conditions	-40	°C to +85°C		Units	
			Min	Тур	Max		
V _{REG} (3.3V)	Regulated Supply Output	Internal Regulator Option;	3.0	3.3	3.6	M	
		$I_{LOAD} \le 300 \ \mu A$	(Note 6)(Note 7)			v	
I _{CC}	Operating Supply Current (V _{CC} 5.0)	Transmitting and Receiving at		4.0	8.0		
		12 Mbits/s; $C_{LOAD} = 50 \text{ pF} (D+, D-)$		(Note 8)		mA	
I _{CCIO}	I/O Operating Supply Current	Transmitting and Receiving at		1.0	2.0	m۸	
		12 Mbits/s		(Note 8)		MA	
I _{CC (IDLE)}	Supply Current during	IDLE: $V_{D+} \geq 2.7 \text{V}, \ V_{D-} \leq 0.3 \text{V};$			300	^	
	FS IDLE and SE0 (V _{CC} 5.0)	SE0: $V_{D+} \leq 0.3 V, \ V_{D-} \leq 0.3 V$			(Note 9)	μΑ	
ICCIO (STATIC)	I/O Static Supply Current	IDLE, SUSPND or SE0			20.0	μA	
ICC(SUSPND)	Suspend Supply Current	SUSPND = HIGH			25.0		
	USB1T1102	OE = HIGH			(Note 9)		
		$V_m = V_p = OPEN$					
	Suspend Supply Current	SUSPND = HIGH			40.0	μΑ	
	USB1T1102R	OE = HIGH			(Note 10)		
		$V_p = V_m = OPEN$					
V _{CCTH}	V _{CC} Threshold Detection Voltage	$1.65V \le V_{CCIO} \le 3.6V$					
		Supply Lost			3.6	V	
		Supply Present	4.1				
V _{CCHYS}	V _{CC} Threshold Detection	$V_{CCIO} = 1.8V$		70.0			
	Hysteresis Voltage		70.0			mv	

Symbol				Limits		
	Parameter	Conditions		-40°C to +85	°C	Un
			Min	Тур	Max	
/ссютн	V _{CCIO} Threshold Detection Voltage	$2.7V \leq V_{REG} \leq 3.6V$				
		Supply Lost			0.5	\
		Supply Present	1.4			
CCIOHYS	V _{CCIO} Threshold Detection Hysteresis Voltage	V _{REG} = 3.3V		450		m
REGTH	Regulated Supply Threshold	$1.65V \le V_{CCIO} \le V_{REG}$				
	Detection Voltage	$2.7V \leq V_{REG} \leq 3.6V$,
		Supply Lost		0.8		_
		Supply Present	2.4 (Note 1	1)		_
BECHVE	Regulated Supply Threshold	$V_{CCIO} = 1.8V$,		
REGHTS	Detection Hysteresis Voltage			450		n
Note 9: Exclud Note 10: Includ Note 11: Wher	les any current from load and V _{PU} current des current between V _{Pu} and the 1.5k inter in V _{CCIO} < 2.7V, minimum value for V _{REGTF} ctrical Characteristi	to the 1.5kΩ resistor. mal pull-up resistor. _i = 2.0V for supply present condition. CS (Digital Pins – excludes	: D+, D– Pins)			
Over recomm	ended range of supply voltage and ope	erating free air temperature (unless	s otherwise noted).	V _{CCIO} = 1.6V	to 3.6V	
Cumhal	Devemater	Toot Conditio	-	10°C to	115	l last
Symbol	Parameter	Test Conditio	ons	-40 °C to	+85°C	Units
					mux	
nput Levels					0.2	V
nput Levels	LOW Level Input Voltage			0.0*\/	0.3	V
nput Levels / _{IL} / _{IH}	LOW Level Input Voltage HIGH Level Input Voltage			0.6*V _{CCIO}	0.3	V V
nput Levels /IL /IH	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS:			0.6*V _{CCIO}	0.3	V V
nput Levels /IL /IH /OL	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS: LOW Level Output Voltage	$I_{OL} = 2 \text{ mA}$		0.6*V _{CCIO}	0.3	V V V
nput Levels /IL /IH /OL	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS: LOW Level Output Voltage	I _{OL} = 2 mA I _{OL} = 100 μA		0.6*V _{CCIO}	0.3 0.4 0.15	V V V
приt Levels //IL //IH //OL	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS: LOW Level Output Voltage HIGH Level Output Voltage	I _{OL} = 2 mA I _{OL} = 100 μA I _{OH} = 2 mA		0.6*V _{CCIO}	0.3 0.4 0.15	v v v
приt Levels //IL //IH //OL //OH	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS: LOW Level Output Voltage HIGH Level Output Voltage	$I_{OL} = 2 \text{ mA}$ $I_{OL} = 100 \mu \text{A}$ $I_{OH} = 2 \text{ mA}$ $I_{OH} = 100 \mu \text{A}$		0.6*V _{CCIO} V _{CCIO} - 0.4 V _{CCIO} - 0.15	0.3 0.4 0.15	V V V V
nput Levels /iL /oL /oн еакаде Curr	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS: LOW Level Output Voltage HIGH Level Output Voltage ent	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.6*V _{CCIO}	0.3	v v v
приt Levels /п_ /пн /ос ион .eakage Curr _1	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS: LOW Level Output Voltage HIGH Level Output Voltage ent Input Leakage Current	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.6*V _{CCIO}	0.3 0.4 0.15 ±1.0 (Note 12)	V V V V
nput Levels /IL /IH /OL eakage Curr .J capacitance	LOW Level Input Voltage HIGH Level Input Voltage OUTPUT LEVELS: LOW Level Output Voltage HIGH Level Output Voltage ent Input Leakage Current	$\frac{I_{OL} = 2 \text{ mA}}{I_{OL} = 100 \mu \text{A}}$ $\frac{I_{OH} = 2 \text{ mA}}{I_{OH} = 100 \mu \text{A}}$ $V_{CCIO} = 1.65 \text{V to } 3.6 \text{V}$		0.6*V _{CCIO}	0.3 0.4 0.15 ±1.0 (Note 12)	ν ν ν ν

USB1T1102

USB1T1102

DC Electrical Characteristics (Analog I/O Pins – D+, D– Pins)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). $V_{CC}=4.0V$ to 5.5V or $V_{REG}=3.0V$ to 3.6V

		Test Condition		Limits			
Symbol	Parameter		-4	-40°C to +85°C			
			Min	Тур	Max		
Input Levels	- Differential Receiver	·					
V _{DI}	Differential Input Sensitivity	V _{I(D+)} - V _{I(D-)}	0.2			V	
V _{CM}	Differential Common Mode Voltage		0.8		2.5	V	
INPUT LEVE	LS – Single-ended Receiver		•				
V _{IL}	LOW Level Input Voltage				0.8	V	
V _{IH}	HIGH Level Input Voltage		2.0			V	
V _{HYS}	Hysteresis Voltage		0.30		0.7	V	
Output Leve	ls						
V _{OL}	LOW Level Output Voltage	$R_L = 1.5k\Omega$ to 3.6V			0.3	V	
V _{OH}	HIGH Level Output Voltage	$R_L = 15k\Omega$ to GND	2.8 (Note 13)		3.6	V	
Leakage Cu	rent		•				
I _{OFF}	Input Leakage Current Off State				±1.0	μA	
	CAPACITANCE		•				
C _{I/O}	I/O Capacitance	Pin to GND			20.0	pF	
Resistance			•				
Z _{DRV}	Driver Output Impedance			41.0 (Note 14)		Ω	
Z _{IN}	Driver Input Impedance		10.0			MΩ	
R _{SW}	Switch Resistance				10.0	Ω	
V _{TERM}	Termination Voltage	R _{PU} Upstream Port	3.0 (Note 15) (Note 16)		3.6	v	

Note 13: If V_{OH} min. = V_{REG} - 0.2V.

Note 14: Includes external resistors of 29Ω on both D+ and D– pins.

Note 15: This voltage is available at pin V_{PU} and $\mathsf{V}_{\mathsf{REG}}.$

Note 16: Minimum voltage is 2.7V in the suspend mode.

				Limits		
Symbol	Parameter	Test Conditions	–40°C to +85°C		Unit	
			Min	Тур	Max	
Driver Cha	Putput Pice Time	LC 50 125 pE	10		20.0	1
R		$C_{L} = 50 - 125 \text{pr}$	4.0		20.0	ne
F	Output Fall Time	Figures 4 8	4.0		20.0	113
PEM	Rise/Fall Time Match	tr/ ta Excludes First Transition	4.0		20.0	
		from Idle State	90.0		111.1	%
CRS	Output Signal Crossover Voltage	Excludes First Transition from				
Note 17)		Idle State see Waveform	1.3		2.0	V
Driver Tim	ing				1	
PLH	Propagation Delay					
PHL	$(V_p/V_{po}, V_m/V_{mo} \text{ to } D_+/D)$	Figures 5, 8			18.0	ns
PHZ	Driver Disable Delay	F: 7.0			15.0	
PLZ	(OE to D+/D-)	Figures 7, 9			15.0	ns
PZH	Driver Enable Delay	Figures 7, 9			15.0	
PZL	(OE to D+/D-)				10.0	ns
Receiver T	iming					
PLH	Propagation Delay (Diff)	Figures 6, 10			15.0	ns
PHL	(D+/D- to Rev)	1.194.00 0, 10			.0.0	
PLH	Single Ended Receiver Propagation Delay	Figures 6, 10			18.0	ns

www.fairchildsemi.com

10

Tape and Reel Specification

Tape Format for ML	P			
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
MPX/MHX	Carrier	2500/3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)

13

